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ABSTRACT
Identification of glottal closure instants (GCIs) is impor-
tant in speech applications which benefit from larynx-
synchronous processing. In modern telecommunication ap-
plications, speech signals are often obtained inside office
rooms, with one or more microphones placed at a distance
from the talker. Such speech signals are affected by reverber-
ation due to the reflections from surrounding walls and ob-
jects, which distort the observed speech signals and degrade
the performance of speech processing algorithms.

This paper presents a study of the identifiability of GCIs
from reverberant speech using the Dynamic Programming
Projected Phase-Slope Algorithm (DYPSA) and new exten-
sions to the multimicrophone case. Two multichannel algo-
rithms are proposed and evaluated; in both cases, consid-
erable performance gains over a single microphone are ob-
tained, with detection rates improved by up to 29% in highly
reverberant environments.

1. INTRODUCTION

Identification of glottal closure instants (GCIs) in voiced
speech is important for many speech processing applica-
tions such as larynx-synchronous processing in speech syn-
thesis [1], prosodic speech modification [2] and speech dere-
verberation [3]. The GCIs can be identified accurately if an
EGG signal [4, 5] is available. However, this is not usually
the case in practice and, therefore, algorithms for automatic
GCI identification from the speech signal are preferred. The
Dynamic Programming Projected Phase-Slope Algorithm
(DYPSA) was recently proposed in [6] and was demonstrated
to detect accurately the GCIs in anechoic speech recordings.

In many modern telecommunication applications, speech
signals are obtained in enclosed spaces such as office rooms,
with the talker situated at a distance from the microphone.
In this case, the observed speech signal is distorted by rever-
beration, resulting from sound reflections off the surround-
ing walls and objects. Reverberation distorts the speech sig-
nals [7], acting adversely on many speech processing ap-
plications including speech recognition and hands-free tele-
phony. Reverberation will, inevitably, degrade the perfor-
mance of GCI identification algorithms so it forms an impor-
tant topic of research for the practical applicability of such
algorithms in the future.

In this paper, we first study the effects of reverberation
on the performance of the DYPSA algorithm for a single
microphone. Next, we propose an extension of DYPSA to
the multimicrophone case. Microphone arrays are known to
be advantageous for sound capture in reverberant environ-
ments [8] due to the spatial diversity of the room transfer

function (RTF). In particular we will investigate the appli-
cation of two different approaches to multimicrophone pro-
cessing in the context of GCI identification using DYPSA:
(i) preprocessing using a delay-and-sum beamformer (DSB),
and (ii) implementing an additional penalty function in the
dynamic programming (DP) element of DYPSA.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the effects of reverberation on speech and dis-
cusses the consequences on GCI identification. Section 3 re-
views the DYPSA algorithm. The extension of DYPSA to
the multimicrophone case is presented in Section 4 and sup-
porting simulation results are provided in Section 5. Finally,
conclusions are drawn from this work in Section 6.

2. REVERBERATION EFFECTS ON SPEECH

Consider a speech signals(n) produced in a reverberant room
and observed by anM-element microphone array positioned
at a distance from the source. Themth microphone observa-
tion is

xm(n) = h
T
ms(n), m= 1,2, . . . ,M (1)

wherehm = [hm,0 hm,1 . . . hm,L−1]
T is theL-tap impulse re-

sponse of the acoustic channel between the source to themth
microphone,s(n) = [s(n) s(n−1) . . . s(n−L +1)]T is vec-
tor of input samples at timen andT is the transpose operator.
The problem is to identify the GCIs ins(n), using the obser-
vationsxm(n).

DYPSA operates on the linear prediction (LP) residual,
e(n). The LP residual of clean voiced speech is characterized
by a quasi-periodic pulse train representing the speech exci-
tation, and approximately constitutes the instants of glottal
closure [9]. In general, GCI identification algorithms attempt
to locate these peaks [6], which can prove a difficult task;
the pulse-train model of the LP residual is over-simplified
and doesn’t incorporate the noise-like signal components be-
tween the excitation peaks.

It has been demonstrated for reverberant speech that the
reverberation mainly affects the LP residual. Studies on the
effect of reverberation on voiced speech LP residuals [8, 10]
have further shown that the room impulse response results in
additional spurious peaks of similar amplitude to the original
excitation peaks. These erroneous peaks make it difficult to
distinguish the true GCIs as shown in Fig. 1. However, in
multiple time-aligned observations from a beamformer, the
peaks due to GCIs are correlated, while those due to rever-
beration are not. This observation has motivated the develop-
ment of several speech dereverberation algorithms [3, 8, 11]
which reduce the effects of reverberation by attenuating such
uncorrelated components.
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Figure 1: Effects of reverberation on LPC residuals: (left)clean speech and clean residual, (right) reverberant speech and
reverberant residual.

3. THE DYPSA ALGORITHM

The main features of the DYPSA algorithm are now re-
viewed. It consists of three main components: the phase
slope function, the phase slope projection, and dynamic pro-
gramming. These components are defined as follows.

Phase-slope function[12] – defined as the average slope
of the unwrapped phase spectrum of the short time Fourier
transform of the prediction residual. GCI candidates are
selected based on the positive-going zero crossings of the
phase-slope function.

Phase-slope projection– introduced to generate GCI can-
didates when a local minimum is followed by a local maxi-
mum without crossing a zero. The midpoint between these
is identified and projected onto the time axis with unit slope.
In this way, GCIs whose positive going slope does not cross
the zero point (those missed by the phase-slope function) are
identified.

Dynamic Programming– uses known characteristics of
voiced speech and forms a cost function to select a subset of
the GCI candidates which are most likely to correspond to
the true ones. The subset of candidates is selected according
to the minimisation problem defined as

min
Ω

|Ω|

∑
r=1

λ TcΩ(r), (2)

where Ω is a subset with GCIs of size|Ω| selected
from all GCI candidates,λ = [λA λP λJ λF λS]

T =
[0.8 0.5 0.4 0.3 0.1]T is a vector of weighting fac-
tors with the values taken here as in [6] andc(r) =
[cA(r) cP(r) cJ(r) cF(r) cS(r)]T is a vector of cost elements
evaluated at therth GCI of the subset. The cost vector ele-
ments are:
• Speech waveform similarity, cA(r), between neighbour-

ing candidates, where candidates not correlated with the
previous candidate are penalised.

• Pitch deviation, cP(r), between the current and the pre-
vious two candidates, where candidates with large devia-
tion are penalised.

• Projected candidate cost, cJ(r), for the candidates from
the phase-slope projection, which often arise from erro-
neous peaks.

• Normalised energy, cF(r), which penalises candidates
that do not correspond to high energy in the speech sig-
nal.

• Ideal phase-slope function deviation, cS(r), where candi-
dates arising from zero-crossings with gradients close to
unity are favoured.
Using the characteristics of the prediction residuals re-

sulting from clean and reverberant speech discussed in Sec-
tion 2 and the properties of DYPSA presented above, the fol-
lowing remarks can be made:

(i) The reverberant prediction residual contains many
peaks due to the room impulse response, whose ampli-
tudes are comparable to the desired peaks in the clean
speech residual. Consequently, the phase-slope func-
tion and the phase-slope projection are likely to pro-
duce many erroneous candidates.

(ii) Peaks of similar amplitude to the true excitation peaks
from the clean prediction residual are likely to result in
wrong candidates if they both occur in the same analy-
sis frame for the short time Fourier transform.

(iii) A voiced speech segment of weak energy which is pre-
ceded by a high energy component is likely to result
in erroneous candidates due to the smearing effect of
the room impulse response. Such segments occur, for
example, at the end of voiced utterances.

It can be seen from the dynamic programming criteria
that DYPSA is robust to spurious peaks in the prediction
residual. This is an attractive feature for GCI identification in
reverberant speech and can be expected to discriminate many
of the erroneous candidates due to reverberation. Neverthe-
less, the performance of DYPSA is degraded significantly
with increased reverberation, as will be shown by the sim-
ulation results in Section 5. Due to the spatial diversity of
the room impulse responses [7], the adverse effects outlined
above can be reduced by using multiple microphones which
is the motivation for the introduction of multichannel pro-
cessing within DYPSA.



4. MULTICHANNEL DYPSA

This section presents two approaches to multichannel
DYPSA.

4.1 DYPSA at the output of a beamformer

The output of the DSB can be written

x̄(n) =
1
M

M−1

∑
m=0

xm(n− τm), (3)

whereτm is a delay to compensate for the time delay of ar-
rival to the different microphones in the array and is assumed
to be known. ¯x(n) is then presented as a single-channel input
to the standard DYPSA algorithm. We refer to this approach
as DSB-DYPSA.

4.2 Multichannel Candidate Generation and Selection

Multichannel DYPSA (MC-DYPSA) is a novel extension to
DYPSA which relies on the correlation of GCI candidates
across multiple channels. As described in Section 3, single-
channel DYPSA can be split into three stages: (i) Candidate
GCIs are determined by the zero crossings of the phase slope
function of the LPC residual, (ii) Points of inflexion which
do not cross zero are projected onto the time axis with unit
slope to add further candidates, (iii) Dynamic Programming
(DP) selects the most likely GCIs based upon a defined cost
function. MC-DYPSA performs stages (i) and (ii) on each
channel independently. An additional component is incorpo-
rated into the DP cost function, which penalizes candidates
that are not well correlated across time-aligned channels.

We denote channelm = {0,1, . . . ,M − 1} containingN
samples indexedn = {0,1, . . . ,N− 1}. Each channel con-
tainsRm GCI candidates, enumerated byr = {0,1, . . . ,Rm−
1}, located at samplesnr,m. Unique GCI candidates (those
occurring in at least one channel at the same time) are de-
fined asnr = {nr,0∪nr,1∪ . . .∪nr,M−1}, so thatnr is the union
of the unique GCI candidate sets from all channels.

Let gm(n) be a train of impulses at times corresponding
to the locations of GCI candidates for channelm, such that

gm(n) =

{

1 n = nr,m∀r
0 otherwise.

(4)

The mean, ¯g(n), of gm(n) across all channels is a function
indicating the number of occurrences of GCI candidates for
a given samplen,

ḡ(n) =
1
M

M−1

∑
m=0

Rm−1

∑
r=0

δ (n−nr,m) (5)

whereδ (n−nr,m) is a unit impulse function with origin at the
candidater in channelm. Small timing errors can occur in the
GCI candidates because of poor channel alignment, phase-
slope projection errors and sampling noise (at low sampling
frequencies). Therefore a spreading function is applied to
ḡ(n) so that GCI candidates in close proximity incur a lower
cost than those spread further apart. A clipped Gaussian was
found to be a suitable spreading function, as shown in Fig. 2,
denoted byϒ(n),

ϒ(n) =

{

ku(n) 0≤ |ku(n)| ≤ 1
1 |ku(n)| > 1.

(6)
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Figure 2: Smoothing Function – a clipped Gaussian for
smoothing the cost component for interchannel correlation.

whereu(n) is a zero mean unit variance Gaussian multiplied
by a gaink. It is convolved with ¯g(n) to form a new function
d(n),

d(n) = ḡ(n)∗ϒ(n) =
1
M

M−1

∑
m=0

R−1

∑
r=0

δ (n−nr,m)∗ϒ(n) (7)

where∗ denotes linear convolution. The functiond(n) is not
bounded in the range 0< d(n) < 1 but may exceed 1 depend-
ing upon the proximity and height of the samples of ¯g(n).
Samples for whichd(n) exceed 1 are all likely candidates.
We next define the inter-channel cost function,cI (r), such
that values ofd(n) exceeding 1 are mapped to -0.5 and those
in the range 0< d(n) < 1 are mapped to 0.5 > d(n) > −0.5.

cI (r) =

{

0.5−d(nr) d(n) < 1
−0.5 d(n) > 1

(8)

Note that this cost function is now a function ofr and not
n for compatibility with the DYPSA DP. This is a linear
mapping ford(n) < 1, but it is possible a nonlinear map-
ping may yield better results by penalising low inter-channel
correlation and encouraging high inter-channel correlation to
a greater degree.

It was found that the interchannel correlation cost weight-
ing, λI , gave best results when set to 0.4.

5. RESULTS

The valueT60 is defined as the time for a Room Impulse Re-
sponse (RIR) to decay to -60dB of its initial value. A room
measuring 3x4x5 m andT60 ranging{100, 150,. . . ,500} ms
was simulated using the source-image method [13], contain-
ing an array of eight microphones, spaced 50 mm apart,
placed on a circular arc 2.5 m from the source so that each
channel contained a 2.5 m propagation delay and no inter-
channel delay (Fig. 3). Good signal alignment is impor-
tant and generally requires subsample delays; placing mi-
crophones on a circular arc centered at the source alleviates
the problem for the purpose of this study. The APLAWD
database [14] contains EGG and audio recordings of ten rep-
etitions of five phonetically-balanced English sentences spo-
ken by five male and five female talkers, sampled at 20 kHz.
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Figure 3: Source and Microphone arrangement. The micro-
phone array is 2.5 m from the source on a circular arc to
prevent interchannel delay, removing the necessity for time
alignment. The array was placed at a slight angle relative to
the walls to reduce strong initial reflections.

The EGG signals were analysed with HQTx [15] to pro-
vide reference GCIs. The 19-sample propagation delay from
talker to microphone was removed to align the reference and
estimated GCIs.

As defined in [6],Detection rateis the percentage of all
reference GCI periods for which exactly one GCI is esti-
mated. Accuracyis the standard deviation of the error be-
tween estimated and reference GCIs, when exactly one GCI
is estimated in a reference GCI period.False alarm rateis
the percentage of all reference GCI periods for which more
than one GCI is estimated andMiss rateis the percentage of
all reference GCI periods for which no GCIs were estimated.

5.1 Experiment 1

A speech file from the APLAWD database was analysed with
DYPSA. The sample was then convolved with channel 1
of the microphone array in theT60=500 ms case then anal-
ysed with DYPSA, DSB-DYPSA and MC-DYPSA. The re-
sults depicted in Fig. 4 show eight reference GCIs derived
from the associated EGG signal with HQTx as solid verti-
cal lines and estimated GCIs as short lines terminating in a
circle, against the clean speech waveform. DYPSA correctly
identifies GCIs with small margins of error when operated
on clean speech, but accuracy falls and spurious GCIs in-
crease in the reverberant case. Beamformed DYPSA shows
improvement with no spurious GCIs but accuracy is sig-
nificantly lower than the clean case. MC-DYPSA achieves
identification on a par with clean DYPSA. This experiment
is somewhat idealized which merely demonstrates common
errors made by DYPSA and DSB-DYPSA with reverberant
speech. MC-DYPSA operating on reverberant speech will
not always identify GCIs as well as DYPSA on clean speech.

5.2 Experiment 2

The APLAWD database was convolved with each RIR in
turn and analysed with DYPSA, DSB-DYPSA and MC-

Figure 4: Identified GCIs superimposed onto a clean speech
signal for a) DYPSA on clean speech. b) DYPSA on re-
verberant speech. c) DSB-DYPSA on reverberant speech.
d) MC-DYPSA on reverberant speech. Reference GCIs ob-
tained with HQTx are represented by solid vertical lines and
estimated GCIs are lines ending in a circle.

DYPSA. The results are shown in Fig. 5, Fig. 6 and Table 1.
In all cases, the greatest degradation in detection rate oc-
curs in the lower increments ofT60 and tails off gently with
high reverberation. Single-channel DYPSA shows the worst
degradation, dropping by 8% between clean andT60=100 ms
and 31% atT60=500 ms. Multichannel achieves the best with
a 12% drop atT60=500 ms. Miss and false alarm rates also
show significant improvement.

Like detection rate, the greatest degradation in accu-
racy occurs in the first few increments ofT60 and tails off
with higher reverberation. MC-DYPSA has a higher hit rate
so more candidates are included in the calculation of ac-
curacy, causing MC-DYPSA to appear to degrade further
than DYPSA and DSB-DYPSA with highT60. Note that hit
rate and accuracy from clean DYPSA differ slightly to those
given in [6] because the reference GCIs were derived from a
newer version of HQTx.

6. CONCLUSIONS

The DYPSA algorithm is a robust method for GCI extraction
from voiced speech with low levels of reverberation. How-
ever, recording environments such as offices often cause sig-
nificant sound reflection, resulting in reverberation and limit-
ing the applicability of DYPSA in these situations. A micro-
phone array and DSB used as a preprocessor to DYPSA can
significantly improve the estimation of GCIs and may pro-
vide acceptable results in environments with moderate levels
of reverberation. Multichannel DYPSA is an extension to
DYPSA which uses the correlation of GCI candidates from
each microphone in an array to provide highly robust GCI
estimation. Though MC-DYPSA contains many parameters
which require optimization, preliminary results presented in
this paper suggest that the adopted approach yields very good
GCI estimation in highly reverberant environments.
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Figure 5: Detection rate vs. reverberation time for DYPSA
on clean speech, DYPSA on reverberant speech, DSB-
DYPSA on reverberant speech and MC-DYPSA on reverber-
ant speech.
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Figure 6: Identification accuracy vs. reverberation time for a)
DYPSA on clean speech, b) DYPSA on reverberant speech,
c) DSB-DYPSA on reverberant speech, d) MC-DYPSA on
reverberant speech.

Table 1: Performance comparison for DYPSA algorithms on
the APLAWD database.

ID Miss FA ID
Rate Rate Rate Acc.,σ
(%) (%) (%) (ms)

Clean DYPSA 95.1 2.3 2.6 0.80
0.1s DYPSA 87.1 4.1 8.8 0.92
0.1s DSB-DYPSA 91.5 3.3 5.3 0.86
0.1s MC-DYPSA 93.5 2.5 4.0 0.89
0.5s DYPSA 64.1 7.4 28.5 1.36
0.5s DSB-DYPSA 71.5 6.6 21.8 1.27
0.5s MC-DYPSA 82.6 4.1 13.3 1.46
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