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ABSTRACT

Equalization techniques for room impulse responses (RIRs)

are important in acoustic signal processing applications such

as speech dereverberation. In practice, only approximate es-

timates of the RIRs are available and the inverse filters de-

signed from these estimates may cause significant distortion

in the equalized signal. A second issue is that existing equal-

izer design algorithms are computationally expensive. We

here propose regularized subband equalizer design algorithm.

Both the computational complexity and the robustness of the

equalizer design to system estimation errors are improved. An

analysis of the computational complexity and simulation ex-

amples are provided to support our study.

Index Terms— acoustic signal processing, deconvolu-

tion, equalizers, inverse problems

1. INTRODUCTION

Equalization of room impulse responses (RIRs) is an impor-

tant research topic with several applications in acoustic sig-

nal processing, such as hands free telephony and automatic

speech recognition [1]. We focus here on the case of a single

source (talker) and M ≥ 2 microphones. Such multichannel

equalization is often preceded by a process of identifying the

acoustic channels between the source and the receivers.

Consider the L-tap room impulse response of the acous-

tic path between a source and the mth microphone, hm =
[hm,0, hm,1, . . . , hm,L−1]T . Equalization can be achieved by

an inverse system, gm = [gm,0, gm,1, . . . , gm,Li−1]T , satis-

fying

Hmgm = d, (1)

where Hm is an (L + Li − 1) × Li convolution matrix,

d = [0, . . . , 0,︸ ︷︷ ︸
τ

1, 0, . . . , 0]T (2)

is an (L + Li − 1) × 1 vector, τ is a modeling delay and Li

is the design length of the inverse filter. However, because of

the non-minimum phase nature of the RIRs [2], stable causal

solutions for gm can not normally be obtained. Exact equal-

ization is indeed possible when the MINT [3] algorithm is

used with multiple microphones, but there are several prac-

tical problems with RIR equalization that remain unsolved

[4, 5]. Room impulse response estimation errors can be large

due to, for example, measurement noise. Equalization filters

designed from inaccurate estimates of RIRs can cause dis-

tortion in the equalized signal [4, 6]. Furthermore, existing

equalization algorithms [3, 7, 8, 9, 10] are computationally

complex, which also causes problems for practical implemen-

tations.

An oversampled subband multichannel least squares (LS)

equalization algorithm is proposed in [6] and it is shown that

equalization in subbands can substantially decreases compu-

tational complexity compared with the fullband counterpart.

In [9], the authors use regularization to reduce the sensitivity

of inverse filters to RIR fluctuations and observation noise. In

this paper, we propose the use of regularization in the subband

algorithm in order to improve the robustness of the design to

RIR estimation errors.

The remainder of the paper is organized as follows.

In Section 2, regularized LS equalization and subband ap-

proaches are reviewed. A computational complexity analysis

is given in Section 3. In Section 4, a comparison of the robust-

ness between two approaches is provided and conclusions are

drawn in Section 5.

2. MULTICHANNEL LS EQUALIZATION

We now review the regularized multichannel equalization al-

gorithm [9] and introduce it into the subband implementation

[6].

2.1. Regularized Multichannel LS Equalization

A multichannel inverse filter g = [gT
1 ,gT

2 , . . . ,gT
M ]T can be

obtained by solving the equation,

Hg = d, (3)

where H = [H1, · · · ,HM ] is the system matrix. The inverse

filter can be obtained by

g = H+d, (4)

where H+ = (HT H)−1HT denotes the Moore-Penrose

pseudo-inverse of matrix H.
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The effectiveness in increasing the robustness of the de-

sign of g to RIR fluctuations and observation noise as a func-

tion of regularization parameter δ, filter length Li, and model-

ing delay τ , is investigated in [9]. The regularized LS equal-

ization filter can be calculated according to

g = (HT H + δI)−1HT d, (5)

where I is an identity matrix. Regularization reduces the ac-

curacy of the inverse filter, but it can also reduces the sensitiv-

ity to RIR estimation errors in H. For this equalization filter,

a reference length of Li = � L−1
M−1� is used, which makes the

matrix H square when L−1
M−1 is an integer and thus an exact

inversion can be obtained if the channels do not share any

common zeros [3]. However, improved equalization can be

expected by increasing the length of the equalization filter or

choosing appropriate delay τ in (2) when estimation errors

are present.

2.2. Subband Multichannel LS Equalization

For the case of subband multichannel LS equalization [6], the

generalized discrete Fourier transform (GDFT) filterbank [11]

is employed. The reverberant speech is first decomposed into

K subbands with Lpr-tap analysis filters uk and decimated by

a factor of N . Subband equalization is then performed using

the approach already described in the fullband context. The

equalized signal is finally reconstructed with synthesis filters.

In order to design the subband equalizer, the subband

RIRs must be found from fullband estimates using, for ex-

ample, complex subband decomposition [12]. The estimates

of the kth subband, mth channel RIRs are found by solving

the following optimization problem

h′
k,m = arg min

h′
k,m

‖UN,kh′
k,m − rN,km‖2

2, (6)

where UN,k is the convolution matrix of the decimated anal-

ysis filters uN,k = [uk,0, uk,N , . . . , uk,Lpr−1]T and rN,km =
[rk,m,0, rk,m,N , . . . , rk,m,N(L−1)]T is an �L+Lpr−1

N �×1 vec-

tor with rk,m = hm∗uk. Then the channel filters are obtained

in the least squares optimal sense according to

h′
k,m = U+

N,krN,km, (7)

with length of L′ = �L+Lpr−1
N � − �Lpr

N � + 1.

By introducing regularization into the subband equaliza-

tion, the equalization filters gk of kth subband RIRs h′
k can

be calculated according to

gk = (HT
k Hk + δI)−1HT

k d′, (8)

where Hk = [Hk,1,Hk,2, . . . ,Hk,M ] is the kth subband sys-

tem matrix, d′ = [0, . . . , 0, 1, 0, . . . , 0]T is an (L′+L′
i−1)×1

vector, Hk,m is the convolution matrix of hk,m and L′
i is

the length of the subband equalization filters with a reference

value of L′
i = �L′−1

M−1�.

3. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section we present a comparative analysis of the com-

putations required for the fullband and subband equalization

algorithms. The comparision is made in terms of floating

point operations (flops) [13]. We consider the general opti-

mization problem minx‖Ax − b‖2, which has an LS solu-

tion x̂ = (AT A)−1AT b, where A is an arbitrary real valued

p × q matrix and b is a real valued p × 1 vector. The number

of flops required to solve this problem is given by [13]

pq2 +
q3

3
. (9)

From the dimension of the fullband equalization filter cal-

culation in (5), the number of flops required is

(MLi)2(L + Li − 1) +
(MLi)3

3
. (10)

The subband equalization filter design takes into consid-

eration two separate calculations for each of the K
2 subbands:

the cost of the subband decomposition in (7) and the equaliza-

tion filter computation in (8). The data for these calculations

is complex where, generally, one complex multiply requires

four real multiplies and two real additions, and one complex

addition requires two real additions. Thus, we multiply the

expression in (9) by a factor of six. The total flops required

for the subband equalization filter design can be expressed as

3K(ML′
i)

2(L′+L′
i−1)+L′2(

Lpr

N
+L′−1)+

(ML′
i)

3 + L′3

3
.

(11)

For the case of the reference equalization filter length

used, the ratio of (10) and (11) is given by

N3LM3(M + 2)
3KLM3(M + 2) + (4L + 3Lpr)(M − 1)

. (12)

4. EXPERIMENTS

Simulations are used to demonstrate the subband regulariza-

tion approach to the equalizer design robustness to estimation

errors in the RIRs. Figure 1 shows the configuration of the

source and M = 2 microphones used in the experiments, fol-

lowing the scenario used in [14]. Room impulse responses

are generated using the image method [15]. The sampling fre-

quency is 8 kHz and the reverberation time is 200 ms, which

results in RIRs of 1600 taps.

The channel estimation error of the ith tap, mth channel

is modeled as [16]

ξm,i = εm,i × hm,i, (13)

where εm,i is a zero mean Gaussian variable with variance set

to desired system mismatch Em = 10 log10(var(εm,i)) dB,

such that Em = 10 log10
‖ξm‖2

2
‖hm‖2

2
dB.
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Fig. 1. Room dimensions and source-microphone configura-

tion.
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Fig. 2. Performance as a function of regularization parameter

for system mismatch Em=-10, -20, -30, and -40 dB.

Then, the equalization filter for the fullband and subband

cases are calculated with (5), and (8) respectively using the

RIR estimates ĥ = h+ξ. Finally, we use this filter to equalize

the room impulse responses.

The filterbank used in this paper uses K = 32 subbands

and decimation factor, N = 24, as used in [6]. An Lpr =
512-tap prototype filter was designed using the iterative least

squares method [11].

For quantitative evaluation, we use the following metrics:

a. Direct to Reverberant Ratio (DDR)–The direct path

impulse response is defined as hd representing propagation

from the talker to a microphone without reflections, and the

reverberant component hr as an impulse response represent-

ing all nondirect propagation paths. The DRR can be found

from the corresponding impulse response coefficients [5] as

DRR = 10 log10

‖hd‖2
2

‖h − hd‖2
2

dB (14)

b. Magnitude and Linear phase deviation–We define

D(f) = |D(f)|ejθ(f) as the F -point discrete Fourier trans-

form of the equalized impulse response. Magnitude deviation

is defined as the standard deviation of the equalized magni-
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Fig. 3. Comparison in DRR
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Fig. 4. Comparison in Magnitude and Linear phase deviation

tude response [4]

σ =

√√√√ 1
F

F−1∑
f=0

(10 log10 |D(f)| − D)2, (15)

with

D =
1
F

F−1∑
f=0

10 log10 |D(f)|.

Linear phase deviation is defined as the deviation of the un-

wrapped phase from a linear fit to its values

Δ =

√√√√ 1
F

F−1∑
f=0

(θ(f) − θ(f))2, (16)

where θ(f) is the least squares linear approximation to the

phase at frequency bin f .

The results shown here are averaged over 30 different es-

timation error realizations. The robustness of regularized sub-

band inversion to system estimation errors is now studied as

a function of the regularization parameter magnitude. Figure

2 shows the results for Em=-10, -20, -30, and -40 dB.
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Fig. 5. Performance as a function of added filter length to

the reference length for Em=-20 dB. Modeling delay is set at

τ = 0, 240, regularization parameter at δ = 0, 10−4.

A regularization parameter, for example, of δ = 10−4

gives the best DRR result for Em=-20 dB, and hereafter, we

refer to the value of regularization parameter which gives the

best DRR result as the best value with respect to the corre-

sponding system mismatch level.

Figures 3 and 4 shows comparative results between sub-

band and fullband equalization. The dashed line in Fig. 3

represents the averaged DRR of the unprocessed RIRs of the

two channels. It can be seen that regularization with the best

values improves the performance by about 10 dB in DRR for

all system mismatch levels in both the cases of fullband and

subband equalization. For system mismatch smaller than -40

dB, the performance of the subband algorithm is constrained

by the non-ideal nature of the filter bank design but for sys-

tem mismatch Em greater than -40 dB, subband equalization

performs at least as well as the fullband. With regularization,

the subband algorithm slightly outperforms the fullband one

in terms of magnitude and linear phase deviation. Since cur-

rent blind system estimation algorithms obtain about 6-20 dB

normalized projection misalignment (NPM) [17], it can be al-

ways expected in practice that Em > −40dB.

The effects of filter length and modeling delay are shown

in Fig. 5. It is seen that, with regularization, increasing the

length brings little improvement, but introducing modeling

delay significantly improves the performance. Here we only

plot the subband case and take Em= -20 dB as an example.

Similar results can be seen for the fullband case and other

mismatch levels.

According to (12), the subband approach reduces the re-

quired computational complexity by a factor of about 125 for

our implementation with M = 2, K = 32 subbands deci-

mated by N = 24, and L = 1600.

5. CONCLUSION

In this paper, we introduced regularization into the subband

multichannel LS equalization algorithm to achieve robust and

fast equalization of RIRs when estimation errors are present.

Compared with the fullband algorithm, the computational

complexity has been significantly reduced. Simulations have

been used to demonstrate the robustness of the algorithm and

the results show that it is comparable with the fullband coun-

terpart.
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