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ABSTRACT properties, they can reduce the perceived quality and, some

rJii_mes, the intelligibility of the observed speech signadtiE
ation and reduction of additive noise is a widely reseatche
pic and there are numerous algorithms available in tae lit
ture [1, 2]. In this paper, we consider estimation of the-mag

ditude response of the unknown chaniélk). The method

Estimation of the magnitude response of an unknown cha
nel in single-microphone speech signals is considered.

is shown how the Long-Term Average Speech Spectru
(LTASS) can be used to identify the unknown channel an

a blind channel identification algorithm is developed base hich i the L Term A S hs
on that. Furthermore, an established approximate formul ICh we present uses the Long- [erm Average speech spec-

for LTASS is demonstrated to be a useful tool in the context' UM (LTASS). A related idea was presented in [3] where the

The algorithm is evaluated using a weighted spectral disto2uthors studied channel equalization in the context ofisprea

tion measure using simulated, measured and real channdfcognition. The material presented here differs in a numbe
with various distinct spectral characteristics. It is demo ofways: (i) we use an iterative approach for the estimation o

strated that the algorithm can identify accurately the magnthe average spectrum of the observed signal rather than the

tude spectrum of an unknown channel in noise-free condidyerage of the total observation; (ii) we investigate the us

tions. We also show results for three different additiveseei of two alternatives for LTASS; (iii) we provide experiments

where estimation accuracy is reduced but the degradatid’r‘"tht;hree _dlfferentbgdq[!twe NOISES, (“f’) %ve evzlalu_at$ t".‘te a
varies largely, depending on the long-term spectral chara@©'!M USING an objeclive measure of channel simiiarity.

teristics of the noise. The remainder of the paper is organized as follows: In
Section 2, we discuss the principle and the implementafion o
1. INTRODUCTION the channel identification algorithm. In Section 3, we intro

duce a weighted spectral distortion measure for evaluafion

When a speech signal is captured with a microphone anghe estimated channels and use it to evaluate the algosthm’
stored or transmitted prior to being observed by a listeneperformance for a variety of channels. Finally, we draw con-
inevitably it is altered by the acoustic medium, the micro-clysions from this work in Section 4.
phones and the storage/transmission medium. These alter-
ations often have detrimental effects on the quality and/or
intelligibility of the observed speech signal.

Consider a speech signai(n), observed by a listener 2. BLIND CHANNEL IDENTIFICATION
at a different location to that of the talker. The observed
signal consists of the desired speech sigsal), with its  In this Section, we derive the blind channel identification
spectral characteristics modified, for example, by an acousnethod. First the principle behind the method is described
tic channel or a microphone whose effects are characterizeghd the effects of noise are discussed. Then, details of the
by an impulse respondgn). There will also be some ad- implementation are described.
ditive measurement nois&(n). The relationship between
speech, channel and noise at the point of observation can be
expressed as 2.1 Principle
X(n) = s(n)  h(m) +v(n), (1) The objective is to estimate the magnitude response of the

wherex denotes linear convolution. The work presented inunknown channel. Therefore, we consider the power spec-

the following sections will be developed in the frequency do trum of the observed speech signal in (2)
main. It is customary to process speech in the frequency do-

main using short overlapping frames and, accordingly, the 2 2 2 2
expression in (2) can be written X7 =[S K)IH )]+ [V (k)]
+2[S(K)[|Hi (k)M (k)| cos(£8),  (3)
X (k) = S (K)H (k) +Vi(Kk), 2
where X (k), S(k), Hi(k) and Vi(k) are the Short-Time where the angle’A = /8§ (k) + ZH (k) — 2V (K).
Fourier Transforms (STFT) of thih frame ofx(n), s(n), Next, it is assumed that the signal and the noise magni-

h(n) andv(n) respectively andt is the frequency bin index. tudes and phases are independent, the channel is stationary
Different channels and different noise types have differ-or varies much slower than the speech &{dog ZA)} =0,
ent spectral and statistical properties. Depending orethesvhereE{-} denotes expectation. Then, taking the expecta-
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tion on both sides of (3), we get

E{IX (K%} E{IS(KPHH®)*+E{M(K)*}
E{I\A(k)lz})

= EGsWP) (WP + i)
R (K

- %M(m®+ﬁﬂﬂ o/

= (K, (4) *

wherePx (k) denotes the power spectrum of a sigx@) and “
P« (k) the expected power spectrum of a sigr@l). Ps(k)

in (4) is the mean value of the short-term speech spectrun
which can be approximated by the LTASS. Therefore, we ca

estimate the log spectrum of the channel using * w o 0

Freuquency (Hz)

65

| Male LTASS
TIMIT,

P50 LTASS

Female LTASS
TIMIT

LTASS (dB)

R/ (k) 5
log (Fh(k)—F Ps(k)> =log(Px(k)) —l0g(Pmss(k)), (5) Figure 1: Male and female LTASS measured from TIMIT
and generic LTASS from P50 calculated with (7).
where R..ss(K) is some predefined model of the LTASS
which, in practice, can be found either by measurement [4]
of many talkers and many utterances or by using an approx-
imate formula [S]. A comprehensive study in [4] shows thatsentences from each talker; the duration of each sentence is

LTASS is relatively invariant with language but there ar":‘approximatelythree seconds. Frames of 16 ms and with 50%
differences between male and female talkers, particutrly overlap were used for the STFT and male and female talkers
lower frequencies. Nevertheless, it is possible to find a reg, o e processed separately.

sonable average representation for both sexes. Alternatively, an approximate formula can be used to ap-

In the noise-free case(n) =0, the componenton the left ; ; : ;
hand side of (5R,(k)/Ps(k) equals zero. The channel can ﬂ&)fll[nrzztéeomﬁq(Ie_'rl;ﬁ;isdnopnseos[g]c?oformula 's defined in the
then be identified to an accuracy depending on the accuracy '

of the assumed LTASS model Rrasd f) = — 37644+ 465439log,, f )
log(Py (K)) = log(P (K)) + £(K), (6) — 157.745(logy, f)? + 16.7124(logy, ) dB,

wheree (k) = log(Ps(k)/Pmss(K)) is an error due to the dis- Wheref is frequency in Hz and the output is a log intensity
crepancy between the assumed and the actual LTASS. A se¥gPectrum in dB relative tov /n?.
ond factor in the accuracy of this estimate is the lengthefth _ The LTASS from (7) and the LTASS calculated from the
available Speech Signa| such ﬂm(k) can be estimated ac- TlMlT database for male and female talkers are shown in
curately. The channel properties will not have as significanFigure 1. It can be seen that the measured male and female
an effect as the speech signal characteristics. LTASS mostly differ in the low frequ_ency region. The over-
When noise is present, there is an additional error in théll shape of the measured LTASS is very similar to the re-
estimate. The actual impact of this error will depend on theéults shown in [4]. We use an average of the male and fe-
|0ng_term average Spectrum of th_e nois_e’ the channel Chdﬂ]ale LTASS in the blind channel identification anorIthm.
acteristics and on the noise powa'/ (k)/PS(k) in (5) is in- We also see that, the LTASS Ca|CU|_a'[ed from (7) differs from
versely proportional to the SNR). Both the noise-free aed ththe LTASS measured from TIMIT in the peak frequencies,
noisy cases will be discussed further with the simulation exWhich can reduce the estimation accuracy. Nevertheless, th

amples in Section 3. advantage of having a formula to approximate the LTASS is
that of straightforward reproducibility of the algorithm.
2.2 Implementation Next, we consider the estimation of the average spectrum

. . . of the observed signal. In order to account for channel vari-
In order to implement an algorithm based on the ideas d sbility and to accommodate frame-by-frame processing, we

scribed in Section 2.1, we need two components: (i) a modgyplement the averaging using exponential smoothing ac-
for the LTASS and (ii) a procedure for calculating the aver-cording to

age spectrum of the observed signal. These two components
are discussed in the following. 5 _ 5 _ A

There are two possible approaches to obtaining an log(Ru (k1)) = arlog(Fh (k1 = 1)) + (1—a)H(k ) (8)
LTASS model and we consider both. In the first approachyhere
the LTASS can be found by measurement from many talk-
ers and many utterances [4]. We used the complete training |3|(k,|) = log(Px (k1)) — log(Prss(K)) (9)
set of the TIMIT database to extract the LTASS as an aver-
age from the short-term spectra of all utterances and &H tal is the instantaneous estimate of the channel magnitude re-
ers. The training set of TIMIT contains anechoic noise-freesponse in framé and 0< a < 1 is the smoothing factor.
recordings from 422 male and 184 female talkers, with terBoth P« (k,|) andP-.ss(K) are normalized using log-spectral
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Figure 2: Composite weighting function (solid) used in theFigure 3: Time-constant versus channel identificationqrerf
weighted spectral distance defined in (11) and its two commance in terms of weighted spectral distance.
ponents (dashed).

which we propose here includes A-weightingi(k), and
mean subtraction prior to their application in (9), in orter LTASS weighting and is defined as
avoid any arbitrary scale factor issues. The choicer a§
studied in Section 3 and it is set using the relation to the tim W(K) =Wa(K)Rrass(K). (13)

constant given by

__ T (10) The composite weight functioW/(k), and its two compo-

(T+Ts)’ nentsWa (k) andP.ss(K) are shown in Fig. 2. Note thet (k)

whereTs is the sampling period and is the time constant has been normalized to unity.
which, in this case, defines the time for the channel estimaé 5> Simulation Resul
tion in (8) to reach a steady-state value. ' mulation Results
For the following illustrative experiments, data is drawwrh
3. EXPERIMENTSAND RESULTS the core test sets of the TIMIT database. The core test set (in
cluding the dialect sentences) consists of 240 sentereres, t
"dentences from each of the 16 male and 8 female talkers. In

described in Section 2. We will introduce a metric used folyic\ oy “we use different data from that used to estimate the
the evaluation of an estimated channel spectrum and we wi

o ; . : TASS. Simulated channel responses are generated by plac-
use this in a series of experiments to demonstrate various &

i : L ﬁg poles or zeros in conjugate pairs inside the unit circle;
ﬂtehcrtws of the LTASS-based blind channel identification algO7[he magnitude of each pole or zero is restricted to the range

0.8—0.99. The positions of the poles and the zeros are cho-
sen randomly from a uniform distribution. All experiments

are performed using both the measured LTASS from TIMIT
We consider a weighted error measure in order to compargnd the approximate formula from (7). The weighted spectral
two power spectr@; (k) andP»(k). A weighted root mean distance is calculated for one utterance as the averagssacro

We now present a performance evaluation of the algorith

3.1 Evaluation

squared log-spectral distance can be defined as [6] all frames after seconds.
— 2 . -
4(PL P ) = ZE:&W(k)Ie(k)IZ " . 3.2.1 E?<per|menjtl. Time-Constant Selection

172 zNj1W(k) ’ For the first experiment, we used a two-pole channel and no
k=0 additive noise. The smoothing factor was set as in (10) by

where varying the time-constant, in the range 6-4 s in 025 s
Py(K) increments. The sentences from the test set of TIMIT were
e(k) = 10logg (Pz(k)) ; (12)  used by concatenating all sentences from each talker to form

one longer sentence per talker of approximately 30 s, result
andW(k) is a frequency dependent weight function. ing in a total of 24 different sentences and 24 talkers. The
One of the key purposes of channel identification is tochannel is estimated for each utterance and for each time-
use the estimated channel response to neutralize its efiect constant. The results, averaged over all utterances, anash
the speech signal. Since we assume explicitly that the dén Fig. 3. Based on this result, the performance floor is
sired signal is speech and the destination is a human listen@eached at around = 2.5 s; this is thus the chosen time-
a weighting function should feature some human speech pra@onstant value we use for the remaining experiments. Choos-
duction and hearing properties. A good weighting functioning a lower time constant, would allow faster tracking of a
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Figure 4: Ten different channels comprising one conjugat&igure 6: Channel estimation in noise with measured LTASS.
pair of poles and one conjugate pair of zeros and 48 utter-
ances, two by each of 16 male and eight female talkers.

3.2.3 Experiment 3: Identification in Noise

Next, we used two fixed channels, one with a conjugate pair
— of poles and one with a conjugate pair of zeros. We then

—&— Babble Noise

—x—CarNoise added noise to the filtered signals, varying the SNR between

—B— WGN

T 0 dB and 60 dB. Three different types of noise were con-
\ | sidered: babble noise, car noise and White Gaussian Noise
i — ; ] (WGN). Figure 5 shows the channel identification results in

terms of weighted spectral distance when using P50 LTASS
40 50 60 and Fig. 6 shows the results obtained with measured LTASS.
Single zero channe One observation that is made is that the results have the
% ‘ ‘ ‘ e oo same rank order in all cases, with the WGN resulting in the
T Cartoise | worst identification performance and car noise with the.best
S A possible explanation to this can be given by consideriag th
termRy (k) /Ps(k) in (5). It is seen that if the long-term aver-
age of the noise equals that of LTASS then this term equals
‘ one at all frequency bins and the channel estimate will be as
° 10 2 P © 50 60 accurate as in the noise-free case. The long-term average of
the WGN is flat, while babble noise and car noise have sim-
ilar spectral trend as the LTASS with stronger magnitudes
Figure 5: Channel estimation in noise with P50 LTASS. in the low frequency regions. Consequently, the impact of
the car noise is much lower than the impact of the WGN. In
practice, the relationship between the channel resportge an
this inverse SNR term is more complex due to the averaging
being performed in the log-spectral domain.
time-varying channel at the cost of some estimation accu-
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racy. 3.2.4 Experiment 4: Real Measured Channels
Finally, we show two illustrative examples with two real
3.2.2 Experiment 2: Channels vs. Speech channels; the objective is to demonstrate the use perfarenan

of the algorithm with realistic data and to relate the nursber
In the second experiment we used ten randomly generated the weighted spectral distance to quintessential etittima
channels comprising one conjugate pole pair and one conj@xamples. First, a measured microphone response was con-
gate zero pair and there is no additive noise. The TIMT testolved with clean speech. The true and the estimated chan-
sentences were concatenated using five sentences to creagds are shown in Fig. 7. The weighted spectral distance in
one utterance. This results in two utterances per talkemandthis example is 464 dB for the estimation using P50 LTASS
total of 48 utterances. The results are shown in the box plaind 387 dB for the estimation using measured LTASS. We
in Fig. 4. This plot shows that there can be a large variatiorsee that the important large scale components (the position
in performance with different utterances while there is muc of the three poles in this case) have been identified coyrectl
less dependence on the channel. This indicates that longer- Secondly, we used a sample from NTIMIT, which is the
term averaging over utterances may improve performancd|MIT database recorded over real noisy telephone network
provided that the channel is stationary. channels. The database also provides measurements of the
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Figure 7: Measured microphone response and estimates Bigure 8: Measured channel of a noisy telephone network
it in a noise-free case. The weighted spectral distance fsom NTIMIT. The weighted spectral distance for this is
4.64 dB for the estimation using P50 LTASS an@B3dB  33.34 dB for the estimation using P50 LTASS and B5dB

for the estimation using measured LTASS. for the estimation using measured LTASS.

channelresponses. The measured and the estimated channels REFERENCES
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blind channel identification, particularly in terms of thend- T. Sirimanna, G. Tavartkiladze, G. I. Frolenkov, S. West-
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4. CONCLUSIONS 5884_0 mericavol. 96, no. 4, pp. 2108 0, Oct
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of the long-term average speech spectrum to blindly iden- tus: Artificial Voices International Telecommunications
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A weighted spectral distortion measure, suitable for sheec[6] R. Viswanathan, J. Makhoul, and W. Russell, “Towards
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gorithm using simulated channels, measured microphone Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal
responses and telephone transmission channels from the Processing (ICASSPYol. 1, 1976, pp. 485-488.
NTIMIT database. It was shown, for the noise-free case, that

this method can identify the large scale features of a cHanne

in a manner that works well for a wide variety of channels but

its performance can vary with different speech utteranices.

the presence of noise, it was found that the performance de-

grades differently depending on the spectral charadisist

of the noise, on the noise power and on the channel. Finally,

the potential of the method was demonstrated with real mea-

sured channel responses from a microphone and from a noisy

telephone network showing that this is a promising method

for identification of the larger scale features of a channel.
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