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The effects on speech intelligibility of three different noise reduction algorithms (spectral subtraction,
minimal mean squared error spectral estimation, and subspace analysis) were evaluated in two types
of noise (car and babble) over a 12dB range of signal-to-noise ratios (SNRs). Results from these
listening experiments showed that most algorithms deteriorated intelligibility scores. Modeling of the
results with a logit-shaped psychometric function showed that the degradation in intelligibility scores
was largely congruent with a constant shift in SNR, although some additional degradation was
observed at two SNRs, suggesting a limited interaction between the effects of noise suppression and

SNR. © 2012 Acoustical Society of America. [DOI: 10.1121/1.3665996]

PACS number(s): 43.72.Kb, 43.72.Dv [EB]

I. INTRODUCTION

Many methods for the reduction of added noise have
been designed to improve noisy speech signals (for a review,
see Loizou, 2007). The majority of these noise suppression
methods have a similar general structure. The noisy speech
is first divided into overlapping time frames and a front-end
process estimates the noise power spectrum. A subsequent
back-end process then applies an attenuation factor that
varies in time and frequency as a function of the estimated
signal-to-noise ratio (SNR). In general, listeners give noisy
speech after noise reduction higher quality ratings than the
nonprocessed signal (Loizou, 2007).

Despite the large number of proposed algorithms, only a
few studies have addressed the consequences of noise suppres-
sion for speech intelligibility (Lim, 1978; Boll, 1979; Ludvig-
sen et al., 1993; Tsoukalas et al., 1997; Arehart et al., 2003;
Loizou, 2007; Hu and Loizou, 2007). In some of these studies,
an occasional improvement in intelligibility was reported
(Tsoukalas et al., 1997; Arehart et al., 2003; Hu and Loizou,
2007), but in general, noise suppression either had little or a
detrimental effect on intelligibility. In terms of the range of
SNR values tested, previous studies only included one (Boll,
1979), two (Ludvigsen et al., 1993; Arehart et al., 2003; Loi-
zou, 2007; Hu and Loizou, 2007), or at times three (Lim, 1978;
Tsoukalas et al., 1997) SNR values per noise type. Loizou
(2007) found that for a majority of noise reduction algorithms,
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percentage word-correct scores reduced more at lower SNRs,
suggesting that the deteriorating effects of speech enhancement
on intelligibility increases at lower SNRs.

The impact of an algorithm on intelligibility may vary
considerably with SNR. The effect of an algorithm might
depend on the intelligibility of the input signal, and it may
not be the case that effects observed at a particular level of
intelligibility can be generalized to other levels or that shifts
in intelligibilities, caused by noise suppression and observed
at two or more levels of intelligibility, can be interpolated or
extrapolated to other levels. One might expect an interaction
between SNR and processing due to inaccuracies in estimat-
ing specific parameters used in noise-suppression algorithms
at different SNRs. For example, it may be easier to estimate
accurately some noise-reduction parameters, such as the
SNR or noise spectrum, at high SNRs compared to low
SNRs. Consequently, the noise-reduction algorithm could be
more effective at high SNRs than at low SNRs. In this paper,
we investigate whether such SNR dependent effects of noise
suppression on intelligibility exist. It will be assumed that
the functions relating SNR to percentage correct scores, the
so called psychometric functions (PMf), have logistic
shapes. Then if the effects of processing are independent of
SNR, the PMf should simply shift along the SNR axis as a
consequence of noise reduction. Changes in the PMf’s slope
would be considered as SNR dependent effects.

A better understanding of SNR dependent effects on
intelligibility could be of benefit to designers and users of
noise suppression methods and could support the development
of predictive models of intelligibility that might be used
to design new noise suppression algorithms or to optimize
the application of existing algorithms for particular signal
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conditions. Additionally, if the effects of noise suppression
are stable across SNRs, one may consider measuring these
effects in the future with more time-efficient adaptive proce-
dures, as for example proposed by Leek (2001). However, to
be efficient, these adaptive procedures typically focus on
SNRs that are much lower than the SNRs relevant for most
human communication (Brand and Kollmeier, 2002). If
effects do vary with SNR, the outcome of such tests may not
generalize to the SNRs of interest.

The effects of noise suppression at low SNR are particu-
larly of interest for applications in law-enforcement and for-
ensic audio, where recordings are often made in adverse
conditions (Manchester, 2010). Low SNR values can also be
found in the mobile telecommunications area, where conver-
sations tend to be held in noisier conditions than previously
encountered in the wired network (Jellyman, 2009). In this
paper, we collect a wider range of intelligibility data than
before, including three different noise suppression methods
for two different noise types over five SNRs.

Il. METHODS
A. Participants

Sixty participants were recruited from the Psychology
Subject Pool of University College London (UCL), staff and
students at the UCL department of Speech, Hearing and Pho-
netic Sciences, and collaborators within the Centre for Law
Enforcement Audio Research. All participants indicated they
attended primary school in the UK and used English as their
principal language during childhood, criteria to identify them
as native speakers of British English. Their pure-tone air-con-
ducted hearing thresholds at octave frequencies between
0.125 and 8kHz included were 20dB HL or less for both
ears, interpreted as indicating normal hearing. The median
age of the participants was 26 years, ranging from 18 up to 60
years. The effects of three speech enhancement algorithms
were investigated incorporating 20 listeners per algorithm.

B. Materials

Stimuli were presented diotically over headphones
(Sennheiser HDA-200) driven by a digital I/O system (DAC)
(RME Fireface 400). The experimental setup was calibrated
using an artificial ear (B&K 4153) equipped with a flat-plate
adaptor and a 1/2 inch condenser microphone (B&K 4192),
connected to a microphone power supply (B&K 2804); and a
spectrum analyzer (OnoSokki cf-350z). Levels observed in
1/3-octave bands with center frequencies ranging from 0.16
to 6.3 kHz indicated that the errors introduced by the equip-
ment were less than 1.3 dB.

Signal processing and stimulus presentation were accom-
plished with software written in MATLAB release 2008a (Math-
works, 2008) using 64-bit floating point representations for all
signals and in all signal manipulation. The DAC was con-
trolled using the ASIO driver supplied by its manufacturer
using a resolution of 24 bits and 44.1 kHz sampling rate.

The speech materials used in the experiments were the
UCL recordings of the IEEE sentences (Rothauser et al.,
1969; Smith and Faulkner, 2006). Throughout the experi-
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ment, two types of noise were used: babble and car noise.
Babble noise was taken from the NATO noises (TNO,
1990), a recording of 235s from 100 people speaking in a
canteen in which individual voices are slightly audible. The
car noise recording was of a Ford Escort driven at approxi-
mately 110km/h (70mph) on a dry tarmac test track. No
other cars were driven in the car’s proximity, hence only the
sound of the Escort is heard. During this 168 s recording, the
omnidirectional microphone was located close to the dash-
board surface in the car’s cabin. Long-term average spectra
of speech and noise signals are shown in Fig. 1.

C. Noise suppression

Three speech enhancement algorithms were evaluated
for the intelligibility tests: spectral subtraction (SS), mini-
mum mean square error spectral estimation (MMSE), and
subspace enhancement (SSA). These algorithms form a rep-
resentative set of the standard algorithms mentioned in
Loizou (2007). The parameter settings used in each case are
discussed in the following text, and a complete MATLAB
implementation of the first two algorithms is available in
voIcEBox (Brookes, 2008). All the algorithms processed the
speech signal in overlapping frames and used an overlap-add
procedure on the processed frames to synthesize the
enhanced speech output.

Each of the noise reduction algorithms requires an esti-
mate of the noise power spectrum. For this purpose, we used
an algorithm by Martin (2001) that eliminates the need for
explicit speech activity detection by tracking the minimum
power in each frequency band of the noisy signal’s smoothed
short-term power spectrum. The algorithm assumes that this
minimum power represents the noise floor, and an estimate
of the average noise power in each frequency band is then
obtained by applying a bias compensation factor whose deri-
vation is described in detail in Martin (2006). This algorithm
implicitly assumes that the noise power spectrum is station-
ary over intervals of a few seconds.

The SS algorithm is described by Berouti et al. (1979)
and operates in the spectral magnitude domain. The speech
signal was divided into 32 ms Hamming windowed frames
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FIG. 1. One-third octave spectrums of speech and noises. All signals at
broadband levels of 51 dB SPL. Continuous, dotted and dashed lines repre-
sent speech, car noise, and babble, respectively.
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overlapping by 50%, and an estimate of the noise magnitude
was subtracted in every frame and each frequency bin. To
reduce the perception of musical noise, the algorithm incor-
porates a gain floor of —20dB and an oversubtraction factor.
Following the recommendations of Berouti et al. (1979) for
reducing speech distortion, the oversubtraction factor had a
maximum value of 3 and varied with the estimated frame
SNR according to the equation:

Oos = 2 + 0.04(|SNR — 20| — |SNR + 5|). (1)

The minimum mean squared estimator of the log-spectrum
described by Ephraim and Malah (1985) was implemented
as a second algorithm. Assuming a Gaussian model for the
complex spectral amplitudes of both speech and noise, this
algorithm determines the optimum estimate of the log-
spectrum of the clean speech signal. For estimating the a pri-
ori SNR within the algorithm, we used the decision-directed
approach (Ephraim and Malah, 1984) with a time constant of
0.4s (x=0.96), and we limited the a posteriori SNR to a
maximum of 30dB to limit the effect of high-level transi-
ents. The frame size and overlap factor were the same as for
the SS algorithm.

The subspace approach to speech enhancement was
introduced by Ephraim and Van Trees (1995) and general-
ized by Hu and Loizou (2003) to accommodate a colored
noise spectrum. The approach takes advantage of correla-
tions within the speech signal to distinguish it from the cor-
rupting noise and seeks to minimize the speech distortion
introduced subject to a maximum permitted noise level in
the enhanced speech. The trade-off between distortion and
noise is controlled by an algorithm parameter, u, which is
made adaptive so that less distortion is permitted when the
SNR is high. The value of y was restricted to the range 1-30,
and all remaining algorithm parameters followed the recom-
mendations given by Hu and Loizou (2003). The noise co-
variance matrix was calculated recursively from the
estimated noise power spectrum using a smoothing time-
constant of 3.1 ms (z=0.98).

D. Stimuli generation

The process for generating the stimuli can be divided
into several steps. In the initial step, all speech and noise
materials were downsampled from their original sampling
rates and 16-bit representations to 16 kHz and 64-bit depth
using the MATLAB resample function. In the second step, sen-
tence levels were adjusted such that all had equal RMS val-
ues (Brady, 1968; ITU, 1994). These levels were measured
using the activlev function available in voicEBox (Brookes,
2008). The first 200 sentences of the speech material were
divided into sets of 20 sentences each. Within a set, senten-
ces were assigned to one of the experimental conditions. In
the following description, the sentence assigned to a particu-
lar experimental condition will be called the target sentence.
To generate the stimulus for a particular trial, two sentences
were randomly drawn from the same set as the target sen-
tence with the restriction that these sentences should be dif-
ferent from the target sentence. The target sentence was
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embedded in these two additional sentences, inserting
150 ms of silence between the target and the embedding sen-
tences, resulting in a sentence triplet. A noise fragment, the
duration of which equaled that of the sentence triplet, was
drawn randomly from the noise file and mixed with the tri-
plet. The experimental conditions assigned to the target sen-
tence controlled the noise type and SNR. In noise suppressed
conditions, the noise-disturbed sentence triplet was passed
through a noise suppressor; a step that was omitted in non-
processed conditions. In the final step, the target sentence
including the noise-filled silences was extracted from the
sentence triplet, and 150 ms linear fades were applied to the
onset and offset. Embedding the target sentence followed by
extraction after noise suppression gave the noise suppressor
the opportunity to stabilize on past and future information in
the signal when processing the target sentence. The stimulus
was upsampled to 44.1kHz, passed through a 1024-point
FIR filter that corrected the headphone frequency response
and played back over the DAC and the headphones. Apart
from the low-pass filtering introduced by down-sampling the
signals, no additional band-pass filtering was applied.

The experimental setup was calibrated such that the
RMS speech level in the absence of noise and noise suppres-
sion, so called original speech, was 51dB SPL. This level
was determined from Speech Intelligibility Index (SII)
(ANSI, 1997) calculations for speech in quiet assuming a
participant with a frequency independent hearing loss of
20dB HL and a long-term average speech spectrum derived
from the current materials. The SII proved highest for speech
presented between 43 and 78 dB SPL approximately, indicat-
ing optimal intelligibility. It was judged that with speech at
51dB SPL, the stimulus would be comfortably loud even
when measuring at the lowest SNRs resulting in the highest
presentation levels.

Across experimental conditions, the level of the speech
was fixed, while the noise level varied. The noise levels
were selected from a pilot study, in an attempt to obtain
word correct scores in the range of 10% to 90% for non-
processed speech. For babble, this resulted in SNRs from
—12 to 0dB in 3 dB steps. For car noise, SNRs ranging from
—21 to —9dB in 3 dB step were expected to result in similar
word correct scores. To convert the dB SPL values used in
this report into dB (A) values, one should add —3, —4, and
—11dB to the levels of speech, babble and car noise,
respectively.

E. Experimental design

The three noise reduction algorithms were evaluated in
separate experiments that will be addressed as Exp SS, Exp
MMSE, and Exp SSA. Effects on intelligibility scores were
assessed for two types of noise (NOISE = {car, babble}) using
SNRs that targeted five performance levels (SNR ={—-21,
—18, —15, —12, —9} for car noise; SNR={—12, —9, —6,
—3, 0} for babble) with the noise suppressor switched on or
off (SUPPRESSOR = {off, on}). Consequently, the kernel ex-
perimental design contained 20 experimental conditions. In
Exp SS and Exp MMSE, the conditions were assigned to a set
of 20 sentences according to a Latin square, such that across
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participants each sentence was presented in all experimental
conditions. This design allows one to assess differences in
intelligibility scores between individual sentences without
confounding by experimental conditions. In Exp SSA, the 20
sentences in a set were assigned randomly to the experimental
conditions. These 20 sentences, forming an experimental
block, were presented in random order.

To each listener, 10 experimental blocks were pre-
sented, using different sets of 20 sentences per block. Each
set of sentences was taken from two consecutive lists within
the IEEE corpus. Because each IEEE sentence contains
five keywords, the intelligibility score in each experimental
condition is based on SUBJECTS(20) x KEYWORDS(5) x
BLOCKS(10) = 1000 responses.

F. Procedures

Data acquisition took place in a sound proof booth. Af-
ter obtaining informed consent, the participant’s pure-tone
air-conducted hearing thresholds were measured (ISO,
2004). Subsequently, the participant received instructions for
the intelligibility task: i.e. speaking aloud the sentences
heard over the headphones. The participant was informed
that some sentences would have poor intelligibility in which
case the participant was encouraged to guess even if this
would result in a nonsense or incomplete sentence. During
the intelligibility task, the participant faced a computer
screen and controlled stimuli presentation by clicking on
buttons displayed on the screen. Each sentence was pre-
sented only once; verbal responses were audio recorded.

After responding to each experimental block, the partici-
pant determined the number of words correct in the verbal
responses that the previous participant had given while listen-
ing to the same sentence set. The first participant scored
responses obtained in a pilot study, the responses of the last
participant were scored by a supplementary participant who
did not perform the intelligibility task. The advantages of hav-
ing subjects instead of the experimenter determine the correct-
ness of the responses were fourfold: (1) Varying between
intelligibility testing and scoring made the participants’ task
less monotonous. (2) The setup resulted in a test that was
semi self-administered. (3) The fact that the experiment leader
was a non-native speaker of English did not influence the test
scores. (4) The effect of having a single judge score the sen-
tences might possibly introduce bias, while the effect of multi-
ple judges will only add random variation into the test
scores—which can be handled in the statistical analysis.

While scoring, the recorded verbal response of the pre-
vious participant was played back over the headphones. The
keywords of the corresponding sentence were displayed on
the screen. The participant was instructed to tick the words
mentioned in the response, disregarding differences in word
order, verb tense, or noun quantities. In contrast to the intel-
ligibility task, participants were allowed to change the pre-
sentation level and could replay a single response as many
times as desired. On average, the intelligibility and scoring
task took about 3 and 2 minutes per block, respectively. Typ-
ically, participants finished their 10 blocks of intelligibility
testing and scoring within 70 minutes.
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G. Statistical analysis

Following the approach taken by Ihlefeld et al. (2010), a
logit transform was applied to the percentage word correct
scores. But rather than a natural logarithm, we applied a
base-two logarithm to give the transformed unit a simpler
interpretation. The resulting outcome measure is labeled per-
formance level, defined as

Perf = log, (p/(1 —p)). )

Perf is a dimensionless quantity that we gave the unit
“Berkson” (Bk). The unit is a tribute to Joseph Berkson
(1899-1982), a physicist and statistician who popularized the
usage and analysis of log odds. In Eq. (2), p denotes the pro-
portion correct words. For each 1 Bk increase in perform-
ance level, the number of correct words doubles relative to a
fixed number of incorrect words. Consequently, performance
levels of —3; —2; —1; 0; 1; 2; and 3 Bk correspond to 11, 20,
33, 50, 67, 80, and 89% correct. If PMfs expressed on per-
centage scale have logit shapes, these functions become lin-
ear on a Berkson scale. Given this linear relation, a constant
shift on a Berkson scale corresponds to a constant shift on a
decibel scale. The inverse logit function

P =100 - (2" /(1 + 27T)) 3)

allows one to convert performance levels back into
percentages.

Ihlefeld et al. (2010) analyzed log odds with analysis of
variance for repeated measurements (RM-ANOVA). The
current study uses multilevel logistic regression, as proposed
by Goldstein (1995) and Hox (2010). The technique is also
known as hierarchical generalized linear models for binary
outcomes (Raudenbusch and Bryk, 2002) or generalized
mixed models for binary data (Agresti, 2007). Various
authors (e.g. Max and Onghena, 1999; Quéne and van der
Bergh, 2004; Rellini et al., 2005) have argued that multilevel
analysis is superior to RM-ANOVA, since it does not
assume sphericity, allows one to specify non-Gaussian error
terms and gives higher statistical power.

lll. RESULTS

To examine whether the scoring by different partici-
pants introduced inconsistencies in the outcomes, the 20,000
recorded responses obtained in Exp SS were scored inde-
pendently by two additional judges. “Ground truth™ scores
were generated by combining the scorings provided by the
subjects and the two additional judges, using a majority-vote
rule. Scorings of the judges differed 0.7% and 0.8% from
this ground truth. The scorings of the subjects differed 0.7%
from ground truth.

Figure 2 shows the percentage word correct scores
observed in Exp SS, Exp MMSE, and Exp SSA as a function
of SNR, i.e., PMfs. Experimental conditions with the sup-
pressor switched off and on are represented by open and
filled markers, respectively. Circles and squares indicate
results for speech in car noise and babble, respectively. Ver-
tical lines represent estimates of the standard deviation of
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FIG. 2. Observed intelligibilities
(percentages). Filled markers repre-
sent performance for conditions with
the noise suppressor switched on.
Circles and squares indicate results
for car noise and babble, respec-
tively. Observations from Exp SS,
Exp MSSE, and Exp SSA are visual-
ized in panels from left to right.
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the sampling error; the estimates tend to be smaller than the
markers. Almost all filled markers are located below the
open maskers, meaning that algorithms reduced intelligibil-
ity scores. Effects appear to be different at the lowest
SNRs of each noise type (SNR=—21dBj|car noise;
SNR = —12|babble) for all noise suppressors, where markers
for noisy speech without and with noise reduction coincide.
In Exp SS and Exp MMSE, similar effects are visible at the
highest SNRs (SNR = —9 dB|car noise; SNR = 0 dB|babble).
Because these markers are close to the 0% and 100% limits
of the percentage scale, these findings are usually treated as
floor and ceiling effects, respectively.

A different view emerges from Fig. 3, where all data are
plotted with the ordinate expressing intelligibility scores in
performance levels. For convenience, corresponding percen-
tages are displayed on the right hand-side axis. Whereas in
Fig. 2 the PMfs exhibit sigmoid shapes, in Fig. 3, functions
are almost linear and in fact would be straight lines if the
PMfs had logit shapes. Expressed on a Berkson scale, the
distance between the open markers and their corresponding
filled markers seem to vary little across SNRs. To address
the statistical significance of these differences, a multilevel
loglinear regression analysis was performed for each combi-
nation of noise type and experiment separately. These analy-
ses included the fixed factors SNR {—21, —18, —15, —12,
—9|car noise} and {—12, —9, —6, —3, O|babble }, SUPPRES-
SOR {off, on} and SUBJECTS as a random factor. Out-
comes of the statistical analyses are displayed in Tables I
and II for car noise and babble, respectively. Cell entries rep-
resent the coefficients estimated in these analyses expressed
in Berksons. Stars indicate statistical significance: Effects
with corresponding y* values between 3.8 and 6.6 and 1
degree of freedom are denoted by an asterisk, representing
p-values between 0.05 and 0.01. Coefficients with corre-

-21-18-15-12-9 -6 -3 0 -21-18-15-12 -9 -6 -3 0

sponding x> values above 6.6 and 1 degree of freedom,
hence p-values less than 0.01 are denoted by double aster-
isks. Effects are expressed relative to a reference condition,
which was the experimental condition SNR=—15dB for
car noise; SNR = —6 dB for babble; SUPPRESSOR = off.

Table I shows the coefficients of multilevel logistic
regressions on the intelligibilities obtained in car noise. In
Exp SS, the intelligibility score in the reference condition is
estimated at -0.4 Bk (41%), which differs significantly from
0 Bk (50%). For changes in the SNR to —9, —12, —18, and
—21dB, effects are 3.6, 2.2, —2.3, and —6.0 Bk, resulting in
estimated intelligibility scores of 3.2 Bk (90%); 1.7 Bk
(77%), —2.7 Bk (13%), and —6.5 Bk (1%), respectively.
Applying SS in the reference condition altered intelligibility
scores by —0.6 Bk (9%), leading to an estimated perform-
ance level of —1.0 Bk (33%). All these effects are statisti-
cally significant. This is not the case for the effects of SS at
the other SNRs as displayed in rows 7—10. Besides the shift
of —0.6 Bk (9%) due to SS at —15dB SNR, additional
effects at —9, —12, —18, and —21dB SNR are estimated at
0.0, —0.3, —0.4, and 0.8 Bk. These coefficients do not differ
significantly from zero. In other words, compared to the
effect found at —15dB SNR, there is no evidence that SS
had different effects on intelligibility scores at the other
SNRs. In Exp SS, performance after noise reduction is esti-
mated at 2.6 Bk (86%), 0.8 Bk (64%), —3.7 Bk (7%), and
—6.2 Bk (1%) at -9, —12, —18, and —21dB SNR,
respectively.

In Exp MMSE, outcomes are similar to Exp SS with one
exception. The estimated performance in the reference con-
dition of —0.2 Bk (47%) does not differ significantly from O
Bk (50%). All other effects correspond to the ones observed
in Exp SS. Results from Exp SSA differ in two aspects from
the finding in Exp SS. First, the data show no significant

performance level [Bk]
o

-6[ Exp SS Exp MMSE+

11 11
| —O— car off —@— babble off —8— car on —#— babble on |

FIG. 3. Observed intelligibilities
(logit  transformed percentages).
Filled markers represent perform-
ance for conditions with the noise
suppressor switched on. Circles and
squares indicate results for car noise
and babble, respectively. Observa-
tions from Exp SS, Exp MSSE, and
12 Exp SSA are visualized in panels

word correct [%]

Exp SSA

-21-18-15-12 -9 -6 -3 0-21-18-15-12 -9 -6 -3 0-21-18-15-12 -9 -6 -3 O
SNR [dB]
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TABLE 1. Multi-level logistic regression coefficients for intelligibility
scores in car noise. Effects on performance are expressed in Berksons rela-
tive to the reference condition, which is the performance at -15dB SNR
with the noise suppressor switched off. Coefficients that differ statistically
significant from zero with corresponding P values between 0.01 and 0.05, or
below 0.01 are indicated by “and ™", respectively.

Experiment

Row No. Effect SS MMSE SSA
1 Reference —15,0ff —04" —0.2 —0.5"
2 SNR -9 3.67 3.6 3.6
3 -12 22" 1.8 2.0"
4 —~18 23" 26" 187
5 -21 60" =577 —47"
6 SUPPRESSOR on —06"  —07" 0.0
7 SNR —9; on 0.0 —0.1 -0.7"
8 X —12;on  —03 0.4 —04
9 SUPPRESSOR  —18;on  —0.4 0.3 —0.2
10 —21; on 0.8 0.5 —0.5

effect of SSA in the reference condition. Intelligibility scores
at —15dB SNR before and after noise reduction are equal at
—0.5 Bk (41%). Second, at —9dB SNR performance
changed from 3.0 Bk (89%) to 2.3 Bk (84%), a significant
shift of —0.7 Bk. Analogue to Exp SS, reductions of —0.4,
—0.2, and —0.5 Bk at, respectively, —12, —18, and —21dB
SNR are non-significant. Estimated intelligibility scores after
noise reduction are 1.3 Bk (71%), —2.7 Bk (13%), and —5.7
Bk (2%), respectively. The results obtained in car noise can
be summarized as follows: (1) With SS and MMSE, the dete-
riorating effect of noise reduction was found to be independ-
ent from SNR. (2) SSA had no significant deteriorating
effects on intelligibility scores except at the highest SNR.
Table II shows the regression coefficients for intelligi-
bilities in babble. The reference condition is speech at —6 dB
SNR without noise reduction. In Exp SS, the performance in
the reference condition is estimated at —0.1 Bk (48%). Shift-
ing the SNRs to 0, —3, —9, and —12 dB altered performance
by 3.3, 1.8, —2.1, and —4.6 Bk, respectively. At these SNRs,
performance is estimated at 3.2 Bk (90%), 1.7 Bk (77%),
—2.0 Bk (18%), and —4.6 Bk (4%), respectively. Evidently,
intelligibility scores vary across SNRs: All coefficients differ

TABLE II. Multi-level logistic regression coefficients for intelligibility
scores in babble. Details as for Table 1.

Experiment

Row No. Effect SS MMSE SSA
1 Reference —6, off —-0.1 0.0 —-0.3

2 SNR 0 33" 3.6 3.6
3 -3 1.8" 1.8" 2.0
4 -9 21" 24" 18”7
5 -12 —46" —48" —42"
6 SUPPRESSOR on —06"  —08"  —02

7 SNR 0; on 0.1 —0.1 —0.3

8 X —3;0n —0.1 0.1 —0.1

9 SUPPRESSOR  —9; on —1.0" 0.1 —0.3
10 —12;on  —05 —-0.5 —0.1
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significantly from zero. Applying SS to speech in babble at -
6dB SNR affects performance by —0.6 Bk. The intelligibil-
ity score after noise reduction is estimated at —0.7 Bk
(38%). Rows 7—10 display the regression coefficients for
the effects of noise reduction at other SNRs. These coeffi-
cients represent effects of noise reduction additive to the one
found for the reference condition. At 0, —3, and —12dB,
SNR coefficients do not differ significantly from zero. The
effects of noise reduction at these SNRs are similar to the
effect found in the reference condition. Performance after
noise reduction at 0, —3, and —12dB SNR is 2.7 Bk (87%),
1.0 Bk (67%), and —5.9 Bk (2%), respectively. At —9dB
SNR, the coefficient of 1.0 Bk is significant, indicating an
additional reduction in the intelligibility score compared to
the effect of SS at —6dB SNR. The total shift in perform-
ance is —1.6 Bk (11%), resulting in an estimated intelligibil-
ity score of —3.8 Bk (6%) for noise reduced speech in
babble at —9 dB SNR.

In general, the outcomes of Exp MMSE and Exp SSA
with babble are similar to Exp SS. However, MMSE did not
exhibit the additional reduction in the intelligibility score at
—9dB SNR as found with SS in babble. None of the coeffi-
cients for MMSE displayed in rows 7—10 differs signifi-
cantly from zero. In other words, with MMSE, there is no
evidence that the effect of noise reduction differs across
SNRs. Also Exp SSA showed no evidence of SNR depend-
ent effects of noise reduction. None of coefficients that
expressed effects of noise reduction was significant.

The results for noise reduction in babble can be sum-
marized as follows: (1) SSA had no effects on the intelligi-
bility scores at any SNR. (2) MMSE had a deteriorating
effect on intelligibility scores that was independent of SNR.
(3) With the exception of one SNR, SS reduced intelligibility
scores equally across SNRs. At the exceptional SNR, the
reduction in intelligibility scores was worse than observed at
all other SNRs.

IV. DISCUSSION

In most speech intelligibility studies that use open
response sets, the experimenters decide whether responses
are correct (e.g., Brand and Kollmeier, 2002; Terband and
Drullman, 2008). While attempting to automate data collec-
tion, various authors (e.g., Versfeld et al., 2000; Hu and
Loizou, 2007; Terband and Drullman, 2008) have requested
their participants to type their responses. However, as
Terband and Drullman (2008) point out, this may confound
intelligibility with spelling and typing abilities. To overcome
this weakness, these authors utilized automatic spelling
checking and dynamic alignment but found that test-retest
variability was higher than if an experimenter scored the
verbal responses. In the current study, each participant
scored the responses of the previous participant, leading to a
semi self-administered intelligibility test. Outcomes suggest
that these scores are as reliable as scoring by experimenters,
at least for the normal hearing listeners in the age range
employed here.

In our evaluation of the intelligibility of noisy speech af-
ter enhancement with a representative set of standard
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algorithms, we found little evidence that the effects of noise
reduction vary with SNR. Three algorithms were tested with
two noise types, each at five SNRs. Effects of noise reduc-
tion at four SNR were compared to its effect at a reference
condition corresponding to unprocessed speech at an SNR
that gives an intelligibility score close to 0 Bk (50%). Noise
reduction effects were significantly different from the refer-
ence condition in only 2 of 24 possible comparisons. These
findings suggest that effects of speech enhancement on intel-
ligibility are generally independent of SNR. Such a conclu-
sion apparently differs from the observations made by
Loizou (2007), who reported little effects when the intelligi-
bilities scores prior to processing were high, but deleterious
when the intelligibility scores prior to speech enhancement
were around 0 Bk (50%). However, Loizou’s findings can be
seen to be congruent with ours as described in the following
text.

Where in most studies statistical analysis was absent
(Lim, 1978; Boll, 1979; Ludvigsen et al., 1993; Tsoukalas
et al., 1997), Loizou (2007) performed RM-ANOVAs on
percentages. Such analyses provides useful information
about the effects in general or at a particular SNR, but they
give limited information on differences in the effects of
noise reduction across SNRs. Ideally a significant interaction
of processing with SNR should indicate that such differences
in effects are present. However, while performing RM-
ANOVAs on intelligibility scores expressed as percentages,
the significance of this interaction merely indicates that the
processing effect is not a constant percentage across SNRs.
Its significance should be interpreted as evidence against the
hypothesis that processing shifts the PMf along the percent-
age axis. The fact that on the basis of this hypothesis one
would predict intelligibility scores below 0% or above 100%
illustrates that the rejection of this hypothesis is trivial. Sig-
nificance of the processing by SNR interaction becomes in-
evitable with a broad range of SNRs or enough statistical
power. It can be shown that similar limitations exist when
the percentages are transformed in arc-sine units or rational-
ized arc-sine units prior to the RM-ANOVA.

S-shaped PMfs can be approximated by a number of
functions such as the cumulative Weibull, normal, or the
logit function (Klein, 2001). The last two are similar and
have been used frequently in intelligibility studies (e.g. Vers-
feld et al., 2000; Brand and Kollmeier, 2002). A logit shaped
PMf was assumed here. If the effects of noise reduction are
independent of SNR, we argued that the PMf should shift
along the SNR axis. Table III illustrates such a shift based
on our observations for MMSE with babble noise. The slope
of the corresponding curve in Fig. 2 is about 0.7 Bk dB~". In
Table III, Column 1 lists various SNRs, Columns 2 and 4 ex-
hibit the predicted intelligibilities expressed on a Berkson
scale with and without noise suppression, respectively, i.e.
within these columns performance changes at rate of 0.7 Bk
dB~'. Column 7 displays the differences between Columns 2
and 4, differences that are constant (-0.8 Bk), reflecting the
constant effect of MMSE in babble. The percentages in Col-
umns 3 and 5 correspond to the performance levels
expressed in Columns 2 and 4, respectively. Column 7 shows
the difference between the Columns 5 and 6. This percentage
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TABLE III. Estimated effects of MMSE in babble. Intelligibilities scores
with and without noise suppression and their differences at various SNRs
expressed in performance levels and in percentages.

Suppressor on Suppressor off Suppressor effect
SNR
(dB) (Bk) (%) (Bk) (%) (Bk) (%)
0.0 35 92 43 95 —0.8 3
—1.5 2.4 84 32 90 —0.8 6
-3.0 1.3 72 2.1 82 —0.8 10
—4.5 0.3 55 1.1 68 —0.8 13
—6.0 -0.8 36 0.0 50 —0.8 14
-7.5 —-1.9 21 —1.1 32 —0.8 11
—9.0 —-29 12 —2.1 18 —0.8 7
—10.5 —4.0 6 —32 10 —0.8 4
—12.0 —5.1 3 —4.3 5 —0.8 2

shift differs with the intelligibility. Similar to the findings of
Loizou (2007), the effect of noise suppression is small or
large, when intelligibility is high or close to 0 Bk (50%),
respectively. Findings in Table III additionally suggests that
effects expressed on a percentage scale will diminish when
the SNRs decreases below —6 dB.

For speech in babble at —9dB SNR processed with SS
and for speech in car noise at —9dB SNR processed with
SSA, the effects did differ significantly from the reference
condition. Of the 1000 keywords presented, 75 and 832 cor-
rect words were observed, respectively. Based on the effects
found in the corresponding reference conditions, the expected
numbers of correct words in these conditions are 124 and 886,
respectively. We do consider these effects relevant but find it
hard to present a proper explanation, more because a proper
understanding of the detrimental effects of noise suppression
on intelligibility is currently lacking (Loizou and Kim, 2011).
Moreover, no systematic effects have been found. Hence the
outcomes of the current study provide little evidence that the
efficiency of the parameter estimation used during noise sup-
pression varies with SNR.

It may seem somewhat surprising that the performance
level in the reference condition for speech in car noise of
Exp SS and Exp SSA differed significantly from 0 Bk, while
in Exp MMSE, performance in the same reference condition
did not differ significantly from O Bk. However, also in Exp
MMSE, the observed performances were negative, and mul-
tilevel logistic regression that combined the results of the
three experiments found no significant effects in the refer-
ence conditions across all experiments. Results of this analy-
sis are not presented here because the effects particularly of
interest to this study end up at high-order interactions,
complicating interpretation.

In contrast to previous studies, where occasionally
increasing intelligibilities due to noise suppression were
observed (Tsoukalas et al., 1997, Arehart et al., 2003; Hu
and Loizou, 2007), such improvements could not be
observed in the current study. One could argue that the
SNRs examined in the current study are too low, hence too
difficult to be handled by the algorithms. Previous studies
(Tsoukalas et al., 1997; Arehart et al., 2003) typically
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examined intelligibility in the range of —5dB up to 5dB
SNR, while here values down to —21 dB SNR are employed.
However, comparing the SNRs across different studies is
obstructed by the differences in bandwidth of the stimuli. In
the studies by Lim (1978), Ludvigson et al. (1993), and Are-
hart et al. (2003), these were restricted to frequencies below
4.7, 4, and 4 kHz, respectively. Hu and Loizou (2007) lim-
ited their stimuli to 0.3—3.4kHz. The car noise employed
here has most of its energy below 0.125kHz, as can be
noticed in Fig. 1. These low frequencies do not contribute to
intelligibility (ANSI, 1997), hence the car noise needs to be
raised to substantial levels before it exceeds the energy of
speech in the 0.125—8 kHz range containing the audio bands
that contribute most to speech intelligibility. If one would
only consider the noise and speech energy in the 0.3-3.4 kHz
range, as done in the study by Hu and Loizou (2007), the
levels of the car noise used in the current experiment would
range from —15 to —2 dB SNR. Restricting speech and bab-
ble to 0.3—3.4kHz has no effect on its SNR, because their
spectrums are similar. Thus while most of the SNRs used in
the current study are lower than the levels used before, it is
likely that the highest SNRs used here do overlap with the
SNRs used in previous studies (Tsoukalas et al., 1997,
Arehart et al., 2003). This idea is further strengthened by the
fact that intelligibilities for the non-processed speech
observed here, fully covers the intelligibilities reported in all
previous studies.

V. SUMMARY AND CONCLUSIONS

The effects of noise suppression on the intelligibility of
speech in noise at various SNRs were studied. It showed that
in 22 of 24 comparisons, the effect could be considered as a
constant shift of the psychometric function along the SNR
axis. Only little evidence was found that could indicate that
the effects of noise suppression vary with SNR. For just two
psychometric functions was the intelligibility reduction at
one SNR significantly larger than observed near the mid-
point. Because shifts are largely independent from SNR, we
see few limitations in the use of speech reception thresholds
to study the effects of noise suppression on intelligibility.
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