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Abstract—Adaptive blind system identification with LMS-
type algorithms is prone to misconvergence in the presence
of noise. In this paper we consider the hypothesis that such
misconvergence is due to the introduction of a common filter
to the estimated impulse respones. A technique is presented
for identifying and removing the common filter using prior
knowledge of the true channels. Experimental results with this
approach show an improved rate of convergence and reduced
system error. Furthermore, misconvergent behaviour is no longer
observed, offering a plausible explanation as to the source of
misconvergence in adaptive blind system identification.

I. INTRODUCTION

Blind system identification (BSI) is a common problem
encountered with the analysis of signals captured in a rever-
berant environment. A number of multichannel least-squares
and subspace methods have been proposed that are able to
identify channels from multichannel observations providing
the channel order is known and identifiability conditions are
satisfied [1], [2]. With these constraints satisfied, perfect iden-
tification and equalization of the observed signals is possible
in the absence of noise. However, the robustness of adaptive
algorithms in the presence of additive noise is a problem that
has received much attention in the literature. It is known that
with additive noise such adaptive algorithms converge towards
the correct solution before catastrophic misconvergence [3].
To overcome this, various methods employ constraints based
upon a priori knowledge of the channel to improve noise
robustness [2], [4].

Many studies have been conducted into the behaviour of
least mean square (LMS)-type BSI algorithms in noise. In
this paper we present a preliminary study into the effect of
uncorrelated additive noise and show that it causes a common
filter to be present in all estimated channels. Such a common
component has been shown to be the result of overmodelling
a system [5], though experimental evidence in this paper
shows that a common component may occur even where
the channel order is modelled exactly. It is further shown
that the estimation and removal of a common component
using knowledge of the true impulse responses increases the
rate of convergence, with an error related to the noise floor,
and prevents misconvergence of the identified system. This

result suggests that a misconvergence can be viewed as the
addition of a common filter to the estimated channels and not
convergence to an entirely incorrect solution.

The remainder of this paper is organized as follows. In
Section II the problem is formulated formally. In Section III,
the NMCFLMS algorithm is derived. Common filtering in the
estimated channels is described in Section IV. Experimental
results are presented in Section V. Conclusions are given in
Section VI.

II. PROBLEM FORMULATION

Consider a speech signal recorded in a noisy environment
with an array of microphones. The observed signals at channel
i ∈ {1, 2, . . . ,M} are given by

xi(n) = yi(n) + νi(n) (1)
yi(n) = His(n), (2)

where s(n) = [s(n) s(n − 1) . . . s(n − 2L + 1)]T ,
xi(n) = [xi(n) xi(n − 1) . . . xi(n − L + 1)]T , yi =
[yi(n), yi(n−1), . . . , yi(n−L+1)]T , νi(n) = [νi(n) νi(n−
1) . . . νi(n−L+1)]T are segments of the speech signal, noisy
observation, clean observation, noise and starting at sample n
respectively and Hi denotes the filtering matrix. The length
of each segment is L samples. The filtering matrix is defined
by

Hi =


hi,0 . . . hi,L−1 . . . . . . 0
0 hi,0 . . . hi,L−1 . . . 0
...

. . . . . . . . . . . .
...

0 . . . . . . hi,0 . . . hi,L−1

 . (3)

The noise signals are assumed to be uncorrelated and white
such that E{νi(n)νj(n)} = 0 ∀ i 6= j and E{νi(n)νi(n −
n′)} = 0 ∀ i, n′ 6= 0. The source and noise are also
uncorrelated as E{νi(n)s(n)} = 0 ∀ i.

Blind system identification is the process of estimating
the filters hi (the first row of the filtering matrix) from the
observations xi(n) alone. The identifiability conditions [1]
state that the autocorrelation matrix of s(n) be full rank and
that there are no common zeros shared between channels;



in the noiseless case the filters hi(n) can then be identified
exactly. In the presence of noise it is known that adaptive
LMS-type algorithms converge towards the correct solution
before misconvergence [2]. The nature of this misconvergence
and its relationship to common filtering between the identified
channels is investigated in this paper.

III. REVIEW OF THE NMCFLMS ALGORITHM

The normalized multichannel frequency-domain LMS (NM-
CFLMS) algorithm [6] is a computationally-efficient adaptive
BSI technique which is briefly summarized in this section.
From (2) the following relationship can be deduced [1] in the
absence of noise

xi ∗ hj = s ∗ hi ∗ hj = xj ∗ hi, (4)

where ∗ denotes linear convolution, from which an error
function can be derived

eij(n) = xT
i (n)hj−xT

j (n)hi, i, j = 1, 2, . . . ,M, i 6= j. (5)

In order to avoid trivial estimates of all zero elements, a unit-
norm constraint is imposed on h and the normalized error
signal becomes

εij(n) =
eij(n)
‖h‖ i, j = 1, 2, . . . ,M, i 6= j. (6)

This result may be used to calculate the instantaneous square
error in the frequency domain at the mth processing block
which is minimized by the NMCFLMS algorithm

Jf (m) =
M−1∑
i=1

M∑
j=i+1

eH
ij (m)eij(m), (7)

where eij(m) is the frequency-domain block error signal
between channels i and j. The algorithm is summarized as [6]

ĥ
10

k (m+ 1) =ĥ
10

k (m)− ρ(Pk(m) + δI2L×2L)−1 (8)

×
M∑
i=1

D∗xi
(m)e01

ik (m), k = 1, 2, . . . ,M,

where ĥ
10

and e01
ik (m) are the length 2L DFTs of hk and

eik at block m respectively as defined in [6], I is an identity
matrix and

Pk(m) = λPk(m− 1) + (1− λ) (9)

×
M∑

i=1,i6=k

D∗xi
(m)Dxi

(m), k = 1, 2, . . . ,M, (10)

where Dxi
(m) is a diagonal matrix of DFT coefficients for a

block m of observation xi. Symbols ρ, δ and λ denote control
parameters. The estimate of the kth channel coefficient vector
is ĥk(m) = [ĥk,0(m) ĥk,1(m) . . . ĥk,L−1(m)]T .

IV. IDENTIFICATION AND REMOVAL OF COMMON FILTER

The hypothesis investigated in this paper is that the effect
of additive noise is to cause the LMS-type BSI adaptive
filtering to ‘see’ a common filter hc as a component in each
channel, and whose estimation and removal will provide an
improved estimate of the true channels. We now investigate
this phenomenon further. The equality in (4), and hence the
cross-relation error in (5), are blind to common filtering in the
channel estimates,

xi ∗ ĥj = xj ∗ ĥi (11)

xi ∗ ĥj ∗ hc = xj ∗ ĥi ∗ hc, (12)

where hc is a common filtering component. Consider then a
decomposition of the estimated impulse responses,

ĥk = hc ∗ h′k, (13)

where h′k is a channel-dependent component at channel k. A
supervised estimate of the common component may be found
by the following summation, assuming estimation errors are
uncorrelated between channels,

ĥc =
1
M

M∑
k=1

gk ∗ ĥk, (14)

where gk is the L-sample inverse of the true channel response
hk. The filter gk is obtained by

gk = arg min
gk

‖gk ∗ hk − δ(n)‖22 (15)

where δ(n) is a unit impulse function. Note that gk is a
noncausal function1. With the common component estimated
in (14), the channel-dependent component h′k can be estimated
by the convolution

ĥ′k = ĝc ∗ ĥk (16)

where ĝc the L-sample is a least-squares inverse of ĥc, found
in a similar way to (15) by the minimization

ĝc = arg min
ĝc
‖ĝc ∗ ĥc − δ(n)‖22 (17)

and is also a noncausal function. The decomposed channels
may be represented in vector form as,

ĥk = [hk,0 hk,1 . . . hk,L−1] (18)

ĥ′k = [h′k,0 h
′
k,1 . . . h′k,L−1] (19)

ĥc = [ĥc
−L/2 ĥ

c
−L/2+1 . . . ĥc

3L/2−1]. (20)

In the final case the anticausality is limited to L/2 samples
and the total filter is 2L samples long; empirical results in
Sec. V justify this choice. The appended argument ĥk(n)
denotes the estimate at time n and concatenated channels
are denoted by the matrices ĥ = [ĥT

1 ĥT
2 . . . ĥT

M ]T and
ĥ′ = [ĥ

′T
1 ĥ

′T
2 . . . ĥ

′T
M ]T .

1The filters hk and hc are not generally minimum phase so an exact inverse
does not exist.



V. EXPERIMENTAL RESULTS

Three types of channel were simulated: room impulse
responses (RIRs) for a room measuring 5× 6× 3 m of length
128 taps and T60 = 0.3 s with an array of 5 microphones
spaced at 0.2 m intervals using the method of images [7], five
random channels of length 16 taps, and five exponentially-
decaying channels of length 16 taps. A sampling rate of
fs = 8000 Hz was employed. Care was taken to ensure
the absence of common zeros in the simulated channels. The
channels were excited by 10 seconds of white Gaussian noise
and noise was added to the observed signals to obtain a signal-
to-noise ratio (SNR) of {10, 30, 60} dB at the received signals
xi(n). A total of 20 Monte Carlo realizations were simulated
and averaged.

The normalized projection misalignment (NPM) between
the true impulse response h and estimated impulse responses
ĥ(n) is defined as [8]

NPM[h(n), ĥ(n)] = 20 log10

(
‖h− κ(n)ĥ(n)‖2

‖h‖2

)
, (21)

where κ(n) is defined as

κ(n) =
hT ĥ(n)

ĥT (n)ĥ(n)
. (22)

The results Figs. 1, 2 and 3 show (a) the NPM between true
and estimated systems, (b) the cost function in (7) and (c) the
NPM between true and channel-dependent component of the
estimated system as a function of time for the RIRs, random
and exponentially-decaying random channels respectively. In
all cases (a) converges more slowly than (b), in particular in
the 10 dB SNR case where misconvergence occurs in (a).
Furthermore, the NPM in (c) is consistently lower than (a) and
does not misconverge. The implication of these results is that a
common component is present in the estimated channels both
before and after misconvergence, and that the system error in
(c) converges to a level that is related to the SNR. The curves
in (c) also follow a similar convergence characteristic to (b)
suggesting that, provided a common component is removed,
the cost function is a good measure of system error.

The curves in Fig. 4 show, for the RIR case, (a) the `2-norm
between the common component and a unit impulse

‖ĥc − δ‖2, (23)

where δ is a vector of M concatenated delayed unit impulses

δ = [0L/2×1 1 03L/2−1×1︸ ︷︷ ︸
M times

. . . ]T , (24)

and (b) the NPM between neighbouring estimates of ĥc. These
results show that the common filter’s amplitude varies as a
function of time but that its shape varies relatively little. In
the case of 10 dB SNR, the common component amplitude
varies in a similar fashion to the misconverging curve in
Fig. 1, showing that the misconvergence is due largely to
an increased common component and not convergence to
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Fig. 1. (a) NPM between true and estimated systems, (b) Cost function, (c)
NPM between true and channel-dependent component of estimated system
for room impulse responses with varying SNR.
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Fig. 2. (a) NPM between true and estimated systems, (b) Cost function, (c)
NPM between true and channel-dependent component of estimated system
for random channels with varying SNR.

an entirely incorrect solution. The `2-norm of the common
component is seen in all cases to peak shortly after the
filter begins to adapt before reducing in subsequent iterations;
this can also be seen around 0.25 s in Fig. 2 (c). Only if
the estimate begins to misconverge does the `2-norm of the
common component later increase. Similar results have been
observed with longer channels of up to 200 taps and with
time-domain LMS BSI algorithms.

The plot in Fig. 5 shows (a) the common component ĥc

and (b) its energy decay curve (obtained by backwards inte-
gration) [9] at the last iteration of the misconverged estimate
of the room impulse responses in the 10 dB SNR case. The
common component decays to −60 dB of its peak value in
approximately 3L/2 samples, suggesting that the length of this
filter is long compared with the true channels.
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Fig. 3. (a) NPM between true and estimated systems, (b) Cost function, (c)
NPM between true and channel-dependent component of estimated system
for exponentially-decaying random channels with varying SNR.

VI. CONCLUSION

A study has been conducted into common filtering in
impulse responses estimated with noisy adaptive blind sys-
tem identification. A supervised technique was proposed for
studying the effects of common filtering that requires prior
knowledge of the true system. Experimental evidence with
room impulse responses and random channels has shown
that common filters can be identified and removed from the
estimated channels, improving the rate of convergence and
system error. It is also observed that these channel estimates do
not misconverge, offering the explanation that misconvergence
is due to a common filtering and not convergence to an entirely
incorrect solution. The cause of common filtering in adaptive
BSI remains an open question, however these findings suggest
that future algorithms exploiting knowledge of common filter
behaviour will exhibit improved noise robustness.
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