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ABSTRACT

Image fusioncan be viewed as a process that incorporates
essential information from different modality sensors into a
composite image. The use of bases trained using Independent
Component Analysis (ICA) for image fusion has been high-
lighted recently. Common fusion rules can be used in the ICA
fusion framework with promising results. In this paper, the
authors propose an adaptive fusion scheme, based on the ICA
fusion framework, that maximises the sparsity of the fusion
image in the transform domain.

1. INTRODUCTION

Let I1(x, y), I2(x, y), . . . , IT (x, y) representT images of size
M1×M2 capturing the same scene. Each image has been ac-
quired using different instrument modalities or capture tech-
niques. In this study, we will assume that the objects in all
input images are geometrically aligned. The process of com-
bining important features from theseT images to form a sin-
gle enhanced imageIf (x, y) is referred to asimage fusion.

The problem of image fusion has been addressed widely
in literature for military, biomedical or geographical imaging
applications. Most approaches perform fusion in a transform
domain that can highlight the salient features of the image.
Pyramid decomposition and the Dual-Tree Wavelet Transform
(DT-WT) are two common choices [1, 2], as they both model
abrupt signal changes efficiently, i.e. edge information in an
image. Many pixel-based or region-based fusion rules were
proposed using these two image analysis frameworks.

In [3], we proposed to use bases trained using Indepen-
dent Component Analysis (ICA) on similar-content images as
analysis tools for image fusion. The main motivation was to
use bases that can fit arbitrarily on the object types we are go-
ing to fuse. This framework can outperform generic analysis
tools, such as wavelet analysis. One can use the same pixel-
based and region-based fusion rules, that were employed be-
fore by the fusion community, in the ICA framework. In this
paper, the authors propose a mechanism for a self-adaptive,
unsupervised fusion scheme, that preserves and emphasises
the local features in most fusion scenarios. This is achieved
by optimising the sparseness of the fused image in the trans-
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form domain. Two different probabilistic priors that model
sparsity are employed with promising results.

2. IMAGE FUSION IN THE ICA DOMAIN

2.1. Image analysis and training using ICA bases

Assume an imageI(x, y) of sizeM1×M2. An “image patch”
is defined as aN × N neighbourhood centered around the
pixel (x0, y0). Assume that we have a population of patches
Iw, acquired randomly from the original imageI(x, y). Each
image patchIw(k, l) is arranged into a vectorIw, using lexi-
cographic ordering. These vectors can be expressed as a linear
combination of the bases vectorsbj :

Iw(t) =
K∑

j=1

uj(t)bj = [b1 b2 . . . bK ]




u1(t)
u2(t)
. . .

uK(t)


 (1)

wheret represents thet-th image patch selected from the orig-
inal image. Equation (1) can be expressed, as follows:

Iw(t) = Bu(t) (2)

u(t) = B−1Iw(t) = AIw(t) (3)

whereB = [b1 b2 . . . bK ] andu(t) = [u1(t) u2(t) . . . uK(t)]T .
In this case,A = B−1 = [a1 a2 . . . aK ]T represents theanal-
ysiskernel andB thesynthesiskernel. The estimation of these
basis vectors is performed using a population of training im-
age patchesIw(t) and a criterion (cost function) that selects
the basis vectors. We can train analysis bases usingIndepen-
dent Component Analysis(ICA) and topographic ICA [4], as
explained in [3]. The training procedure needs to be com-
pleted only once, as the estimated transform can be used for
fusing similar content images.

A number ofN × N patches (usually∼ 10000) are ran-
domly selected from similar-content training images. We per-
form PCA on the selected patches and select theK < N2

most important bases. It is always possible to keep the com-
plete set of bases. Then, we iterate the ICA update rule in [5]
or the topographical ICA rule in [4] for a chosenL×L neigh-
bourhood until convergence. Each iteration, we orthogonalise
the bases using a symmetric decorrelation scheme [5].
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Fig. 1. The proposed fusion system using ICA / Topographi-
cal ICA bases.

2.2. Fusion in the ICA domain

After estimating a ICA or Topographic ICA transformT {·},
we can perform image fusion using ICA or Topographical
ICA bases (see figure 1). Every possibleN × N patch is
isolated from each imageIk(x, y) and is consequently re-
arranged to form a vectorIk(t). Each of the input vectors
Ik(t) are transformed to the ICA or Topographic ICA domain
representationuk(t), using equation (3)

Optional denoising is also possible, by applying a “hard”
threshold on the coefficients in the ICA domain [6]. The cor-
responding coefficientsuk(t) from each image are then com-
bined to construct a new imageuf (t). The next step is to
move back to the spatial domain, using the synthesis kernel
B, and synthesise the imageIf (x, y) by averaging the image
patchesIf (t) in the same order they were selected during the
analysis step.

2.3. Various Pixel-based rules using ICA bases

In this section, we describe some generic rules that can be
used for image fusion. Thefusion by absolute maximumrule
has been used widely by the image fusion community. It sim-
ply selects the greatest in absolute value of the correspond-
ing coefficients in each image (“max-abs” rule). This rule
seems to convey all the information about the edges to the
fused image, however, the intensity information in constant
background areas seems to be slightly distorted. In contrast,
the fusion by averagingrule averages the corresponding co-
efficients (“mean” rule). This seems to preserve the correct
contrast information, however, the edge details seem to get
oversmoothed.

We can form aWeighted Combination(WC) pixel-based
rule using the ICA framework [3]. We wish to use a “weighted
combination” of the transform coefficients, i.e.

uf (t) =
T∑

k=1

wk(t)uk(t) (4)

To estimate the contributionswk(t) of each image to the “fused”

image, we can use the mean absolute value (L1-norm) of each
patch (arranged in a vector) in the transform domain, as an ac-
tivity indicator:

Ek(t) = ||uk(t)||1 k = 1, . . . , T (5)

The weightswk(t) should emphasise sources with more in-
tense activity, as represented byEk(t). Consequently, the
weightswk(t) for each patcht can be estimated by the contri-
bution of thek-th source imageuk(t) over the total contribu-
tion of all theT source images at patcht, in terms of activity.

wk(t) = Ek(t)/
T∑

k=1

Ek(t) (6)

In some patches, where
∑T

k=1 Ek(t) might be very small, one
can use the “max-abs” or “mean” fusion rule to avoid numer-
ical instability.

3. A GENERAL OPTIMISATION SCHEME FOR
IMAGE FUSION

In this section, the focus is placed in finding an autonomous
image fusion system, based on several desired properties of
the fused image. As described earlier, the fused imageuf

in the transform domain will be given by a linear combi-
nation of the input images (equation (4)). We denotew =
[w1 w2 . . . wT ]T . All elements of vectorui will contribute
in the formation of the fused image, according to the weight
wi. Let us now define:

x(n) = [u1(n) u2(n) . . . uT (n)]T ∀ n = 1, . . . , N2

(7)
Hence, the fusion procedure can be equivalently described by
the following product:

uf (n) = wT x(n) ∀ n = 1, . . . , N2 (8)

The problem of fusion can now be described as an op-
timisation problem of estimatingw, so that the fused image
follows certain properties. It makes sense to assume that the
fusion process enhancessparsityin the ICA domain. In other
words, the fusion should emphasize the existence of strong
coefficients in the transform, whilst suppress small values.

The connection betweensparsityand ICA representations
has been investigated thoroughly by Olshausen [7]. The basis
functions, that emerge when adapted to static, whitened nat-
ural images under the assumption of statistical independence,
resemble the Gabor-like spatial profiles of cortical simple-cell
receptive fields. That is to say that the functions become spa-
tially localised, oriented and bandpass. Because all of these
properties emerge purely from the objective of finding sparse,
independent components for natural images, the results sug-
gest that the receptive fields of V1 neurons have been de-
signed under the same principle. Therefore, it seems that



the actual non-distorted representation of the observed scene
in the ICA domain should be more sparse than the distorted
or individual sensor input. Consequently, an algorithm that
maximises the sparsity of the fused image in the ICA domain
should enhance its perceptive quality.

3.1. Laplacian priors

Assuming a Laplacian model foruf (n), we can perform Max-
imum Likelihood (ML) estimation ofw. The Laplacian prob-
ability density function is given below:

p(uf ) ∝ e−α|uf | (9)

whereα is a parameter that controls the width (variance) of
the Laplacian. The likelihood expression for ML estimation
can be given by:

Ln = − log p(uf |θn) ∝ α|uf | = α|wT x(n)| (10)

Maximum Likelihood estimation can be performed by max-
imising the cost functionJ(w) = E{Ln}.

maxw E{α|wT x|} (11)

subject to eT w = 1 andw > 0 (12)

wheree = [1 1 . . . 1]T . The first derivative of the cost func-
tion is given by:

∂J(w)
w

=
∂

w
E{α|wT x|} = αE{sgn(wT x)x} (13)

To solve the above optimisation problem, one has to consult
methods for constrained optimisation. Using the Lagrange
multipliers method for equality constraints and the Kuhn-Tucker
conditions for inequality constraints is going to increase the
computational complexity of the algorithm. In addition, the
available data points for the estimation of the expectation are
very limited toN2. Therefore, we propose to solve the uncon-
strained optimisation problem using a gradient ascent method
and impose the constraints at each stage of the adaptation, by
ensuring that the weightswi remain always positive and they
sum up to one.

w+ ← |w|/(eT |w|) (14)

3.2. Verhulstian priors

Laplacian priors can often be unstable, as the sgn(u) function
in the update algorithm has a discontinuity atu → 0 and may
cause numerical instability during the update. Therefore, one
can use alternate probabilistic priors that model sparsity, such
as thegeneralised Laplacianor theVerhulstiandistribution.

The Verhulstianprobability density function can be de-
fined, as follows:

p(u) = e−
u−m

s

/
s
(
1 + e−

u−m
s

)2

(15)

wherem, s are parameters that control the mean and the stan-
dard deviation of the density function. In our case, we will
assume zero mean and thereforem = 0. We can now derive
the log-likelihood function for ML estimation:

Ln =
1
s
wT x + log s + 2 log

(
1 + e−

1
s wT x

)
(16)

Maximum Likelihood estimation can be performed in a simi-
lar fashion to Laplacian priors, by maximising the cost func-
tion J(w) = E{Ln}. Again, we will perform a gradient as-
cent algorithm, as explained in the previous section with a
correcting step that will constrain the solutions in the solu-
tion space that is permitted by the optimisation problem. The
gradient is calculated, as follows:

∂J(w)
∂w

=
1
s
E

{
1− e−

1
s wT x

1 + e−
1
s wT x

x

}
(17)

3.3. Adaptive Fusion algorithm outline

Consequently, the adaptive fusion algorithm can be outlined
as follows:

1. Initialise w = e/T . This implies that we give equal
importance to all input patches initially (“mean” rule).

2. Update the weight vector, as follows:
(using Laplacian priors)

w+ ← w + ηE{sgn(wT x)x} (18)

(using Verhulstian priors)

w+ ← w + ηE
{

1− e−
1
s wT x

1 + e−
1
s wT x

x

}
(19)

whereη represents the learning rate.

3. Apply the constraints, using the following update rule:

w+ ← |w|/(eT |w|) (20)

4. Iterate steps2, 3 until convergence.

4. EXPERIMENTS

We explore the performance of the proposed scheme in multi-
modal image fusion. In this case, the input images are ac-
quired from different modality sensors to unveil different com-
ponents in the observed scene. We have used some surveil-
lance images from the Image Fusion Server [8]. The first
sensor (AMB) is a Radiance HS IR camera (Raytheon), the
second (AIM) is an AIM 256 microLW camera and the third
is a Philips LTC500 CCD camera. The concept of ground
truth is not really meaningful in this case and therefore, we



can not have any numerical performance evaluation. We have
tested the DTWT and the Topographic ICA (TopoICA) bases
in various fusion rules. The maxabs rule in both cases man-
ages to preserve most of the edge information, however, the
two adaptive fusion scheme seem to balance between the de-
tails and the different contrast information that exists in the
three different modality input images. The perception quality
of the fused image using the adaptive schemes seems to have
increased.

5. CONCLUSION

In this paper, the authors have made a step towards a more
autonomous fusion system, where the fusion coefficients are
selected by optimising several criteria. We have explored the
use ofsparsityas a criterion that can be used for fusion. Max-
imum likelihood estimation was used to calculate the coef-
ficients that can lead to a sparser representation in the lo-
calised ICA domain. We experimented with bothLaplacian
andVerhulstianpriors to represent sparsity during the Maxi-
mum Likelihood estimation with encouraging results.
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Fig. 2. Multi-modal image fusion: Three images acquired
through different modality sensors and various fusion results
with various transforms and fusion rules.


