
Intelligibility Estimation in Law Enforcement Speech Processing

Patrick A. Naylor1, Nikolay D. Gaubitch1, Dushyant Sharma1, Gaston Hilkhuysen2, Mark Huckvale2

and Mike Brookes1

Centre for Law Enforcement Audio Research (CLEAR),
1Department of Electrical and Electronic Engineering, Imperial College London, UK
2Division of Psychology and Language Sciences, University College London, UK
E-Mail: p.naylor@imperial.ac.uk
Web: www.ee.ic.ac.uk/naylor

Abstract

Speech recordings obtained in the context of law enforce-
ment are often degraded in terms of quality and intelligib-
ility. Several techniques for assessing the impact of speech
enhancement algorithms on quality are available, both in-
trusive and nonintrusive, but the assessment of intelligibil-
ity is usually reliant on expensive and time consuming sub-
jective listening scores. To address this issue, we describe
some recent scoring experiments and an adaptive Bayesian
procedure which efficiently estimates properties of the psy-
chometric function from a small number of listening tests.
A data-driven nonintrusive objective intelligibility estima-
tion method is also described and tested on car and babble
noise. It is shown to give intelligibility estimates that are
well correlated with subjective scores. We aim to im-
prove our understanding of the quality/intelligibility trade-
off and to study speech processing tools in the critical con-
text of law enforcement.

1 Introduction

The work of Law Enforcement Agencies (LEAs) can be
greatly assisted by audio recordings of, for example, po-
lice interviews or recordings made by the pubic on mo-
bile phones. It is inevitable that these recordings will have
widely varying sound quality and intelligibility since they
are made in uncontrolled scenarios. Intelligibility is im-
portant so that a recording will be admissible as evidence
in court and so that accurate transcripts can be made. Qual-
ity is important since the rate and accuracy of transcription
is reduced for audio that is degraded by, for example, back-
ground noise or reverberation. The cost of transcription for
noisy audio is about 50 % higher than for clean speech.
The LEAs therefore require speech processing tools to im-
prove both intelligibility and quality.

In the telecommunications sector, where speech has
a Signal-to-Noise Ratio (SNR) typically between 40 dB
and 0 dB, speech enhancement algorithms have been re-
searched for many years [1, 2] with some notable suc-
cesses. In law enforcement applications, the range of SNR
is wider and extends to at least -20 dB. High levels of noise
may be compounded with other degradations such as rever-
beration and nonlinear distortion. Speech intelligibility in
law enforcement is therefore often much less than 100 %.

To develop and test speech enhancement technology for
law enforcement, test data containing realistic types and
levels of degradation is needed. Data from the telecom-
munications sector [3] is not usually adequate. It is also
necessary to employ performance metrics for both quality
and intelligibility. The effect of speech enhancement al-
gorithms on speech quality can in principle be assessed us-
ing objective intrusive measures such as Perceptual Evalu-

ation of Speech Quality (PESQ) [4], objective nonintrusive
measures such as Low-Complexity, Nonintrusive Speech
Quality Assessment (LCQA) [5] and subjective scoring
techniques such as Mean Opinion Score (MOS) [6]. The
effect of speech enhancement algorithms on intelligibil-
ity usually requires listening tests which are expensive and
time consuming. It is therefore highly desirable either to
employ subjective scoring techniques which are as efficient
as possible and/or to employ objective measures.

In the remainder of this paper we review recent sub-
jective scoring experiments targeting intelligibility. We
then consider measurement of intelligibility and present
a Bayesian Adaptive Speech Intelligibility Estimation
(BASIE) method that efficiently estimates the Psychomet-
ric Function (PF) in a given noise condition. Lastly we
review recent work on nonintrusive objective measures.

2 Scoring Experiments

A number of techniques have been presented in the lit-
erature for obtaining subjective quality and intelligibility
scores for degraded speech [7].

Intelligibility can be measured at the phone level using
nonsense syllables [8, 9], at the word level [10, 11] and the
sentence level [12, 13] as well as using modified rhyme
tests [14, 15] and diagnostic rhyme tests [16]. Experi-
mental work to date within CLEAR has focused on meas-
urements based on keywords.

Intelligibility may be characterized using a PF plotting
intelligibility as a function of distortion level, usually SNR.
An example is shown in Fig. 2. The impact of a speech en-
hancement algorithm on intelligibility can be seen by com-
paring the PFs before and after processing.

The study by Hu and Loizou [17] shows the effect of
speech enhancement as a reduction in the intelligibility of
the signal. In contrast, the same processing has been shown
to improve SNR and increase perceived quality [18].

A study of the manner in which experienced operat-
ors use a commercial speech enhancement system was
presented in [19]. The operators worked on three con-
catenated IEEE sentences [20], which were corrupted by
babble noise at five SNRs, ranging from 0 to -12 dB SNR
in 3 dB steps. The operators were asked to find the set-
tings of the controls which gave what they perceived to
be “maximum intelligibility”. Each operator adjusted the
controls for a particular SNR five times. Using an Ana-
lysis of Variance, it was found that there was no correlation
amongst the choice of settings so that each operator had a
different opinion on which settings gave best intelligibil-
ity. Subsequently, the intelligibility of the enhanced and
unprocessed speech was measured by normal hearing na-
ive listeners and reported as the log2 of the ratio between
the number of correct and number of incorrect keywords



in the listeners’ responses, known as the Berkson scale. It
was found that the effect of the speech enhancement was to
reduce intelligibility by about 1 Berkson, meaning that for
a fixed number of correct words, the number of incorrect
words doubled due to speech enhancement.

The effects of noise suppression on intelligibility were
further studied using 200 IEEE sentences [20] from a male
speaker. These were corrupted by car and babble noise at
5 SNRs chosen in each case to correspond to Speech In-
telligibility Index (SII) [21] values of 0.1, 0.3, 0.5, 0.7 and
0.9. The noisy speech was then processed by spectral sub-
traction [22] (SS), minimum mean square error spectral es-
timation [23] (MMSE) and subspace enhancement [24, 25]
(SBS). The noise spectrum was estimated using the min-
imum statistics algorithm [26, 27]. The resulting database
contained 20 conditions per enhancement type. Listening
tests were performed with 20 subjects for SS and MMSE
experiments, where it was found that sufficient statistical
power was achieved with 10 subjects. The experiment
design was based on a Latin square design, each subject
performing the scoring task in 10 sessions (with a random-
ization of presentation order). The task was to give a verbal
response to the stimuli. The results for the SS experiment
are shown in Fig. 1. A reduction in intelligibility is ob-
served for both car and babble noise when the speech pro-
cessed by spectral subtraction is presented to the listeners.
Similar results are obtained for the MMSE and SBS tech-
niques, highlighting and quantifying the intelligibility loss
due to application of speech enhancement algorithms.
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Figure 1: Subjective intelligibility scores for car, babble
noise and enhancement of the same by spectral subtraction.

3 Databases for Validation

The C-Qual database has been presented in [28] and con-
tains degraded speech with mean opining scores. The clean
speech used is the same as in ITU-T P.23 [3] allowing
comparisons. The degradations are intended to repres-
ent law enforcement situtations and include additive car,
babble and hum noise, reverberation, colloration and some
nonlinear effects. As a first experiment, this database has
been used to validate the performance of the PESQ qual-
ity measure in the law enforcement context. These tests
showed that PESQ in its current form is more suitable for
use in additive noise conditions (correlation of 0.94 for car,
babble and hum in -30 to 30 dB SNR range) and correlates
poorly with subjective quality scores for non-linear distor-
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Figure 2: Psychometric funciton for speech intelligibility
in noise.

tions such as peak clipping and drop-outs (correlation of
0.17).

4 BASIE

The PF for speech intelligibility in noise is often modelled
as a sigmoid function parametrized in terms of the SNR
corresponding to a chosen intelligibility level, Ψ0, and the
slope of the PF at this SNR. This can be written as [29, 30]

Ψ(x) = γ +(1− γ−λ )Φ(x), (1)

where x is the SNR, Ψ is the probability of a correct re-
sponse, λ is the lapse rate and γ is the guess rate. An ex-
ample is shown in Fig. 2.

In BASIE we model Φ(x) as a cumulative normal distri-
bution so that the slope, β , and the threshold, α , at a chosen
Ψ(x) = Ψ0 are governed by the distribution’s variance, σ ,
and mean, µ . BASIE estimates these terms using a tech-
nique similar to [31]. At each iteration n, the listening sub-
ject indicates a response, rn, to a noisy speech sample at a
probe SNR, xn, such that rn = 1 if the response was cor-
rect and rn = 0 otherwise. For the next iteration, the probe
SNR is adjusted according to some rule depending on the
outcomes of previous iterations. The objective of BASIE
is to select the probe SNR of the next trial such that we ob-
tain as much information as possible about the PF in order
to estimate the Speech Reception Threshold (SRT) and the
PF slope at the SRT within the minimum number of itera-
tions. One approach [32] is to choose the SNR probe value
for iteration xn+1 such that a weighted sum of the expec-
ted variances of the estimates of the threshold, α , and the
slope, β , are minimised by

xn+1 =argmin
x

�
(1−κ)E {Varn+1 {α | x}}

+κE {Varn+1 {β | x}}
�
, (2)

where here we use a 75% SRT threshold, κ = 0.5 and E{·}
is the expectation operator.

We define a two dimensional Probability Density Func-
tion (pdf), p(θ) that specifies the probability space of all
possible PFs, where θ = (α,β )T is a two-dimensional vec-
tor containing the values of the threshold α and the slope
β at Ψ(x) = Ψ0. At the nth iteration, the pdf is updated
with the new result according to



Table 1: Results from the listening experiments in terms
of mean and standard deviation of the processing gain cal-
culated over six subjects and two tests.

Maximum Noise Processing Gain (dB)
Attenuation (dB)

−1 0.5±2.2
−5 0.67±1.57
−10 −0.15±1.9
−20 −3.69±2.42
−30 −4.74±1.9
−40 −8.49±2.71

pn(θ | xn,rn) =
pn−1(θ)P(rn | xn,θ)

∑
θ

pn−1(θ)P(rn | xn,θ)
, (3)

where P(r = 1 | x,θ) = Ψ(x), P(r = 0 | x,θ) = 1−Ψ(x)
and Ψ(x) is given in (1). From pn(θ), we can calculate
the expected value and the covariance of the threshold and
slope estimates. This process is repeated until satisfactory
convergence is achieved. The algorithm is executed for a
fixed number of iterations, normally determined empiric-
ally.

We next consider the use of BASIE to measure the effect
of speech enhancement on intelligibility. In this context,
we evaluate a speech enhancement algorithm by the pro-
cessing gain defined as the difference in SRT between the
processed noisy speech and the unprocessed noisy speech
such that

Processing Gain = SRTNoisy−SRTProcessed . (4)

The ability of BASIE to estimate more than two PFs in
one experiment allows simultaneous evaluation of the pro-
cessing algorithm with various parameter settings.

We carried out a listening experiment with six subjects
using a Noise Reduction Module (NRM) from a commer-
cial audio workstation to enhance speech degraded by car
cabin noise. The original speech data was anechoic di-
git triplets from the TIDigits database, which were nor-
malized to have the same activity level [33] before noise
was added with an intensity adjusted to the required SNR.
The samples were presented to the listeners through an
RME Fireface 800 and Sennheiser HD650 headphones. At
the beginning of the experiment, each subject was asked
to adjust the audio to a comfortable listening level which
was then kept fixed throughout the experiment. The first
five samples were unprocessed noisy speech presented at
SNR= 0 dB; these were excluded from the results but en-
abled the subjects to familiarise themselves with proced-
ure.

The NRM has several adjustable parameters. We con-
sidered here only the parameter with the greatest appar-
ent perceptual effect: the ‘maximum noise attenuation’
setting. This was varied as: Maximum Noise Attenu-
ation (dB)= {−1,−5,−10,−20,−30,−40}. The remain-
ing parameters were set to the default values prescribed by
the algorithm implementation. The subjects were asked to
perform the experiment twice under identical conditions.
The two sets of experiments were undertaken on two con-
secutive days. For each experiment, BASIE was run for
150 iterations taking approximately 10 minutes per subject
per experiment.

The results shown in Table 1 are given in terms of mean
and standard deviation of the processing gain calculated
over all six subjects. The SRT for each condition was cal-
culated as an average of the last ten trials when it was
assumed that the PF estimation has converged as shown
in Fig. 3. These results are over a relatively small num-
ber of subjects such that their statistical significance is not
confirmed. However, a valuable observation is the small
improvement of intelligibility seen for the attenuation set-
tings in the range of −5 dB to −1 dB. This type of result
could serve as an indicator of ‘safe operational regions’ for
a speech enhancement algorithm over which speech qual-
ity may be improved without degrading intelligibility.
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Figure 3: Example of BASIE convergence for unpro-
cessed noisy speech.

5 Data-driven Objective Intelligibility

Estimation

Regardless of the efficiency of a subject-based intelligibil-
ity test, it is still nevertheless desirable to be able to estim-
ate intelligibility of a segment of audio automatically. This
permits offline processing to seek out intelligence in long
audio recordings such that, for example, transcription can
be attempted on only those segments with intelligibility es-
timates above a chosen threshold. Feature based methods
for quality estimation have already been presented, for ex-
ample [5]. We now describe a non-intrusive objective in-
telligibility estimation method and present some initial res-
ults with car and babble noise and for speech processed by
spectral subtraction.

Low-Complexity, Nonintrusive Speech Intelligibility
Assessment (LCIA) [34] employs a feature set [5] derived
from Linear Predictive Coding (LPC) supplemented by the
Importance Weighted Signal-to-Noise Ratio (iSNR) result-
ing in 11 features per frame. An utterance, or segment of
audio, is represented by 44 statistical per-frame features.
We apply a two-step dimensionality reduction scheme us-
ing feature subset selection based on feature correlations
followed by a feature extraction step based on PCA using
a development data-set. It was found that selecting 8 fea-
tures from the 44 global features and extracting 7 linear
combinations after the feature extraction gave good res-
ults. A joint Gaussian Mixture Model (GMM) is trained
on the 7 resulting features and the intelligibility score for
each speech utterance in the training data.

Tests were performed using spectral subtraction applied
to 20 different noise conditions in 200 IEEE sentences as
employed in Section 2. A 50% cross-validation training
scheme was used in which the data is equally divided into
test and training sets, with the training set containing all the



conditions present in the test set. However, the test speech
material is not available in the training set. The test and
training sets are swapped and the performance is the av-
erage over the two sets. The results we have obtained for
LCIA have a Spearman correlation coefficient [35] of 0.96
with SII and 0.92 with subjective intelligibility scores. The
statistical properties of the spectral dynamics were found
to be the most important feature (with an individual cor-
relation of 0.90 with intelligibility) suggesting that the rate
of change of the spectrum provides important information
for intelligibility. This finding is consistent with the use of
modulation domain features.

6 Conclusion

Subjective scoring experiments indicate that some speech
enhancement processes may improve perceived quality at
the cost of reduced intelligibility. An efficient technique
known as BASIE has been reviewed which can estimate the
SRT on the PF in a few minutes of a listeners time. Nev-
ertheless, it is still advantageous to investigate fully auto-
matic objective measures of intelligibility and one such
measure, LCIA, has been shown to be well correlated with
human intelligibility scores. These types of measures are
essential tools for appropriate deployment of speech en-
hancement algorithms into critical applications of law en-
forcement.
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