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Audio Source Separation of convolutive mixtures
Nikolaos Mitianoudis, Mike Davies

Abstract— The problem of separation of audio sources
recorded in a real world situation is well established in
modern literature. A method to solve this problem is
Blind Source Separation (BSS) using Independent Compo-
nent Analysis (ICA). The recording environment is usually
modelled as convolutive. Previous research on ICA of instan-
taneous mixtures provided solid background for the sepa-
ration of convolved mixtures. The authors revise current
approaches on the subject and propose a fast frequency do-
main ICA framework, providing a solution for the apparent
permutation problem encountered in these methods.

Keywords— Audio Source separation, frequency domain
Independent Component Analysis, convolutive mixtures.

I. Introduction

SUPPOSE there are N audio sources in a room s[n] =
[s1[n], s2[n], . . . , sN [n]]T and M microphones capturing

the auditory scene through the observation signals (mix-
tures) x[n] = [x1[n], x2[n], . . . , xM [n]]T . Generally, the
Blind Source Separation (BSS) problem is defined as the
procedure of estimating the original signals s[n] through
the observed signals x[n]. The term blind stresses that these
methods employ no prior information about the source sig-
nals. In practice, all BSS methods are semi-blind, as some
assumptions about the sources’ statistics are often made.
However, these models tend to be quite general, thus pre-
serving the versatility of the method.

One can model the recording environment and form an
expression connecting the observed signals and the origi-
nal signals. A first crude approximation can be that each
microphone captures a portion of each source. This seems
to be a rather simplified model. Nonetheless, if we are re-
ferring to studio recordings, where audio signals are mixed
using a mixing desk, the mixed signals can be modelled as
linear combinations of the original sources, i.e. instanta-
neous mixtures of the sources.

x = As + ε (1)

where ε models the additive noise captured during record-
ing. The additive noise is still a very difficult and open
problem for the BSS framework. The impact of noise on the
estimator’s performance depends on the type and level of
noise. Cardoso [4] has pointed out that the benefits of noise
modelling for BSS are not so clear. In cases of high SNR,
the bias on estimates for A are small and some noise reduc-
tion can be achieved using robust denoising techniques [11]
as a pre- or post-separation task. In cases of low SNR,
the problem is very difficult to solve anyway. For the rest
of the analysis, we will ignore the additive noise term for
simplicity. Moreover, we will assume that the number of

The authors are with the Electronic Engineering Department,
Queen Mary, University of London, Mile End Road, London E1 4NS,
UK (e-mail: nikolaos.mitianoudis@ elec.qmul.ac.uk).

sources is equal to the number of sensors, i.e. N = M . In
the instantaneous mixtures case, the blind source separa-
tion problem is concentrated on estimating the unmixing
matrix W ≈ A−1 that can separate the audio sources.

A method proposed to solve this problem is Independent
Component Analysis (ICA). ICA exploits the nonGaussian-
ity of source signals and assumes statistical independence of
the separated signals to perform separation. Similar meth-
ods for ICA have been developed from a number of dif-
ferent view points: minimising Kullback-Leibler (KL) di-
vergence [1], Infomax [2] or Maximum Likelihood estima-
tion [5], [23]. Other methods look for the directions of the
most nonGaussian components, using kurtosis or negen-
tropy as nonGaussianity measures [3], [16], [14]. Finally,
other approaches estimate the unmixing matrix by per-
forming approximate diagonalization of a cumulant tensor
of the mixtures [7].

Unfortunately, the instantaneous mixtures model is
rather incomplete in the case of sources recorded in a real
acoustic room environment. Assume the case of a sound
source and a microphone in a room. Previous research
has shown that the signal captured by the microphone can
be well represented by a convolution of the source signal
with a high-order FIR filter, modelling the room acoustics
between the source and the sensor [8]. To increase accu-
racy, we could use lower-order IIR filters to model room
acoustics. However, as IIR filters are less stable and re-
quire minimum-phase mixing, we will model the channel
using FIR filters. In the case of many sources and sensors,
the signal at each sensor can be modelled by the following
equation:

xi[n] =
N∑

j=1

L∑

k=1

αjksj [n− k] i = 1, . . . , N (2)

where L denotes the maximum room filter length. Equa-
tion (2) actually represents the superposition of the convo-
lutions of the N sources with N filters of maximum length
L. These mixtures are referred to as convolutive mixtures.

Many methods have been proposed to solve the convo-
lutional ICA problem. Some of them suggested working
directly in the time-domain [19], [28]. Working in the time
domain has the disadvantage of being rather computational
expensive, due to calculating many convolutions. Other ap-
proaches suggested moving to the STFT domain in order
to transform the convolution into multiplication and apply
ICA methods for instantaneous mixtures for each frequency
bin [26]. Furthermore, audio signals are more nonGaussian
in the frequency domain than in the time domain, making
the STFT a suitable ICA framework. However, there is
an inherent permutation problem in all FD-ICA methods,
which does not exist in time-domain methods.
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The rest of the paper is organised as follows. In sec-
tion II, we set a mathematical formulation of the prob-
lem, and revise some proposed time-domain and frequency-
domain solutions. We introduce the permutation problem
in frequency domain methods and review some proposed
solutions. In section III, we propose a new framework for
Frequency-domain ICA. First of all, we propose modelling
the sources in the STFT domain. Secondly, we incorpo-
rate a time-varying scaling parameter in the proposed time-
frequency source model to impose efficient frequency cou-
pling to solve the permutation problem along with a Likeli-
hood Ratio jump. In addition, a fast frequency domain ICA
algorithm is proposed to improve the speed and stability
of the FD-ICA framework. In section IV, we evaluate the
performance of the proposed framework.

II. Previous Work on Convolutive Mixtures

A. Problem Formulation

Let x[n] = [x1[n], x2[n], . . . , xN [n]]T be N observed sig-
nals that are convolutive mixtures of N statistically inde-
pendent sources s[n] = [s1[n], s2[n], . . . , sN [n]]T such that:

xi[n] =
∑

k

A(k)s[n− k] (3)

where A(k) is the FIR mixing matrix [26], modelling the
room acoustics between each source and sensor. The prob-
lem is to estimate the unknown source signals given the ob-
servations x[n]. There are a number of ambiguities present
in this approach: permutation and spectral shape (includ-
ing sign). Methods to overcome these ambiguities will be
described later on.

For the rest of the analysis, we will assume that the room
acoustics can be inverted, a common assumption made by
all convolutional ICA methods. However, this is not always
valid. It is shown [12] that the mixing matrix A can have
poor conditioning for a range of source-sensor placements,
in addition to symmetric source-sensor geometries. If the
sensors are placed at or near these ill-conditioned locations,
then blind source separation methods either fail or have
degraded performance, as the problem is literally reduced
to the less sensors than sources case.

B. Time-domain Methods

The first efforts on source separation of convolved mix-
tures were made in the time domain, mainly inspired by
blind deconvolution methods. Torkolla [28] modelled the
unmixing procedure as FIR filtering of the mixtures.

ui[n] =
N∑

j=1

L∑

k=1

wjkxj [n− k] (4)

In order to estimate the coefficients wjk, he used an infor-
mation maximisation approach, similar to [2].

Lee et al [19] looked at modelling the unmixing procedure
as an IIR filter and derived a solution for this problem,
noting that the recording environment had to be minimum
phase, which is not always valid. Therefore, he proposed

a FIR approach calculating the updates in the frequency
domain but the non-linearity (i.e. the signal model) in the
time domain.

∆Wf = η(I − E{FFT (f, φ(u(t)))uH(f, t)})Wf (5)

where η is the learning rate and f denotes the correspond-
ing frequency bin. This does not incur a permutation prob-
lem but does involve repeated mapping between the fre-
quency domain and the time domain during optimisation.

C. Frequency-domain methods

Smaragdis [26] proposed working solely in the frequency
domain. Transforming equation (3) to the STFT domain
(using sufficiently long frames), we can transform the con-
volution to multiplication.

x(f, t) = Afs(f, t) (6)

where Af is a N ×N complex matrix. The problem is de-
fined as estimating an unmixing matrix Wf ≈ A−1

f for each
frequency bin. Assuming frequency independent priors for
Wf and the separated sources u(f, t), one can find a ML
solution separately for each frequency bin by maximising
the following log-likelihood:

log p(x(f, t)|Wf ) = E{log p(u(f, t))}+ log det Wf (7)

The natural gradient algorithm [1], although derived from
a different principle, can be used to solve this problem [5].
We can perform unimixing by running independent natural
gradient algorithms for every frequency bin, i.e.

∆Wf = η(I − E{φ(u(f, t))uH(f, t)})Wf (8)

D. The permutation problem in frequency-domain methods

Unfortunately, solving the problem independently for
each frequency bin generates the permutation problem,
since there is the inherent permutation ambiguity in the
rows of Wf [22], [26]. This is more complicated than the
ordering ambiguity in instantaneous mixtures ICA, since
the ordering of the sources must remain the same along the
frequency axis. As a result, the algorithm produces differ-
ent permutations of separated sources along the frequency
axis, and therefore the sources remain mixed. To solve this
problem, we need to impose some frequency coupling.

Smaragdis proposed an adaptive scheme to apply some
frequency coupling between neighboring frequency bins.

∆Wf ← ∆Wf + k∆Wf−1 (9)

where 0 < k < 1. This heuristic adaptive solution can be
interpreted as placing weakly coupled priors on Wf of the
form:

p(Wf |Wf−1) ∝ exp(− 1
2σ2

||Wf −Wf−1||F ) (10)

This imposes some weak smoothness constraint across fre-
quency. However, it had limited effect.
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Parra et al [22] also worked in the frequency domain us-
ing non-stationarity to perform separation. Their solution
to the problem was to impose a constraint on the unmixing
filter length q. This is achieved by applying a projection
operator P to the filter estimates at each iteration, where
P = FZF−1, F is the Fourier transform and Z is a diag-
onal operator that projects on the first q terms. In other
words, it imposes a smooth constraint on the unmixing fil-
ters, as they are modelled as FIR filters. Again mixed
success has been reported for this method.

Another solution is to use beamforming to align the per-
mutations along the frequency axis. All BSS methods make
no assumptions about the position of the sources in the 3D
space. However, beamforming estimates the directions of
signal’s arrival (DOA) in order to steer the beam of an array
of sensors to focus on a specific source. The BSS setup can
be regarded as a N -microphone beamformer. Saruwatari
et al [24] proposed a combined method, where the sources
are separated by a FD-ICA approach using the Ikeda [17]
algorithm, while the correct permutations are lined up to
give a consistent DOA for the sources.

All these solutions try to solve the permutation problem
imposing frequency coupling in the channel. An alternative
approach can be to impose frequency coupling in the source
model, as explained in the next section.

III. A fast frequency domain ICA framework

A. A time-frequency source model

In Lee’s approach [19], the signals are modelled in the
time-domain (the tanh nonlinearity is applied in the time-
domain). On the other hand, Smaragdis proposed mod-
elling the signals in the frequency-domain. Below, we argue
that a time-frequency model is more appropriate.

If we examine the statistical properties of an audio signal
over shorter quasi-stationary periods in the time-domain
(frames of the STFT), the signal is not always well mod-
elled as supergaussian. Looking at the statistical properties
of these segments in the frequency domain, they can be bet-
ter modelled as supergaussian, as these sections have very
heavy tailed distributions [10]. Figure 1 exhibits the his-
tograms of some audio signal segments in the time-domain
and the histograms of the real part of prewhitened FFT of
these segments.

This implies the frequency domain is a better candidate
for source modelling. This will provide a better achievable
performance, since as noted by various authors (e.g. [4]),
the Cramer-Rao bound is related to how close the source
distributions are to the Gaussian. That is that the more
nonGaussian the distributions are, the better the achiev-
able performance.

In addition, most of the supergaussianity measured in
the time domain comes from the fluctuating amplitude
of the audio signal. The slowly varying amplitude profile
also gives us valuable information that can be exploited
for source separation and is not affected by the permuta-
tion problem. Therefore, we can exploit this property to
introduce frequency coupling within the STFT structure.
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Fig. 1. Exploring the statistical properties of short audio segments.
Histograms in the time domain (first row) and in the prewhitened
Frequency domain (second row).

Motivated by this, we introduce the following time-
frequency model. We will generally assume that the STFT
coefficients of the separated sources follow an exponential
non-gaussian distribution. However, we want our model to
incorporate some information about the scaling of the sig-
nal with time (i.e. the signal envelope), assuming that it
is approximately constant over the analysis window. This
can be modelled by a nonstationary time varying scale pa-
rameter βk.

p(uk(f, t)) ∝ βk(t)−1exp(−h(uk(f, t)/βk(t))) (11)

where h(u) defines the density’s form, the index t repre-
sents the time-frame index, f the frequency bin and k is
the source index. The key feature is that the βk term is
not a function of frequency. This restriction provides us
with sufficient coupling between frequency bins to break
the permutation ambiguity. The βk term can be interpreted
as a volume measurement. Literally, it measures the over-
all signal amplitude along the frequency axis, emphasising
the fact that one source is louder at a certain time slot.
This loudness indication can force alignment of the permu-
tations along the frequency axis.

The next step would be to see how the proposed time-
frequency model alters the natural gradient algorithm in
(8). Effectively, the source model is represented by the
activation function φ(u). More specifically, we have :

φ(u) = − ∂

∂u
log p(u) = −p′(u)

p(u)
(12)

The proposed model gives the following activation function:

φ(uk(f, t)) ∝ βk(t)−1h′(uk(f, t)/βk(t)) (13)

The natural gradient algorithm is altered as follows:

∆Wf = η(I − β(t)−1E{g(u(f, t))uH(f, t)})Wf (14)

where β(t) = diag(β1(t), β2(t), . . . , βN (t)) , g(u) = h′(u)
and η is the learning rate. The value for βk(t) is estimated
adaptively from the separated signals u(f, t).
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We note that care needs to be taken in defining activa-
tion functions for complex variables. Below, we will con-
sider activation functions of the form (u/|u|)f(|u|). Al-
though a variety of other activation functions are valid,
such as g(u) = tanh(<{u}) + j tanh(={u}), proposed by
Smaragdis [26], it seems more intuitive to impose no pref-
erence on the phase angles. That is to introduce cir-
cularly symmetric priors on complex variables. This is
essentially the same as the priors on subspaces as pro-
posed by Hyvarinen et al in Independent Subspace Analysis
(ISA) [15]. Assuming complex Laplacian priors in the form
of p(u) ∝ exp(−|u|) ⇒ h(u) = |u|, we set f(|u|) = 1. The
activation function in (14) is then the following:

g(u) = u/|u|, ∀|u| 6= 0 (15)

Although the discontinuity due to |u| implies the cost func-
tion will not be smooth at certain points, in practice, the
performance of the algorithm appears to be unaffected.
MacKay [20] also supported that the function in (15) can
have the same robustness property as the tanh function.
Alternatively, we could use a “smoothed” Laplacian prior
p(u) ∝ exp(−|u|+ log |u|), as proposed by Zibulevsky [29].

Assuming complex Laplacian priors, we can use the fol-
lowing estimate for βk(t):

βk(t) =
1
N

∑

f

|uk(f, t)| (16)

B. Permutation Problem Revisited

Let us now investigate the effect of this time-frequency
model upon the permutation symmetries. Without the β(t)
term the log likelihood function has an identical minimum
for every permutation of the sources at each frequency. In-
corporating β, we weight the likelihood of an unmixing ma-
trix at a given frequency with the time envelope induced
by the components at other frequencies. Thus, β allows
the matching of time envelopes, providing us with a dis-
criminator for the different permutations.

Nonetheless, a direct application of (14) and (16) does
not guarantee that the correct permutation will be found.
The β term will break the symmetry, however, it will not
necessarily change the cost function enough to completely
remove spurious minima. Thus, a gradient optimisation
scheme is likely to get trapped in a local minimum. This
may explain the poor performance of Parra’s solution [22]
in certain examples as observed by Ikram et al [18].

In the following analysis, we introduce a post processing
mechanism in the algorithm by which the correct permuta-
tions are sorted. Fortunately, due to the symmetry of the
problem if we know where one minimum is, we know where
they all are. It is therefore possible to introduce a jump
step into the update that chooses the permutation that is
most likely.

Here we describe a solution for N = 2, using the Lapla-
cian prior. Suppose that for a given set of known Wf , βk(t)
and u(f, t) = Wfx(f, t), we wish to compare two possible

choices for source estimates of u:

1.

[
γ11 0
0 γ22

]
ũ(f, t) = u(f, t) (17)

2.

[
0 γ12

γ21 0

]
ũ(f, t) = u(f, t) (18)

where γij are rescaling parameters that account of incorrect
scaling. To compare these two possibilities, we will evaluate
their likelihood over T time frames.

1. log p(u|γ11, γ22) = −T log(γ11, γ22) + log p(ũ) (19)

2. log p(u|γ12, γ21) = −T log(γ12, γ21) + log p(ũ) (20)

with the values of γij chosen to maximise the likelihood.
For the Laplacian model these are:

γij =
1
T

∑
t

|ui(f, t)|
βj(t)

(21)

We can now evaluate the likelihood of the estimated u(f, t)
in terms of the known quantities u(f, t) and γ. For case 1,
we have:

log p(ũ) ∝ −γ−1
11

∑
t

|u1(f, t)|
β1(t)

− γ−1
22

∑
t

|u2(f, t)|
β2(t)

(22)

which reduces to log p(ũ) ∝ −2T . The analysis for case 2
is identical. Therefore, we get:

log
p(“case1′′)
p(“case2′′)

= −T log(γ11γ22) + T log(γ12γ21) (23)

and we can form the following likelihood ratio test (LR):

LR =
p(“case1′′)
p(“case2′′)

=
γ12γ21

γ11γ22
(24)

If LR < 1, we permute Wf before proceeding. This like-
lihood ratio test is performed after calculating the update
∆Wf , lining up permutations not sorted by the gradient
step.

There are basically two drawbacks in this approach.
Firstly, this becomes more complicated for more than 2
sources, although one possible solution would be to con-
sider the sources in a pairwise fashion. Secondly, the algo-
rithm has to work only in batch mode, as usage of a one-
sample likelihood is not possible. On the other hand, the
algorithm seems to perform well in the majority of cases.

A similar approach, using the time-frequency envelope to
remove the permutation ambiguity, was proposed by Ikeda
et al [17]. However, the approach presented in this section
is more probabilistically justified and ends up proposing a
different solution.

C. A fast Frequency Domain ICA algorithm

So far, we have only considered a gradient-based optimi-
sation scheme to produce maximum likelihood (or MAP)
estimates of the original audio sources. However, all
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gradient-based optimisation methods have two major draw-
backs. First of all, they converge relatively slowly. For a
common frequency domain ICA scenario, we found that
the natural gradient would require around 500 updates to
each Wf (iterations) on average for some decent separation
quality. Secondly, their stability depends on the choice of
the learning rate. In addition, natural signals have greater
low frequency values; therefore the time-frequency values
tend to have different signal levels for every frequency bin.
Inevitably, keeping a constant learning rate for all learning
procedures may inhibit the separation quality at certain
frequency bands. This may also give a reason why the
natural gradient approach does not perform well at high
frequencies, as observed by Smaragdis [26].

For these reasons, we want to replace the natural gradi-
ent scheme in the FD-ICA framework with a Newton-type
optimisation scheme. Their basic feature is that they con-
verge much faster than gradient algorithms with the same
separation quality and while they are more computation-
ally expensive, the number of iterations for convergence is
sufficiently decreased. In addition, they tend to be much
more stable. Hyvarinen et al [3], [16], [14] introduced sev-
eral types of Newton-type “fixed-point” algorithms in ICA
of instantaneous mixtures, using kurtosis or negentropy.

In [14], Hyvarinen explored the relation between a gen-
eralised “fixed-point” (approximate Newton method) ICA
algorithm with the maximum likelihood ICA approach on
instantaneous mixtures. In the following analysis, we show
that it is elementary to extend the algorithm proposed
in [14] to be applicable to the proposed time-frequency
framework.

In the ML-ICA approach for instantaneous mixtures, we
form and try to maximise the following likelihood with re-
spect to the unmixing matrix W :

F = log L(x|W ) = E{log p(u)}+ log |det(W )| (25)

Performing gradient ascent, we can derive the Bell-
Sejnowski [2] algorithm.

In [14], Hyvarinen tries to solve the following optimisa-
tion problem:

max
W

G(Wx) (26)

subject to E{uuT } = I

where G(u) is a non-quadratic function. The solution for
this problem can be estimated by finding the maximum of
the following function:

K(W ) = G(Wx)− α(E{uuT } − I) (27)

where α is the Lagrange multiplier. Performing a gradient
ascent on K(W ), we get:

∇K = E{G′(Wx)xT } − αCW (28)

where C = E{xxT }. If we choose G(u) = log p(u), then
this update law is almost identical to the Bell-Sejnowski law
with a different term controlling the scaling of the unmixing

matrix W . This implies that the algorithm in (28) can
be viewed as solving a constrained Maximum Likelihood
problem. After a series of steps (see [14]) and using G(u) =
log p(u), we end up to the following learning rule:

∆W = D[diag(−αi) + E{φ(u)uT }]W (29)

where αi = E{uiφ(ui)}, D = diag(1/(αi − E{φ′(ui)})).
This algorithm converges at a substantially faster rate than
the gradient based update rules.

Comparing the update rule in (29) with the original nat-
ural gradient law, we can see that they are similar. Instead
of a constant learning rate, there is a learning rate (the D
matrix) that adapts to the signal. Hence, the algorithm is
less dependent on signal levels and therefore more stable.
Hyvarinen states that replacing I with the adaptive term
diag(−αi) is also beneficial for convergence speed. If we use
pre-whitened data x, then the formula in (29) is equivalent
to the original fixed-point algorithm [16], while it is still
expressed in terms of the natural gradient algorithm. The
most important consequence for us, however, is that the
nonlinear activation function φ(u) in (29) has exactly the
same interpretation as in the ML-approach, as mentioned
in section IIB.

D. A unifying framework

We can now use all the previous analysis to form a uni-
fying framework for the convolutive mixtures problem.

First of all, we prewhiten the time-frequency STFT coef-
ficients of the mixtures x(f, t) and store the prewhitening
matrices Vf for each frequency bin. Prewhitening is an
essential step for the algorithm, which cannot be omitted.

The next step is to estimate the unmixing matrix for each
frequency bin. We will use the “fixed-point” approach,
as described in (30), using random initialisation for Wf .
Moreover, he have to keep the rows of Wf orthogonal with
unit norm, as described in (31).

∆Wf = D[diag(−αi) + E{φ(u(f, t))uH(f, t)}]Wf (30)

Wf ← Wf (WH
f Wf )−0.5 (31)

The parameters in this update rule are calculated as previ-
ously. In addition, we will use the proposed time-frequency
source model, as described earlier on, to impose frequency
coupling. Therefore, the activation function φ(u) in (30)
is:

φ(u) = β−1(t)u/u| ∀u 6= 0 (32)

The derivative φ′(u) used in the calculation of D can be
approximated by:

φ′(u) = β−1(t)(|u|−1 − u2|u|−3) ∀u 6= 0 (33)

The next step is to remove the permutation ambiguity by
applying the likelihood ratio jump solution.

An important issue is the spectral shape ambiguity. In [6],
Cardoso shows that we can remove this ambiguity, by fo-
cusing on the observation spaces containing each source
rather on the columns of the mixing matrix. Therefore,
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he proposed an operator that projects the components to
the observation space to solve the problem. In our case, we
will use this operator to return the separated sources to the
observation space. Thus, we will have N estimates of each
source. Denoting the estimated unmixing matrix as Wf ,
the prewhitening matrix as Vf for each frequency bin f ,
then the separated sources, observed at each microphone,
are given by:

s̃i,xj (f, t) = [V −1
f W−1

f ]jiui(f, t), ∀i, j = 1, . . . , N (34)

where s̃i,xj is the i-th estimated source observed at the j-th
microphone.

IV. Evaluation

It is not our intention to provide an exhaustive compar-
ison of the many different approaches to BSS with con-
volutive mixtures. Instead, we present two experiments
to demonstrate that the proposed fast FD-ICA framework
can produce fast and good quality separation, providing a
robust solution for the permutation problem. Other results
have been reported elsewhere [21].

A. Experiment 1

In our initial experiment, we created a synthetic convolu-
tive mixture of two speech sources (around 3secs at 16KHz)
that illustrates the permutation problem in the Smaragdis
algorithm. The synthesised acoustic paths consisted of an
initial delay followed by single echo. The echo times were
between 1 and 5 milliseconds and echo strengths between
0.1 and 0.5 of the direct path signal.

Spectrograms of the separated sources are given in fig-
ure 2 along with equivalent separations for the Smaragdis
algorithm. It is clear that the permutation inconsisten-
cies that occurred in the Smaragdis case are no longer
present. Omitting the LR step in our algorithm seems
to produce the same permutation errors as in Smaragdis’s
case. In both cases, the frame size was 2048 samples (ap-
proximately 150ms) with a frame overlap of 50%. However,
while Smaragdis’s algorithm required about 500 iterations
to reach convergence, the fast FD-ICA framework required
only 50 (both algorithms processed the data in batch form).
This is very typical of the dramatic improvement in effi-
ciency that can be achieved using Fast ICA techniques.

B. Experiment 2

The second experiment was chosen to test the algo-
rithm’s ability in highly reverberant conditions. To do this,
we used Westner’s room acoustic data. Westner [13] placed
a number of microphones and loudspeakers in a conference
room with bad acoustics and measured the transfer func-
tion between each speaker and microphone position. Using
his roommix function, one can simulate any of the mea-
sured speaker-microphones configurations in that confer-
ence room, generating a very challenging data set. For our
experiment, we placed our sources to speaker positions 1
and 2 and we used microphones 2 and 1 to capture the
auditory scene, according to Westner’s configuration [13].
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Fig. 2. Permutation problem illustrated. Separated sources using
the Smaragdis algorithm (left) and the algorithm proposed in section
III (right). Permutation inconsistencies are highlighted with arrows.
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Fig. 3. One of the filters modelling the room acoustics created by
Westner’s roommix function.

An example of the simulated room impulse responses
used in this experiment is depicted in figure 3. The room
acoustics have substantial reverberation for several hun-
dred milliseconds and therefore this experiment is expected
to be very challenging.

We applied the algorithm to speech data (around 7secs
at 16KHz), using a STFT frame size of around 500 msecs
with 75% overlapping and a hamming window. The fast
FD-ICA algorithm managed to reduce the crosstalk by a
considerable amount. Choosing a long frame length is in-
evitable, as it needs to be much greater than the mixing fil-
ters length, so that the convolution is actually transformed
into multiplication in the frequency domain. The fact that
reverberation continued beyond the frame length means
that the transfer function cannot be perfectly modelled.

One drawback of our current approach is that we are
attempting to reconstruct the signals at the microphones.
Thus, the reverberation is still present on the separated
sources. One possible solution to this problem has recently
been proposed in [27].
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C. Performance Measurements

To quantify the performance of our fast implementation
and compare it against a natural gradient update scheme,
we measured the Improvement in Signal-to-Noise Ratio
(ISNR) achieved at each microphone. This metric is also
referred to as Noise Reduction Rate (NRR) in [24]. Note
that ISNR can be used as a performance metric, as the
sources are observed at the microphones, therefore there is
no scale ambiguity.

ISNRi,j = 10 log
E{(si,xj

(t)− xj(t))2}
E{(si,xj (t)− s̃i,xj (t))2}

(35)

where xj is the mixed signal at the j-th microphone, s̃i,xj is
the i-th estimated source observed at the j-th microphone
and si,xj

is the i-th original source observed at the j-th mi-
crophone. The ISNR results for the experiments described
above are presented in table I. These clearly demonstrate
the superiority of the fast learning algorithm when faced
with a challenging acoustical environment.

In figure 4, we compare the performance of the fast FD-
ICA framework with the natural gradient (NG) algorithm
in the Westner case. We can see the improvement in con-
vergence speed and separation quality. In this plot, we can
also see that the actual speed of the proposed framework,
as it converges in around 20 iterations.

We can also measure the distortion along the frequency
axis, as proposed by Schobben et al [25].

Di,j(f) = 10 log
E{STFT{(si,xj (t)− λij s̃i,xj (t))

2}}
E{STFT{si,xj (t)2}}

(36)

where λij = E{si,xj (t)
2}/E{s̃i,xj (t)

2}. In figure 5, we plot
D1,1 and D1,2 for Exp. 2 using fast FD-ICA along fre-
quency. We can see that the distortion remains negative
along the greatest part of the spectrum (significantly lower
compared to the NG approach), except from some specific
frequency bands, where the signal energy levels are low
(high frequencies), or the BSS problem is ill-determined.

TABLE I

ISNR (dB) measurements for the fast FD-ICA method (after

50 iterations) and the natural gradient algorithm (after

500 iterations).

ISNR1,1 ISNR2,1 ISNR1,2 ISNR2,2

Exp.1

FastFD-ICA 8.02 3.92 6.79 4.85
Exp.1

Nat.Grad. 5.33 1.21 4.92 2.40
Exp.2

FastFD-ICA 4.19 3.09 4.18 3.40
Exp.2

Nat.Grad. 3.18 2.34 3.87 2.17

D. Computational Cost

The computational cost of the Fast FD-ICA framework
is slightly increased, compared to the NG framework. We
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Fig. 4. Comparison of the fast FD-ICA algorithm with the natural
gradient approach in the Westner case.
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Fig. 5. Measuring distortion along frequency for the NG FD-ICA and
Fast FD-ICA case, together with signal energy levels along frequency
(bottom).

have to consider the extra cost introduced by the fast algo-
rithm and the Likelihood-Ratio jump. In terms of floating
point operations, the “fixed-point” algorithm requires 1.45
times more flops per iteration than the NG algorithm. In-
cluding the LR jump, it requires 2.02 times more flops per
iteration. Considering that the new framework converges
in 10-30 times less iterations, we can see the overall gain in
computational cost and convergence speed. However, the
computational cost of the LR jump increases significantly
with N sources. Working on a pairwise basis, the cost of
the LR jump will scale quadratically with N. Prewhitening
also increases the computational cost, however, it is pre-
formed only once before the main algorithm and its cost is
0.3 times the cost of an iteration.

V. Conclusions - Future Work

In this study, we explored the Blind Source Separation
problem of convolved mixtures, in the case of equal number
of sources and sensors, proposing a fast frequency-domain
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solution. The key points of this solution were:
Firstly, we proposed a new time-frequency source model

for a ML-ICA approach, incorporating a time-varying pa-
rameter, aiming to model the audio signals more effectively
and impose frequency coupling between neighboring fre-
quency bins. In addition, a method to tackle the permu-
tation problem was proposed, by incorporating a likelihood
ratio test at each iteration.

In addition, a fast Newton-type ICA algorithm was
adapted in the frequency domain framework, replacing the
natural gradient ICA algorithm. As a result, the speed of
the FD-ICA framework increased by an order of magni-
tude. Incorporating the proposed solution for the permu-
tation problem in the “fast ICA” implementation produced
good separation results. However, this is a batch algorithm
and is not directly applied to real-time systems.

In the future, the authors would like to investigate a more
complete Bayesian solution, incorporating strong priors on
the channel model. Recent work exploiting DOA estimates
to solve the permutation problem [24] suggests that such
a model could be very effective. Furthermore, introduc-
ing higher-level priors on the source model can improve
separation quality, or even achieve separation of specific
sources. This could include incorporating source identity
or harmonic models similar to those used in Computational
Auditory Scene Analysis (CASA).
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