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ABSTRACT

Speech signals for hands-free telecommunication applications are
received by one or more microphones placed at some distance from
the talker. In an office environment, for example, unwanted signals
such as reverberation and background noise from computers and
other talkers will degrade the quality of the received signal. These
unwanted components have an adverse effect upon speech process-
ing algorithms and impair intelligibility. This paper demonstrates
the use of the Multichannel DYPSA algorithm to identify glottal
closure instants (GCIs) from noisy, reverberant speech. Using the
estimated GCIs, a spatiotemporal averaging technique is applied
to attenuate the unwanted components. Experiments with a micro-
phone array demonstrate the dereverberation and noise suppres-
sion of the spatiotemporal averaging method, showing up to a 5
dB improvement in segmental SNR and 0.33 in normalized Bark
spectral distortion score.

1. INTRODUCTION

Dereverberation and noise suppression play an important role
in speech signal processing. Reverberation components impair
the intelligibility of a speech signal and have an adverse effect
upon processing algorithms such as recognition and classification.
Noise from computer fans, air ducting and other talkers can have
equally undesirable consequences. A common means of attenu-
ating these unwanted signals is beamforming, applied to an array
of microphones, using the spatial diversity of room transfer func-
tions and noise sources to attenuate the unwanted reverberation
and noise components.
Beamforming is a type of spatial averaging which produces

the greatest enhancement when the wanted components display
significantly more interchannel correlation than the unwanted
components. This is generally not the case for distant reflections
(whose interchannel delay is low) and acoustic noise sources, so
a more sophisticated algorithm is required for further enhance-
ment. The quasi-periodicity of voiced speech can be used as a
basis for spatiotemporal averaging [1]. By averaging the LP resid-
uals [2] over neighbouring larynx cycles from a delay-and-sum
beamformer (DSB), the true residual is reinforced and temporally
uncorrelated reverberation and noise components are attenuated.
LP synthesis with the processed residual gives a cleaner speech
signal. The algorithm also uses periods of voiced speech to deter-
mine an equalisation filter [3] which performs the equivalent oper-
ation of temporal averaging for both voiced and unvoiced speech,
further reducing reverberation and noise.
For spatiotemporal averaging to function, an accurate estima-

tion of glottal closure instances (GCIs) is required. The Dynamic

Figure 1: Microphone array comprising eight AKG C417 micro-
phones are placed at 50 mm intervals.

Programming Projected Phase-Slope Algorithm (DYPSA) [4] ac-
curately estimates GCIs from clean speech and the multichannel
extension [5] exploits the spatial diversity of room transfer func-
tions to give accurate GCI estimation in reverberant environments.
The final component for dereverberation by spatiotemporal aver-
aging is voiced/unvoiced/silence detection. Multichannel DYPSA
(MC-DYPSA) searches for GCIs in any signal, resulting in spuri-
ous GCI candidates during unvoiced speech, so the spatiotempo-
ral averaging algorithm must know during which periods to apply
temporal averaging or an equalisation filter alone. A detection al-
gorithm [6] combines a series of metrics to estimate the probability
of a frame being voiced, unvoiced or silence.
Dereverberation methods can be split into three main cate-

gories: (i) beamforming (ii) speech enhancement and (iii) blind
channel estimation/equalizaiton. Several existing algorithms are
reviewed in [7]. The key contribution of the current paper is to
combine the methods described above into a practical (online) and
computationally efficient speech enhancement algorithm, which
does not require knowledge of the room transfer functions and to
demonstrate its applicability in real environments. The proposed
method is evaluated with multichannel recordings, captured with a
custom microphone array (Figure 1). The remainder of the paper
is organised as follows. Section 2 formulates the problem. Sec-
tion 3 discusses the algorithm in detail. Test results are presented
in section 4 and conclusions are drawn in section 5.

2. PROBLEM FORMULATION

Consider a speech signal s(n) produced in a reverberant environ-
ment, received by an array ofM microphones, through a channel
hm(n) from the source to microphone m. The received signal at
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microphonem is xm(n) = hm(n) ∗ s(n), where ∗ denotes linear
convolution. The aim is to estimate an enhanced speech signal,
ŝ(n) from the xm(n). m = 1. 2. .... M .
LP analysis [2] describes a speech signal as a linear combina-

tion of p past samples, such that

s(n) = −

p∑
k=1

aks(n− k) + e(n) (1)

where ak are the clean LP coefficients and e(n) is the clean LP
residual. Similarly, LP analysis can be applied to each microphone
output

xm(n) = −

p∑
k=1

bm,kxm(n− k) + em(n) (2)

where bm,k are the LP coefficients for channelm and em(n) is the
corresponding LP residual. A single set of best-fit LP coefficients,
bk, may be found with multichannel LPC analysis which closely
match ak. This analysis is presented in detail in [8].
In order to obtain the enhanced speech signal, ŝ(n), an en-

hanced LP residual, ê(n), is obtained from em(n) by spatiotem-
poral averaging. LP synthesis then resynthesizes the speech signal

ŝ(n) = −

p∑
k=1

bkŝ(n− k) + ê(n) (3)

3. THE ALGORITHM

The algorithm comprises four parts: time-delay-of-arrival (TDoA)
estimation with GCC-PHAT, voiced/unvoiced/silence detection,
GCI detection with Multichannel DYPSA and spatiotemporal av-
eraging.

3.1. TDoA Estimation

Both MC-DYPSA and spatiotemporal averaging rely on the cor-
rect inter-channel time alignment to maximise the correlation of
the direct-path signal across channels. The Generalized Cross-
Correlation Phase Transform (GCC-PHAT) [9] is a simple and suf-
ficiently accurate method for the estimation of delay between two
channels from moderately reverberant speech signals.
Let the reference channel be xref (t) and the measurement

channel xm(t). The delay estimate, τ̂GCC , is determined by max-
imising the cross-correlation between channels

τ̂GCC = arg max
τ

Rxref xm(τ ) (4)

Rxref xm(τ ) =

∫ ∞

∞

Xref (ω)X∗
m(ω)

|Xref (ω)||X∗
m(ω)|

e
jωτdω (5)

where ∗ denotes a complex conjugate operation and R is a
weighted inverse Fourier transform of the signal cross-spectra.
The GCC-PHAT method has been shown to be accurate

enough for moderate reverberation although it is suboptimal under
ideal conditions as it places equal weighting on each frequency [9].
The process is repeated forM − 1 pairs of microphones to deter-
mine the inter-channel delay between microphone 0 and micro-
phonem.

3.2. Voiced/unvoiced/silence Detection

Voiced/unvoiced/silence detection is performed on a speech sig-
nal which has been processed with a delay-and-sum beamformer
(DSB). The output of the DSB, x̄(n), is found by

x̄(n) =
1

M

M∑
m=1

xm(n− τm) (6)

where τm is a delay to compensate for the propagation time of
channelm and is by TDoA estimation as discussed in Section 3.1.
Voiced segments are determined using a voiced-unvoiced-

silence detector based on five measurements [6]: 1) zero cross-
ing rate, 2) energy, 3) autocorrelation coefficient, 4) the first LP
coefficient and 5) normalized prediction error (in dB). Each mea-
sure is computed over 32 ms frames with 60% overlap, forming
a sequence of feature vectors. These vectors are then clustered
using an unsupervised EM algorithm [10]. The three clusters are
labelled as silence, unvoiced and voiced according to their mean
vectors and variances. The unvoiced cluster is chosen to be the
one with an autocorrelation coefficient closest to zero mean and
0.5 variance. Of the remaining two clusters, the one with great-
est energy is chosen to be voiced. Every vector in the sequence
is then evaluated under each of the three Gaussians and classified
according to which cluster produces the highest likelihood.

3.3. Multichannel DYPSA

The DYPSA [4] GCI detection algorithm comprises three main
parts:
(i) Group Delay Function – defined as the average slope of

the unwrapped phase spectrum of the short time Fourier transform
of the prediction residual. GCI candidates are selected based on
the negative-going zero crossings of the group delay function.
(ii) Phase-Slope Projection – introduced to generate GCI can-

didates when a local maximum is followed by a local minimum
without crossing a zero. The midpoint between these is identified
and projected onto the time axis with unit slope. In this way, GCIs
whose negative-going slope does not cross the zero point (those
missed by the group delay function) are identified.
(iii) Dynamic Programming – uses known characteristics of

voiced speech (such as pitch consistency and waveform similarity)
and forms a cost function to select a subset of the GCI candidates
which are most likely to correspond to the true ones. The subset
of candidates is selected according to the minimisation problem
defined as

min
Ω

|Ω|∑
r=1

λ
T cΩ(r). (7)

where Ω is a subset of GCIs of size |Ω|, λ is a vector of weighting
factors and cΩ(r) is a vector of cost elements evaluated at the rth
GCI of the subset.
Multichannel DYPSA was proposed in [5] to exploit the spa-

tial diversity of room transfer functions [11]. When the channels
are time-aligned, the direct-path signal is common to all channels
but reverberation components are less likely to show correlation.
MC-DYPSA applies parts (i) and (ii) above to each channel inde-
pendently and creates an additional cost element based upon the
interchannel correlation, penalizing those which occur in a small
number of channels and encouraging those in close temporal prox-
imity across channels. This is passed to the Dynamic Program-
ming stage and the most likey GCIs, at sample instants nl, are
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Figure 2: System diagram of the multichannel dereverberation algorithm.

identified. Our experiments have shown that GCI estimation from
a reverberant speech signal for T60 = 500 ms is on average 16%
more accurate with MC-DYPSA than single-channel DYPSA ap-
plied to an 8-channel DSB and 29% more accurate than DYPSA
on a single channel, providing 83% accuracy [5].

3.4. Spatiotemporal Averaging

The DSB prediction residual, ēn, found by inverse filtering x̄(n)
with bk [2], contains peaks due to GCIs and many spurious peaks
due to reverberation and noise. Spurious peaks are uncorrelated
among consecutive larynx cycles. Conversely, the main features of
prediction residuals from clean speech vary little between neigh-
bouring cycles because of the quasi-stationarity of voiced speech.
Performing a weighted average of I neighbouring residuals from
larynx cycles of length L of noisy, reverberant speech reinforces
the clean speech excitation and attenuates the uncorrelated spuri-
ous peaks using

êl = (I−W)ēl +
1

2I

I∑
i=−I

Wēl+i (8)

where ēl = [ē(nl) ē(nl + 1) . . . ē(nl + L − 1)]T is the
lth larynx cycle at the output of the DSB with GCI at time nl,
êl = [ê(nl) ê(nl + 1) . . . ê(nl + L − 1)]T is the lth layrnx cy-
cle of the enhanced residual and I is the identity matrix. W =
diag{ω0 ω1 . . . ωL−1} is a diagonal weighting matrix to exclude
glottal excitation based on the Tukey window [12].
This process can only be applied to segments of voiced speech,

leaving reverberation components unaffected on unvoiced speech
and silence. Furthermore, in the case of an erroneous GCI, the
algorithm will produce incorrect results. To improve robustness,
an L-tap equalisation filter gl = [gl,0 gl,1 ... gl,L−1] for the lth
larynx cycle is defined which performs the equivalent operation of
temporal averaging. A least squares estimate of gl is found from

ĝl = mingl ‖g
T
l ē− ê(nl)‖

2 and is used to update a slowly varying
filter

ĝ(nl) = γĝ(nl−1) + (1− γ)ĝl (9)

where 0 ≤ γ ≤ 1 is a forgetting factor with typical values in the
range {0.1 − 0.3}, initialised to ĝ(0) = [1 0 ... 0]T . It is updated
only during voiced speech, with the last iteration used for periods
of unvoiced speech or silence.

4. RESULTS

The microphone array shown in Fig. 1, consisting of eight AKG
C417 microphones spaced linearly at 5 cm intervals, was placed
in a 3.3x2.9x2.9 m room with reverberation time (T60) of 0.3 s. A
channel estimation was made for each microphone using the MLS
method [11]. Utterances of the sentence, “George made the girl
measure a good blue vase,” by five male and five female talkers
were taken from the APLAWD database [13] and played through
a loudspeaker at distances 0.5 to 2 m from the microphone array.
The MLS-derived channel estimates were truncated to de-

termine a direct-path impulse response, hd(n), which was con-
volved with the clean speech signal to align the unprocessed and
processed signals, denoted s′(n) = hd(n) ∗ s(n). Record-
ing and channel alignment were made at a sampling frequency
of fs = 48 kHz. The remainder of the processing was per-
formed at fs = 16 kHz and with the samples high-pass filtered at
100 Hz. The recorded, DSB and spatiotemporal averaged speech
samples were evaluated against the clean samples using the seg-
mental Signal-to-Noise Ratio (SNR) [7] and Bark Spectral Distor-
tion (BSD) [14] using 30 ms frames with 50% overlap. The defini-
tion of ‘noise’ in this case is the combination of both reveberation
and background noise.
The segmental SNR results, averaged over all ten talkers in

APLAWD, are shown in Fig. 3 for (a) reverberant speech at the mi-
crophone closest to the talker, (b) DSB speech and (c) spatiotem-
poral averaged speech. Corresponding BSD results are shown in
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Figure 3: Segmental SNR vs. distance for (a) reverberant, (b) DSB
processed and (c) Spatiotemporal averaged speech.

Fig. 4. Reverberation and noise reduction of up to 5.0 dB and 0.33
in BSD score are observed at a distance of 2 m, corresponding to
2.7 dB and 0.07 over the DSB. Perceptually, reverberation effects
are reduced and the talker appears to be closer to the microphone.
The results show a strong correlation with the simulations in [3].
Examples of clean and processed samples can be found at [15].

5. CONCLUSIONS

We have proposed a practical method to exploit the spatial and
temporal characteristics of noisy, reverberant speech to attenuate
the unwanted signal components. This spatiotemporal averag-
ing algorithm relies on good estimation of GCIs, which are accu-
rately identified with MC-DYPSA. Clean speech samples, played
through a speaker and recorded in an office environment, show that
significant enhancement in terms of segmental SNR and BSD can
be achieved with the proposed algorithm.
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