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ABSTRACT

Estimation of the magnitude response of an unknown chan-
nel in single-microphone speech signals is considered. It
is shown how the Long-Term Average Speech Spectrum
(LTASS) can be used to identify the unknown channel and
a blind channel identification algorithm is developed based
on that. Furthermore, an established approximate formula
for LTASS is demonstrated to be a useful tool in the context.
The algorithm is evaluated using a weighted spectral distor-
tion measure using simulated, measured and real channels
with various distinct spectral characteristics. It is demon-
strated that the algorithm can identify accurately the magni-
tude spectrum of an unknown channel in noise-free condi-
tions. We also show results for three different additive noises
where estimation accuracy is reduced but the degradation
varies largely, depending on the long-term spectral charac-
teristics of the noise.

1. INTRODUCTION

When a speech signal is captured with a microphone and
stored or transmitted prior to being observed by a listener,
inevitably it is altered by the acoustic medium, the micro-
phones and the storage/transmission medium. These alter-
ations often have detrimental effects on the quality and/or
intelligibility of the observed speech signal.

Consider a speech signal,x(n), observed by a listener
at a different location to that of the talker. The observed
signal consists of the desired speech signal,s(n), with its
spectral characteristics modified, for example, by an acous-
tic channel or a microphone whose effects are characterized
by an impulse responseh(n). There will also be some ad-
ditive measurement noise,v(n). The relationship between
speech, channel and noise at the point of observation can be
expressed as

x(n) = s(n)∗h(n)+v(n), (1)

where∗ denotes linear convolution. The work presented in
the following sections will be developed in the frequency do-
main. It is customary to process speech in the frequency do-
main using short overlapping frames and, accordingly, the
expression in (2) can be written

Xl (k) = Sl (k)Hl (k)+Vl(k), (2)

where Xl (k), Sl (k), Hl (k) and Vl (k) are the Short-Time
Fourier Transforms (STFT) of thel th frame ofx(n), s(n),
h(n) andv(n) respectively andk is the frequency bin index.

Different channels and different noise types have differ-
ent spectral and statistical properties. Depending on these

properties, they can reduce the perceived quality and, some-
times, the intelligibility of the observed speech signal. Esti-
mation and reduction of additive noise is a widely researched
topic and there are numerous algorithms available in the liter-
ature [1, 2]. In this paper, we consider estimation of the mag-
nitude response of the unknown channel,Hl (k). The method
which we present uses the Long-Term Average Speech Spec-
trum (LTASS). A related idea was presented in [3] where the
authors studied channel equalization in the context of speaker
recognition. The material presented here differs in a number
of ways: (i) we use an iterative approach for the estimation of
the average spectrum of the observed signal rather than the
average of the total observation; (ii) we investigate the use
of two alternatives for LTASS; (iii) we provide experiments
with three different additive noises; (iv) we evaluate the al-
gorithm using an objective measure of channel similarity.

The remainder of the paper is organized as follows: In
Section 2, we discuss the principle and the implementation of
the channel identification algorithm. In Section 3, we intro-
duce a weighted spectral distortion measure for evaluationof
the estimated channels and use it to evaluate the algorithm’s
performance for a variety of channels. Finally, we draw con-
clusions from this work in Section 4.

2. BLIND CHANNEL IDENTIFICATION

In this Section, we derive the blind channel identification
method. First the principle behind the method is described
and the effects of noise are discussed. Then, details of the
implementation are described.

2.1 Principle

The objective is to estimate the magnitude response of the
unknown channel. Therefore, we consider the power spec-
trum of the observed speech signal in (2)

|Xl (k)|
2 = |Sl (k)|

2|Hl (k)|
2 + |Vl(k)|

2

+2|Sl(k)||Hl (k)||Vl (k)|cos(∠∆), (3)

where the angle∠∆ = ∠Sl (k)+∠Hl(k)−∠Vl(k).

Next, it is assumed that the signal and the noise magni-
tudes and phases are independent, the channel is stationary
or varies much slower than the speech andE{cos(∠∆)} = 0,
whereE{·} denotes expectation. Then, taking the expecta-
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tion on both sides of (3), we get

E{|Xl(k)|
2} = E{|Sl(k)|

2}|H(k)|2 +E{|Vl(k)|
2}

= E{|Sl(k)|
2}

(

|H(k)|2 +
E{|Vl(k)|2}
E{|Sl (k)|2}

)

= P̄S(k)

(

PH(k)+
P̄V(k)
P̄S(k)

)

= P̄X(k), (4)

wherePX(k) denotes the power spectrum of a signalx(n) and
P̄X(k) the expected power spectrum of a signalx(n). P̄S(k)
in (4) is the mean value of the short-term speech spectrum,
which can be approximated by the LTASS. Therefore, we can
estimate the log spectrum of the channel using

log

(

PH(k)+
P̄V(k)
P̄S(k)

)

= log(P̄X(k))− log(PLTASS(k)), (5)

where PLTASS(k) is some predefined model of the LTASS
which, in practice, can be found either by measurement [4]
of many talkers and many utterances or by using an approx-
imate formula [5]. A comprehensive study in [4] shows that
LTASS is relatively invariant with language but there are
differences between male and female talkers, particularlyat
lower frequencies. Nevertheless, it is possible to find a rea-
sonable average representation for both sexes.

In the noise-free case,v(n) = 0, the component on the left
hand side of (5)P̄V(k)/P̄S(k) equals zero. The channel can
then be identified to an accuracy depending on the accuracy
of the assumed LTASS model

log(P̂H(k)) = log(PH(k))+ ε(k), (6)

whereε(k) = log(P̄S(k)/PLTASS(k)) is an error due to the dis-
crepancy between the assumed and the actual LTASS. A sec-
ond factor in the accuracy of this estimate is the length of the
available speech signal such thatP̄X(k) can be estimated ac-
curately. The channel properties will not have as significant
an effect as the speech signal characteristics.

When noise is present, there is an additional error in the
estimate. The actual impact of this error will depend on the
long-term average spectrum of the noise, the channel char-
acteristics and on the noise power (P̄V(k)/P̄S(k) in (5) is in-
versely proportional to the SNR). Both the noise-free and the
noisy cases will be discussed further with the simulation ex-
amples in Section 3.

2.2 Implementation

In order to implement an algorithm based on the ideas de-
scribed in Section 2.1, we need two components: (i) a model
for the LTASS and (ii) a procedure for calculating the aver-
age spectrum of the observed signal. These two components
are discussed in the following.

There are two possible approaches to obtaining an
LTASS model and we consider both. In the first approach,
the LTASS can be found by measurement from many talk-
ers and many utterances [4]. We used the complete training
set of the TIMIT database to extract the LTASS as an aver-
age from the short-term spectra of all utterances and all talk-
ers. The training set of TIMIT contains anechoic noise-free
recordings from 422 male and 184 female talkers, with ten
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Figure 1: Male and female LTASS measured from TIMIT
and generic LTASS from P50 calculated with (7).

sentences from each talker; the duration of each sentence is
approximately three seconds. Frames of 16 ms and with 50%
overlap were used for the STFT and male and female talkers
were processed separately.

Alternatively, an approximate formula can be used to ap-
proximate the LTASS. One such formula is defined in the
ITU-T recommendation P.50 [5] to

PLTASS( f ) =−376.44+465.439log10 f (7)

−157.745(log10 f )2 +16.7124(log10 f )3 dB,

where f is frequency in Hz and the output is a log intensity
spectrum in dB relative to 1W/m2.

The LTASS from (7) and the LTASS calculated from the
TIMIT database for male and female talkers are shown in
Figure 1. It can be seen that the measured male and female
LTASS mostly differ in the low frequency region. The over-
all shape of the measured LTASS is very similar to the re-
sults shown in [4]. We use an average of the male and fe-
male LTASS in the blind channel identification algorithm.
We also see that, the LTASS calculated from (7) differs from
the LTASS measured from TIMIT in the peak frequencies,
which can reduce the estimation accuracy. Nevertheless, the
advantage of having a formula to approximate the LTASS is
that of straightforward reproducibility of the algorithm.

Next, we consider the estimation of the average spectrum
of the observed signal. In order to account for channel vari-
ability and to accommodate frame-by-frame processing, we
implement the averaging using exponential smoothing ac-
cording to

log(P̂H(k, l)) = α log(P̂H(k, l −1))+ (1−α)Ĥ(k, l) (8)

where

Ĥ(k, l) = log(PX(k, l))− log(PLTASS(k)) (9)

is the instantaneous estimate of the channel magnitude re-
sponse in framel and 0≤ α ≤ 1 is the smoothing factor.
Both PX(k, l) andPLTASS(k) are normalized using log-spectral
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Figure 2: Composite weighting function (solid) used in the
weighted spectral distance defined in (11) and its two com-
ponents (dashed).

mean subtraction prior to their application in (9), in orderto
avoid any arbitrary scale factor issues. The choice ofα is
studied in Section 3 and it is set using the relation to the time
constant given by

α =
τ

(τ +TS)
, (10)

whereTS is the sampling period andτ is the time constant
which, in this case, defines the time for the channel estima-
tion in (8) to reach a steady-state value.

3. EXPERIMENTS AND RESULTS

We now present a performance evaluation of the algorithm
described in Section 2. We will introduce a metric used for
the evaluation of an estimated channel spectrum and we will
use this in a series of experiments to demonstrate various as-
pects of the LTASS-based blind channel identification algo-
rithm.

3.1 Evaluation

We consider a weighted error measure in order to compare
two power spectraP1(k) andP2(k). A weighted root mean
squared log-spectral distance can be defined as [6]

d(P1,P2,k) =

[

∑N−1
k=0 W(k)|e(k)|2

∑N−1
k=0 W(k)

]
1
2

dB, (11)

where

e(k) = 10log10

(

P1(k)
P2(k)

)

, (12)

andW(k) is a frequency dependent weight function.
One of the key purposes of channel identification is to

use the estimated channel response to neutralize its effecton
the speech signal. Since we assume explicitly that the de-
sired signal is speech and the destination is a human listener,
a weighting function should feature some human speech pro-
duction and hearing properties. A good weighting function
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Figure 3: Time-constant versus channel identification perfor-
mance in terms of weighted spectral distance.

which we propose here includes A-weighting,WA(k), and
LTASS weighting and is defined as

W(k) = WA(k)PLTASS(k). (13)

The composite weight function,W(k), and its two compo-
nentsWA(k) andPLTASS(k) are shown in Fig. 2. Note thatW(k)
has been normalized to unity.

3.2 Simulation Results

For the following illustrative experiments, data is drawn from
the core test sets of the TIMIT database. The core test set (in-
cluding the dialect sentences) consists of 240 sentences, ten
sentences from each of the 16 male and 8 female talkers. In
this way, we use different data from that used to estimate the
LTASS. Simulated channel responses are generated by plac-
ing poles or zeros in conjugate pairs inside the unit circle;
the magnitude of each pole or zero is restricted to the range
0.8−0.99. The positions of the poles and the zeros are cho-
sen randomly from a uniform distribution. All experiments
are performed using both the measured LTASS from TIMIT
and the approximate formula from (7). The weighted spectral
distance is calculated for one utterance as the average across
all frames afterτ seconds.

3.2.1 Experiment 1: Time-Constant Selection

For the first experiment, we used a two-pole channel and no
additive noise. The smoothing factor was set as in (10) by
varying the time-constant,τ, in the range 0− 4 s in 0.25 s
increments. The sentences from the test set of TIMIT were
used by concatenating all sentences from each talker to form
one longer sentence per talker of approximately 30 s, result-
ing in a total of 24 different sentences and 24 talkers. The
channel is estimated for each utterance and for each time-
constant. The results, averaged over all utterances, are shown
in Fig. 3. Based on this result, the performance floor is
reached at aroundτ = 2.5 s; this is thus the chosen time-
constant value we use for the remaining experiments. Choos-
ing a lower time constant, would allow faster tracking of a

215



1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

W
ei

gh
te

d 
S

pe
ct

ra
l D

is
ta

nc
e 

(d
B

)

P50 LTASS

1 2 3 4 5 6 7 8 9 10
2

4

6

8

10

W
ei

gh
te

d 
S

pe
ct

ra
l D

is
ta

nc
e 

(d
B

)

Channel Number

Measured LTASS

Figure 4: Ten different channels comprising one conjugate
pair of poles and one conjugate pair of zeros and 48 utter-
ances, two by each of 16 male and eight female talkers.
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Figure 5: Channel estimation in noise with P50 LTASS.

time-varying channel at the cost of some estimation accu-
racy.

3.2.2 Experiment 2: Channels vs. Speech

In the second experiment we used ten randomly generated
channels comprising one conjugate pole pair and one conju-
gate zero pair and there is no additive noise. The TIMT test
sentences were concatenated using five sentences to create
one utterance. This results in two utterances per talker anda
total of 48 utterances. The results are shown in the box plot
in Fig. 4. This plot shows that there can be a large variation
in performance with different utterances while there is much
less dependence on the channel. This indicates that longer-
term averaging over utterances may improve performance,
provided that the channel is stationary.
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Figure 6: Channel estimation in noise with measured LTASS.

3.2.3 Experiment 3: Identification in Noise

Next, we used two fixed channels, one with a conjugate pair
of poles and one with a conjugate pair of zeros. We then
added noise to the filtered signals, varying the SNR between
0 dB and 60 dB. Three different types of noise were con-
sidered: babble noise, car noise and White Gaussian Noise
(WGN). Figure 5 shows the channel identification results in
terms of weighted spectral distance when using P50 LTASS
and Fig. 6 shows the results obtained with measured LTASS.

One observation that is made is that the results have the
same rank order in all cases, with the WGN resulting in the
worst identification performance and car noise with the best.
A possible explanation to this can be given by considering the
termP̄V(k)/P̄S(k) in (5). It is seen that if the long-term aver-
age of the noise equals that of LTASS then this term equals
one at all frequency bins and the channel estimate will be as
accurate as in the noise-free case. The long-term average of
the WGN is flat, while babble noise and car noise have sim-
ilar spectral trend as the LTASS with stronger magnitudes
in the low frequency regions. Consequently, the impact of
the car noise is much lower than the impact of the WGN. In
practice, the relationship between the channel response and
this inverse SNR term is more complex due to the averaging
being performed in the log-spectral domain.

3.2.4 Experiment 4: Real Measured Channels

Finally, we show two illustrative examples with two real
channels; the objective is to demonstrate the use performance
of the algorithm with realistic data and to relate the numbers
of the weighted spectral distance to quintessential estimation
examples. First, a measured microphone response was con-
volved with clean speech. The true and the estimated chan-
nels are shown in Fig. 7. The weighted spectral distance in
this example is 4.64 dB for the estimation using P50 LTASS
and 3.87 dB for the estimation using measured LTASS. We
see that the important large scale components (the position
of the three poles in this case) have been identified correctly.

Secondly, we used a sample from NTIMIT, which is the
TIMIT database recorded over real noisy telephone network
channels. The database also provides measurements of the
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Figure 7: Measured microphone response and estimates of
it in a noise-free case. The weighted spectral distance is
4.64 dB for the estimation using P50 LTASS and 3.87 dB
for the estimation using measured LTASS.

channel responses. The measured and the estimated channels
are shown in Fig. 8. The weighted spectral distance for this is
33.34 dB for the estimation using P50 LTASS and 36.13 dB
for the estimation using measured LTASS. We see from the
graphs that the large estimation error can be attributed to the
high frequency portion of the channel(≥ 4 kHz). This is a
combination of the speech signal in this portion of the spec-
trum being buried in noise and the relatively low energy in
the speech signal in frequencies above 4 kHz as is evident
from the LTASS in Fig. 1.

From this set of experiments, it can be seen that using the
measured LTASS can result in a small improvement over the
approximate LTASS equation from (7) in terms of weighted
spectral distance. Therefore, it provides a useful tool for
blind channel identification, particularly in terms of the dom-
inant characteristics of the channel.

4. CONCLUSIONS

We have developed a method that uses a pre-defined model
of the long-term average speech spectrum to blindly iden-
tify a channel that is either stationary or slowly varying.
A weighted spectral distortion measure, suitable for speech
signals, was proposed and employed to evaluate the al-
gorithm using simulated channels, measured microphone
responses and telephone transmission channels from the
NTIMIT database. It was shown, for the noise-free case, that
this method can identify the large scale features of a channel
in a manner that works well for a wide variety of channels but
its performance can vary with different speech utterances.In
the presence of noise, it was found that the performance de-
grades differently depending on the spectral characteristics
of the noise, on the noise power and on the channel. Finally,
the potential of the method was demonstrated with real mea-
sured channel responses from a microphone and from a noisy
telephone network showing that this is a promising method
for identification of the larger scale features of a channel.
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from NTIMIT. The weighted spectral distance for this is
33.34 dB for the estimation using P50 LTASS and 36.13 dB
for the estimation using measured LTASS.
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