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ABSTRACT

A class of adaptive blind channel identification algorithms

were proposed recently and were demonstrated to be able to

successfully identify various types of channels when the ob-

served signals are free from significant levels of measurement

noise. In this paper, we provide a study of the effects of noise

on these algorithms and show that they misconverge even at

moderate values of SNR. We introduce a spectral constraint

into the adaptation rule and show that the robustness to noise

can be considerably improved. Simulation results are pre-

sented for the new algorithm, which demonstrate a significant

performance improvement in terms of normalized projection

misalignment.

1. INTRODUCTION

Blind channel identification (BCI) is a commonly occurring

problem with several applications in various fields of engi-

neering, in particular where blind de-convolution or source

separation is required. Example areas of application include

communications where the received signal must be equalized

to obtain the transmitted signal [1] and geophysics where the

reflectivity of the earth layers is explored by extracting seis-

mic signals from the sensor observations [2]. Our area of in-

terest is in reverberant speech enhancement where the aim is

to estimate the acoustic impulse responses blindly from re-

verberant observations, and then deconvolve to remove the

effects of the room [3, 4].

Several blind channel identification algorithms have been

reported in the literature both for single channel and multi-

channel environments. For acoustic impulse responses, the

latter has been found most attractive due to the added spa-

tial information. A good review of many existing meth-

ods can be found in [5]. Recently, a class of adaptive ap-

proaches based on the cross-relation between channels was

proposed with implementations in the time-domain [6] and

in the frequency-domain [7]. Such algorithms are attractive

for real-time speech dereverberation applications. However,
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the reported methods perform well when very little noise is

present (SNR > 30 dB) but the performance degrades as the

noise level is increased. In fact, as will be shown here, noise

causes these algorithms to misconverge.

In this paper we are concerned with the adaptive blind

channel estimation for acoustic impulse responses in the noisy

case. In our previous work [8], we have demonstrated that im-

posing constraints on the adaptive BCI algorithms improves

their performance under noisy conditions. Here, we provide

an analysis of the effects of noise on the convergence charac-

teristic of the adaptive blind multichannel algorithms. Conse-

quently, we introduce a spectral constraint in the update rule

and demonstrate that this can provide significant performance

improvement in the presence of noise. This constraint is more

general than the one in [8] and can be calculated solely from

the channel estimates.

2. PROBLEM FORMULATION

Consider a signal, s(n), produced in a noisy and reverberant

room, observed by an array of microphones at a distance from

the source. The signal received at the mth microphone can be

written

ym(n) = hT
ms(n), (1)

xm(n) = ym(n) + νm(n), (2)

where hm = [hm,1 hm,2 . . . hm,L]T is the L-tap impulse

response of the acoustic path between the source and the mth

microphone, s(n) = [s(n) s(n − 1) . . . s(n − L)] and νm

is ambient noise at the mth microphone. It is assumed that

E{νl(n)νm(n)} = 0 for l �= m and E{νm(n)νm(n−n′)} =
0 for n′ �= 0. It is also assumed that the noise, νm(n), is

uncorrelated with the source signal, s(n).
The aim of a blind channel identification algorithm is to

form an estimate, ĥm, of the impulse responses, hm, using

only the noisy observations xm(n), m = 1, 2, . . . , M . This

has been shown possible if the following identifiability con-

ditions are satisfied [9]: i) the channels do not share any com-

mon zeros and ii) the autocorrelation matrix of the source sig-

nal is of full rank.
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3. ADAPTIVE BLIND CHANNEL IDENTIFICATION

Here we provide a brief summary of the adaptive BCI algo-

rithms proposed in [6, 7] which are based on the cross-relation

between the channels [9]

yT
i (n)hj = yT

j (n)hi. i, j = 1, 2, . . . , M (3)

This leads to the following expression:

Rh = 0, (4)

where h = [hT
1 hT

2 . . . hT
M ]T is a vector of the concatenated

impulse responses and R is a cross-correlation-like matrix.

Thus, the impulse responses can be identified uniquely up to

a scaling factor by finding the eigenvector corresponding to

the smallest eigenvalue of R [9]. In the presence of noise, an

error function can be defined as [6]

eij(n) = xT
i ĥj − xT

j (n)ĥi. (5)

The cost function is specified accordingly

J(n) =
M−1∑
i=1

M∑
j=i+1

e2
ij(n). (6)

The estimate of the channels is given by

ĥopt = arg min
ĥ

E{J(n)}, subject to ‖ĥ‖ = 1 (7)

where E{·} denotes expectation. The unit norm constraint

shown here is often introduced to avoid the trivial estimate of

all zero coefficients. However, it was shown in [10] that the

trivial estimate can be avoided if the initial estimation vector

is not orthogonal to the true impulse responses. This uncon-

strained approach is adopted here.

Finally, the channel estimates can be obtained using an

adaptive filter for which several efficient algorithms were pro-

posed in [6] and [10]. The simplest approach, which we will

use for illustration in this paper is the unconstrained multi-

channel LMS update equation

ĥ(n + 1) = ĥ(n) − 2µR̃(n)ĥ(n), (8)

where ĥ(n) = [ĥ
T

1 (n) ĥ
T

2 (n) . . . ĥ
T

M (n)]T is the estimation

vector at time n, µ is a small positive adaptation step-size

and R̃(n) is the instantaneous estimate of R at time n. The

method and the ideas we present here are general and can be

extended to any of the other adaptive filter algorithms, such as

the Newton method [6] and the frequency domain algorithms

[7].

4. NOISE EFFECTS IN ADAPTIVE BCI

ALGORITHMS

In this section, an analysis of the noise effect on the blind

adaptive channel identification algorithms is presented. To in-

vestigate the convergence characteristics of the adaptive BCI

algorithms, we rewrite the error function using (2) and (5) as

eij(n) = e
y
ij(n) + eν

ij(n)

= [yT
i (n)hj − yT

j (n)hi] (9)

+[νT
i (n)hj − νT

j (n)hi].

Thus, in the presence of noise the error consists of two parts,

one due to the signal, e
y
ij(n) and one due to the noise, eν

ij(n).
We can rewrite the cost function from (6) as

J(n) = Jy(n) + Jν(n) (10)

=

M−1∑
i=1

M∑
j=i+1

(ey
ij(n))2 +

M−1∑
i=1

M∑
j=i+1

(eν
ij(n))2

and consequently, the mean squared error (MSE) estimate of

the channel impulse responses can be rewritten

ĥopt = arg min
ĥ

E{Jy(n) + Jν(n)}. (11)

The LMS adaptive algorithm finds the desired solution by

moving along the opposite direction of the performance sur-

face according to

ĥ(n + 1) = ĥ(n) − µ(∇Jy(n) + ∇Jν(n)), (12)

where ∇ is the gradient operator. The noise-free gradient has

been shown to be [6]

∇Jy(n) = 2R̃y(n)ĥ(n) (13)

and the noise only gradient can be derived in a similar fashion

resulting in

∇Jν(n) = 2R̃ν(n)ĥ(n). (14)

The mean squared error due to the noise component is given

by

MSE(Jν) =

M∑
i=1

M∑
j �=i

σ2
νi

ĥ
T

i (n)ĥi(n). (15)

Now, the overall gradient, ∇J(n), needs to approach zero

in order for the LMS algorithm to converge, i.e.

∇J(n) = ∇Jν(n) + ∇Jy(n) = 0, (16)

Clearly, the equality in (16) can be satisfied if and only if

∇Jy(n) = −∇Jν(n) because ∇Jν(n) �= 0 as seen in

(15). From (13) and (14) it can be deduced that ∇Jy(n) �=
−∇Jν(n). Since ∇Jν(n) is non-zero in the presence of

noise, the adaptive filter is caused to misconverge. An ex-

ample of this misconvergence is demonstrated in Fig. 3 (a). It

was demonstrated in [8] that reducing the step-size only de-

lays the misconvergence.
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Fig. 1. Smoothed magnitude response of (a) the true channels,

h, and (b) the misconverged estimates of ĥ at SNR=20 dB.

5. SPECTRALLY CONSTRAINED ADAPTIVE BCI

From our experiments, we note that the misconverged solu-

tions are spectrally weighted versions of the true channels,

which show clear low-pass characteristics. An example of

this effect is presented in Fig. 1. However, in the case of

acoustic impulse responses, it is known, for example from sta-

tistical room acoustics [11], that the energy is approximately

uniformly distributed over all frequencies when the excita-

tion signal consists of many frequency components [12]. Us-

ing this motivation, we now derive a modified adaptation rule

by attaching an additional constraint to maintain an approxi-

mately equal energy distribution in the smoothed spectrum of

the estimated impulse responses in order to improve robust-

ness of the adaptive algorithms in the presence of noise. This

constraint, which is calculated directly from the estimated im-

pulse responses, avoids the observed spectral effect by main-

taining a uniform spectral energy distribution of the channel

estimates.

We propose the following constrained minimization

where, for brevity, we have omitted the time index:

ĥopt = arg min
ĥ

E{J}, (17)

subject to
1

N

iN+N−1∑
k=iN

|Ĥ(k)|2 = E , i = 1, . . . , I

where I is the number of frames used in the spectral smooth-

ing, Ĥ(k) is obtained by taking the DFT of ĥ and E =
1

ML

∑ML−1

k=0 |Ĥ(k)|2 is the mean spectral power. The con-

straint can be written equivalently

ĥ
T
Γiĥ = E , (18)

with

Γi = FW iF
∗, (19)

where F is a DFT matrix and W i is a diagonal matrix with

weights for the DFT coefficients and * denotes complex con-

jugate. Next, we introduce the Lagrange multiplier λi and

reformulate the cost function to

JC = J +
I∑

i=0

λie
2
p,i,

where

ep,i = ĥ
T
Γiĥ − E (20)

and J is defined in (10). The overall gradient,∇JC is derived,

by differentiating with respect to ĥ, resulting in:

∂JC

∂ĥ
= 2Rĥ + 4

I−1∑
i=0

λiep,iΓiĥ. (21)

Finally, substituting (21) into (12), the update equation for the

proposed algorithm is:

ĥ(n+1) = ĥ(n)−2µ

[
R̃(n)ĥ(n) + 2

I−1∑
i=0

λiep,i(n)Γiĥ(n)

]
.

(22)

As can be seen, this contains an additional penalty term in

comparison with the original method in (8).

6. SIMULATIONS AND RESULTS

We present simulation results to demonstrate the perfor-

mance of the proposed algorithm in comparison with an ex-

isting method. The new approach was implemented both

in the time-domain and in the frequency-domain. The re-

sults shown here were obtained with the computationally ef-

ficient Normalized Multi-Channel Frequency-domain LMS

(NMCFLMS) [7]. We used finite acoustic impulse responses

generated with the image model [13]. The room dimensions

were set to (6.4×5×4) m with reverberation time T60 = 0.5 s

and the impulse responses were truncated to L = 128 taps.

A linear array was assumed with M = 5 microphones and

0.2 m spacing between adjacent microphones and 1.5m dis-

tance from the source to the array. The sampling frequency

was fs = 8 kHz. The source signal was white Gaussian noise.

We used the normalized projection misalignment (NPM) as a

performance index, which considers only the misalignment,

ignoring the arbitrary scaling effect and is defined as [6]:

NPM(n) = 20 log10

(
1

‖h‖

∥∥∥∥∥h −
hT ĥ(n)

ĥ
T
(n)ĥ(n)

ĥ(n)

∥∥∥∥∥
)

dB.

(23)

Figure 2 shows (a) the true impulse responses, (b) the es-

timated room impulse responses using the NMCFLMS algo-

rithm and (c) impulse responses estimated with the proposed

spectrally constrained algorithm. We have set µ = 0.8, λi =
7.5×10−3 ∀i which was chosen empirically and the SNR was
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Fig. 2. Impulse responses of the (a) true channels, (b) mis-

converged estimates using the NMCFLMS and (c) estimates

using the Spectrally Constrained NMCFLMS.
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Fig. 3. Normalized projection misalignment for (a) NM-

CFLMS and (b) Spectrally Constrained NMCFLMS.

20 dB. As can be seen in Fig. 2 (b), the estimates using the

unconstrained adaptive algorithm contain spurious low fre-

quency components. On the contrary, the proposed method

has estimated the desired responses accurately. The conver-

gence behavior of the algorithms is shown in Fig. 3 where the

NPM is plotted versus the number of iteration blocks for (a)

the NMCFLMS and (b) the proposed constrained algorithm.

The predicted misconvergence is clearly visible in the NM-

CFLMS. This misconvergence is also present in other adap-

tive BCI algorithms as it was demonstrated in [8]. In contrast,

it can be seen that the asymptotic convergence performance

is improved with the proposed algorithm and is controlled by

the noise level.

7. CONCLUSIONS

We have investigated the performance of a class of adaptive

blind channel identification algorithms for the identification

of acoustic impulse responses from noisy observations. We

have seen that additive noise causes these algorithms to mis-

converge and that the reason for this misconvergence is the

non-zero gradient of the noise-error surface. We have also

demonstrated our observation that the misconverged solutions

are spectrally distorted versions of the true impulse responses.

Accordingly, a novel approach was proposed for avoiding the

misconvergence by attaching a spectral constraint to the adap-

tation rule. This constraint was based on the assumption of

uniform energy distribution over all frequencies. The ability

of this approach to avoid misconvergence was demonstrated

with experimental results.
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