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ABSTRACT
The use of the source-filter speech production model in meth-
ods for enhancement of reverberant speech has received con-
siderable attention over the last few years. Furthermore, it
has most recently been shown that spatial averaging of the
linear prediction (LP) coefficients is required to improve ac-
curacy in implementation of these types of algorithms. In this
paper, we suggest and demonstrate experimentally that LP
coefficients obtained from spatially averaged multi-channel
speech signals achieve an equally satisfactory result. Con-
sequently, we propose a novel multi-channel speech derever-
beration approach operating on the LP residual, utilizing a
combination of spatial averaging and a new approach based
on inter-cycle temporal averaging. Simulation results and in-
formal listening tests indicate an improvement in terms of
direct-to-reverberant sound ratio and in perceived quality of
the enhanced speech.

1. INTRODUCTION

Speech signals obtained by microphones placed at a distance
from the speaker in an enclosed space are degraded in qual-
ity due to multiple reflections from the surrounding walls and
other objects. The deleterious effect is further magnified as
the distance between speaker and receiver increases. Con-
sequently, listeners’ perceptual experience and the intelligi-
bility of the captured speech are significantly reduced. This
is an important problem, often encountered in “hands-free”
applications such as teleconferencing or speech-recognition
aimed for use, for example, in offices.

Several dereverberation algorithms based on the source-
filter speech production model [1] have been proposed by
various authors [2, 3, 4]. The motivation for these methods
is the observation that in reverberant environments, the lin-
ear prediction (LP) residual contains the original impulses
followed by several other peaks due to multi-path reflec-
tions. In addition, it is assumed that the LP coefficients cal-
culated from clean speech and those obtained from reverber-
ant speech are equivalent. Consequently, dereverberation is
achieved by attenuating the peaks in the excitation sequence
due to multi-path reflections and synthesizing the enhanced
speech waveform using the modified LP residual. It was re-
cently suggested in [5] that the LP coefficients from rever-
berant speech should be spatially averaged for the assumed
equivalence with the clean speech coefficients to hold.

The main advantage of the source-filter speech produc-
tion model algorithms is that they can achieve dereverbera-
tion without specific knowledge of the room transfer func-
tion, which is known to be difficult to estimate. Furthermore,
they are more robust to speaker movements. This makes
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Figure 1: Proposed speech dereverberation algorithm.

them flexible to use in rooms of different acoustic charac-
teristics.

Various methods for enhancing the LP residual exist.
Griebel and Brandstein [2] use coarse estimates of the room
impulse response for each channel and apply a matched filter
type operation to obtain weighting functions for the rever-
berant LP residuals. Yegnanarayana et al. [3] use Hilbert
envelopes to represent the strength of the peaks in the LP
residuals. The time-aligned Hilbert envelopes from the in-
dividual channels are summed and used as a weight vector
which is applied to the LP residual of one of the channels.
Gillespie et al. [4] demonstrate the kurtosis of the LP resid-
ual to be a valid reverberation metric and apply an adaptive
filter that maximizes the kurtosis of the excitation sequence.
Although these algorithms perform reasonably well in their
task of attenuating peaks due to reverberation, they do not
consider the original structure of the excitation sequence.
Consequently, the enhanced residual can differ significantly
from the original excitation signal, resulting in less natural-
sounding speech.

In this contribution, we propose a novel approach to use
of the source-filter model in speech dereverberation. Fur-
ther to [5], we show experimentally that an improvement in
accuracy of the LP coefficients can be obtained from spa-
tially averaged, time-aligned observations of speech signals
produced in a reverberating room. Consequently, using the
fact that the waveform between adjacent larynx-cycles varies
slowly, each such cycle is replaced by an average of itself
and its nearest neighboring cycles to provide the final en-
hancement of the LP residual. We also introduce the con-
cept that the LP residual from the averaged sequence clearly
shows the original instances of glottal closure, such that
they can be identified by a suitable algorithm, e.g. DYPSA
[6] or HQTx [7]. The major advantage of this approach is
that the enhancement process preserves the structure of the
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clean speech residual. Thus, the enhanced speech is natural-
sounding and perceptually close to the clean speech utter-
ance. A diagrammatic summary of the algorithm is presented
in Fig. 1.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the details of the proposed method. In Sec-
tion 3, the experimental environment is outlined and results
from simulation experiments are presented and discussed.
Finally, Section 4 provides concluding remarks about the
proposed algorithm based on the current results.

2. SPEECH DEREVERBERATION ALGORITHM

2.1 Linear Prediction of spatially averaged observations
We consider a clean speech signal, s(n), produced in a rever-
berating room and observed by an array of M microphones.
Let the speech signal received at the mth microphone be
xm(n) = hm(n) ∗ s(n), where hm(n) is the room impulse re-
sponse relative to the source and the mth microphone posi-
tion, and ∗ denotes convolution. The spatially averaged in-
put, x̄(n), is obtained with

x̄(n) =
1
M

M

∑
m=1

xm(n− τm). (1)

This is essentially a delay-and-sum (DS) beamformer where
appropriate delays, τm, which are assumed to be available,
are applied on the individual channels in order to time-align
the inputs before these are averaged.

Applying LP analysis, we can express the clean speech
and the spatially averaged observation signals as a linear
combination of their p past samples, which for a single anal-
ysis frame becomes

s(n) =−
p

∑
k=1

aks(n− k)+ e(n), (2)

x̄(n) =−
p

∑
k=1

bkx̄(n− k)+ ē(n), (3)

where ak and bk are the corresponding LP coefficients and
e(n) and ē(n) are, respectively, the clean and the DS beam-
former output LP residuals. The LP residual is found by in-
verse filtering the speech signal [1].

Subsequently, we use a fixed microphone array and
speaker geometry in the simulation environment specified in
Section 3 with a reverberation time T60 = 0.8s and using an
example vowel /i/. We rotate and translate the entire source-
receiver configuration to various randomly selected positions
in the room and calculate the LP coefficients of the DS beam-
former output for each case. Figure 2 shows a z-plane plot
of the poles for a single frame resulting from 5 such cases, ·,
as well as their mean, ◦. This suggests that, on average, the
vocal tract filters from spatially averaged reverberant speech
are close to those obtained from clean speech, ¤, i.e. the pole
positions arising from ak are approximately equal to the pole
positions arising in the spatially averaged case from bk.

Finally, comparing the LP residuals obtained from the
output of the DS beamformer as shown in Fig. 4c to the
clean speech residual in Fig. 4a, we see that the peaks due
to closure of the glottis become apparent. However, the two
residuals are still dissimilar.
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Figure 2: The poles from clean speech (¤), DS beamformer
output from individual source-microphone positions (·) and
average over all the beamformer outputs at the different
source-microphone positions (◦).

2.2 Averaging across Larynx-cycles

A more detailed investigation of the excitation sequences
shown in Fig. 4a and 4c obtained from (2) and (3) leads to
the following observations:
• The LP residual obtained from the output of the DS

beamformer differs from that in clean speech by seem-
ingly random peaks which are left after the averaging.
These peaks, due to the room effects, appear uncorrelated
among consecutive larynx-cycles.

• In the case of the clean speech, the prediction residual
between consecutive larynx-cycles changes slowly and
shows high inter-cycle correlation. This property has also
been applied in the context of TD-PSOLA [8].

• The impulses due to glottal closure appear to represent
the original, clean speech excitation.

It is therefore proposed that applying a moving average type
operation between successive larynx-cycles will enhance the
prediction residual to closer resemble the original excitation
sequence. There are two major parts in this averaging proce-
dure. First it is necessary to correctly identify the instances
of glottal closure so as to segment the larynx-cycles. Sec-
ond, the true glottal pulse should remain unchanged and thus,
should be excluded from the averaging process. Since the
peaks due to glottal closure are clearly identifiable in the
residual from the DS beamformer, we can apply an algorithm
such as HQTx [7] or DYPSA [6] for finding their positions
correctly. One of the features that is particularly desirable for
the task in question and that DYPSA possesses, is robustness
to spurious peaks.

We would like to perform the averaging on the LP resid-
ual between the successive larynx-cycles only and leave the
glottal pulse undisturbed. Therefore, we apply a weighting
function on each frame prior to the averaging, which ide-
ally should exclude only the true glottal pulse. In practice,
the position of the glottal pulse is not identified exactly but
within a few samples and the glottal pulse is not an impulse
but is spread in time. Consequently, a weighting function
is needed to take these variations into consideration and the
weights have to be chosen such that, as much as possible of
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Figure 3: The weighting function w(u) for one larynx-cycle.

the larynx-cycle is included in the averaging process.
The weighting function, w(u), we found suitable to meet

the set requirements with a reasonable trade-off between the
issues described above is given by

w(u) =
tanh(− π

2 + 2πu
L )+1

2
, for u = 0,1, . . . ,L−1 (4)

where L is the number of samples in one larynx-cycle. The
weighting function is depicted in Fig. 3. Moreover, we need
to reverse the effect of the applied weights in order to restore
the original glottal impulse at the end of the averaging pro-
cess. This is done utilizing an inverse of (4), 1−w(u).

Each enhanced larynx-cycle in a voiced speech seg-
ment is obtained by averaging it with D of its neighboring
weighted cycles on each side. The result is then added to the
original cycle weighted with the inverse weighting function
according to

ê(l) = ē(l)¯ (1−w)+
1

2D+1

D

∑
d=−D

ē(l +d)¯w (5)

where ê(l) = [ê(lL) ê(lL + 1) . . . ê(lL + L− 1)]T is the lth
larynx-cycle of the enhanced residual, ē(n) = [ē(lL) ē(lL +
1) . . . ē(lL + L− 1)]T is the lth larynx-cycle from the DS
beamformer output residual, ¯ is the Hadamard (element-
by-element) product and w = [w(0) w(1) . . . w(L− 1)]T is
the weight vector. Since the larynx-cycles are not strictly
periodic but may vary within a few samples, L is set to equal
the longest cycle of the 2D + 1 considered, while those of
less samples are padded with zeros.

The choice of D is also an important factor in the en-
hancement of the LP residual. If too many cycles are in-
cluded the averaging will cancel uncorrelated portions from
the original excitation. If too few cycles are considered, then
peaks due to reverberation will still remain. We use D = 2
in all experiments and have found that D > 3 provides less
accurate results.

Finally, we obtain an estimate of the clean speech signal,
ŝ(n), by synthesizing the speech signal using the enhanced
residual ê(n) and the time-varying LP coefficients, bk, calcu-
lated with (3). The dereverberated speech signal is then given
by

ŝ(n) =−
p

∑
k=1

bk ŝ(n− k)+ ê(n). (6)

3. SIMULATIONS AND RESULTS

We present simulation results to demonstrate the perfor-
mance of the proposed algorithm in terms of LP residual en-

hancement and dereverberated speech improvement. For the
purpose of the experiments we use simulated, finite room im-
pulse responses obtained with the image method [9] assum-
ing a room with dimensions 6×5×4m. An array of M = 15
microphones is positioned along a circular arc in front of the
source, such that the source-microphone distance is exactly
2.15m. The distance between two successive microphones
is 0.2m. Furthermore, we use speech samples taken from
the APLAWD database [10], which also includes a Laryn-
gograph (EGG) signal for each sample. In all experiments,
the instances of glottal closure are found using the HQTx al-
gorithm [7]. For the LP analysis/synthesis, we use an order
of p = 13 and 30ms, 50% overlapping Hamming windowed
frames.

To measure improvement of the processed speech, we use
segmental signal-to-noise ratio (SNRSeg) defined as [11]

SNRSeg =
1
K

K−1

∑
k=0

10log10

{

∑kN+N−1
n=kN s2(n)

∑kN+N−1
n=kN (s(n)− ŝ(n))2

}

, (7)

where N is the frame length and K is the total number of
frames considered. In terms of reverberation, the noise com-
ponent is due to multi-path effects and thus the measure can
be interpreted as a segmental direct-to-reverberant signal ra-
tio.

For the experiments we use the vowel /i/ uttered by a male
speaker as an example. Figure 4 shows a segment of the LP
residual signals from clean speech, (a), reverberant speech,
(b), processed speech by spatial averaging only, (c), and LP
residual processed by the proposed algorithm, (d). It is clear
from this result that the excitation sequence processed with
the proposed method is significantly closer to the original,
clean speech residual than that of the DS beamformer.

Figure 5 shows a plot of the SNRSeg at different reverber-
ation times of the reverberant speech for one of the channels,
(a), speech enhanced with the spatial averaging only, (b) and
speech enhanced with the proposed method, (c). This result
indicates that the proposed method provides close to 1.5dB
improvement over the DS beamformer at reverberation time
T60 = 0.8s. Furthermore, our approach appears to be more
stable to increased reverberation times.

Finally, the algorithm has been applied to a sentence from
the APLAWD database and informal listening tests have
been performed. The perceptual results of the processed
speech can be summarized in the following four points: 1)
the reverberant effects due to the room are significantly re-
duced, 2) the speaker appears to be closer to the microphone,
3) no deleterious artifacts are introduced by the processing
and 4) at the end of voiced utterances, the reverberant tail
effect is still apparent, which is explained below.

In the processing of these sentences only the voiced
speech portions have been enhanced. Unvoiced speech por-
tions have not been altered in the tests mentioned above.

4. CONCLUSIONS

We have proposed a novel multi-microphone speech dere-
verberation algorithm which utilizes both spatial and tempo-
ral averaging. The method is based on linear prediction of
spatially averaged microphone array inputs and larynx syn-
chronous temporal averaging of the LP residuals. The algo-
rithm addresses only voiced speech segments.
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Figure 4: a) Clean speech residual, b) Reverberant speech
residual c) DS beamformer output residual d) Residual after
processing with proposed method.

We have demonstrated experimentally that, on average,
the pole positions obtained by LP analysis from of the DS
beamformer output show close correspondence to those ob-
tained from clean speech and that this represents an alterna-
tive approach to averaging the pole positions [5]. The new
approach of inter-cycle averaging has been shown to give
further significant enhancement of the LP residual. A pre-
diction residual close to that obtained from clean speech can
therefore be found and used for subsequent LP synthesis to
provide dereverberated speech. The performance of the algo-
rithm is dependent on the accuracy of the larynx-cycle seg-
mentation, the choice of weighting function and the num-
ber of larynx-cycles included in the averaging process. This
paper has presented practical examples of these factors and
work is undergoing to further examine these parameters.

We have provided simulation results to demonstrate
the performance of the proposed algorithm, comparing the
achieved performance to the DS beamformer. The results
are presented in terms of how well the processed LP resid-
ual matches that of clean speech and also in terms of direct-
to-reverberant ratio, using a segmental SNR measure for the
latter. These show that the proposed method outperforms the
DS beamformer, particularly when the reverberation times
are high. Based on our current results the proposed algo-
rithm provides up to 9dB improvement in SNRSeg over a sin-
gle channel of reverberant speech, which is 1.5dB better than
the DS beamformer.

Finally, informal listening tests have shown that rever-
berant effects are reduced considerably, without introducing
artifacts. One of the clearly audible features in the processed
speech is that the ”distant” effect is reduced. A set of sam-
ples of clean, reverberant and processed speech can be found
at http://www.commsp.ee.ic.ac.uk/∼ndg/samples.htm.
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