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ABSTRACT
We present a novel frequency domain blind multichannel

identification approach. This is a dual filter based approach
comprising a background and a foreground filter. The fore-
ground filter tracks the changes in the cost function of the
background filter and employs an update decision criterion
making it robust to observation noise and facilitating track-
ing of changes in the unknown system. Simulation results for
both speech and white Gaussian noise input signals are pre-
sented to illustrate the algorithm’s performance for acoustic
systems.

1. INTRODUCTION

Blind channel identification (BCI) for single-input multiple-
output (SIMO) systems is an important technique with a va-
riety of potential applications in acoustics, wireless commu-
nications and other signal processing systems. Techniques
for BCI based upon second order statistics [1] [2] and higher
order statistics [3] have been studied. In addition, multichan-
nel BCI techniques are becoming feasible for applications.
The normalized multichannel frequency domain LMS (NM-
CFLMS) algorithm [4] has been shown to be effective in
identifying room impulse responses which are of particular
interest in acoustic dereverberation. However, NMCFLMS
lacks robustness to additive observation noise and can suffer
misconvergence even in moderate noise conditions. This has
been studied in [5] [6].

We propose a novel approach to blind multichannel iden-
tification which is robust to the presence of additive noise
in the system. Dual-filter methods have been used success-
fully to achieve double-talk robustness in echo cancellation
systems [7]. The dual-filter (DF) approach for multichannel
BCI involves implementation of a dual-filter structure com-
prising a background and a foreground filter. A measure is
defined on the basis of the cost function of the adaptive al-
gorithm in the background filter. The value of the measure is
decided on the basis of background filter adaptive estimation
algorithm that in turn determines when to copy the estimates
from the background filter into the foreground filter. Simu-
lations with white gaussian noise (WGN) and speech signal
input display the noise robustness of the DF approach over
the NMCFLMS algorithm for multichannel BCI.

Consider a speech signal recorded inside a non-anechoic
room using an array of microphones. The microphone sig-
nals represent the convolution of the speech signal and the
impulse responses of the acoustic paths between source and
microphones. With reference to Fig. 1 and defining s(n) and
vi(n) as the source signal and background noise respectively,
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Figure 1: Relationship between input and output in a SIMO
model.

the ith channel output signal xi(n) is given by

xi(n) = yi(n)+ vi(n), i= 1,2, . . . ,M, (1a)
yi(n) = hTi (n)s(n), (1b)

where M is the number of channels,
hi(n) = [hi,0(n) hi,1(n) . . . hi,L−1(n)]T ,
s(n) = [s(n) s(n− 1) . . . s(n− L+ 1)]T , hi(n) is the
ith channel impulse response, L is the length of the longest
channel impulse response and the superscript T denotes
vector transposition. Defining E{·} as the expectation
operator, we assume that the additive noise on M channels
is uncorrelated, i.e., E{vi(n)v j(n)} = 0 for i "= j and
E{vi(n)vi(n− n′)} = 0 for n "= n′ while additive noise
vi(n) is uncorrelated with the input signal s(n). For channel
identifiability [4], we also assume that
1. The channel transfer functions do not contain any com-
mon zeros and

2. The autocorrelation matrix of the source signal, Rss =
E{s(n)sT (n)}, is of full rank.
A blind multichannel system can be identified adaptively

by minimizing the cross-relation error given, for i "= j, by

ei j(n) = xTi (n)ĥ j(n−1)−xTj (n)ĥi(n−1), i, j = 1, . . . ,M,
(2)

where ĥi(n) is the estimated ith channel impulse response.
Using (2), BCI algorithms such as NMCFLMS are derived
by minimizing the cost function J(n) = ∑M−1

i=1 ∑Mj=i+1 e2i j(n)
with respect to the estimated impulse response ĥi(n) for
i = 1, . . . ,M. The NMCFLMS [4] algorithm is a frame-
based frequency-domain BCI algorithm given, for each mth
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frame, by:

ĥ
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i (m)= ĥ

10
i (m−1)−ρ[Pi(m)+σI2L×2L]

−1×
M

∑
j=1

D
∗
x j(m)ε01ji (m), i = 1, . . . ,M, (3)

Pi(m)=λPi(m−1)+(1−λ )
M

∑
j=1, j "=i

D
∗
x j(m)Dx j(m), (4)

ε01i j (m)=F2LW
01
2L×2Lei j(m), (5)

ei j(m)=[ei j(mL−L) . . . ei j(mL+L−1)]T , (6)

where ∗ denotes complex conjugate, ρ is the step-size, λ
is the forgetting factor and σ is the regularization con-
stant. Defining IL×L, 0L×L, and FL as the identity,
null and Fourier matrices of dimension L× L respectively,

W10
2L×L = [IL×L 0L×L]T , W01

2L×2L =

[
0L×L 0L×L
0L×L IL×L

]
,

ĥi(m) = FLĥi(m), ĥ10i (m) = F2L

[
ĥi(m)
0L×1

]
andDx j(m) =

diag{F2L[x j(mL−L) . . . x j(mL+L−1)]T}.
The accuracy of system identification can be quantified

using the normalized projection misalignment (NPM) [8]
given, for frame m, by
NPM(m)=20log10

(∥∥∥∥h−
hT ĥ(m)

ĥT (m)ĥ(m)
ĥ(m)

∥∥∥∥
/
‖h‖

)
dB,

(7)where ‖.‖ is the l2 norm and ĥ(m) =
[ĥT1 (m) ĥT2 (m) . . . ĥTM(m)]T .

2. NMCFLMS UNDER NOISY CONDITIONS
The NMCFLMS algorithm lacks robustness to additive
noise [5]. It can be seen from Fig. 2 that the NMCFLMS
algorithm misconverges after achieving NPM of −20 dB,
−23 dB, −25 dB, and −30 dB for corresponding signal-
to-noise ratios (SNR) 25 dB, 30 dB, 35 dB, and 40 dB, re-
spectively for a constant adaptation gain of µ = 0.6. Hence,
the problem of misconvergence in the NMCFLMS algo-
rithms [4] increases with noise level.

Using (1a) and (1b), we can write

xi(n) = yi(n)+vi(n), (8)

where yi(n) = [yi(n) yi(n− 1) . . . yi(n− L+ 1)]T , and
vi(n) = [vi(n) vi(n−1) . . . vi(n−L+1)]T .

Using (2) and (8), the error to be minimized can then
be divided into a noise-free component eyi j and a noise-only
component evi j as

ei j(n) =
[
yTi (n)ĥ j(n−1)−yTj (n)ĥi(n−1)

]

+
[
vTi (n)ĥ j(n−1)−vTj (n)ĥi(n−1)

]

= eyi j(n)+ evi j(n). (9)

In this noisy case, the cost function is described by

J(n) =
1

‖ĥ(n)‖2
M−1

∑
i=1

M

∑
j=i+1

{[
eyi j(n)

]2
+

[
evi j(n)

]2}

= Jy(n)+ Jv(n). (10)
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Figure 2: Effect of noise on normalized projection misalign-
ment for the NMCFLMS algorithm with µ = 0.6
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Figure 3: NPM and Cost function gradient plots at (a) SNR
= 10dB (b) 20dB, tc indicates the critical point, t f indicates
the flattening point.

Hence the cost function J(n) is a sum of a noise-free ele-
ment Jy(n) and a noise-only element Jv(n). It can be deduced
that the minimization of the cost function J(n) under noisy
conditions does not necessarily minimize the noise-free cost
function element Jy(n), which is desired so as to identify the
unknown system correctly. This is illustrated for two dif-
ferent SNR conditions in Fig. 3, showing that minimization
of J(n) does not result in correct estimates of the unknown
system in the presence of observation noise.

3. THE DUAL FILTER APPROACH FOR
MULTICHANNEL BCI

We now develop the DF approach for multichannel BCI. The
approach comprises two sets of filters; background filters
B(z) and foreground filters F(z) as shown in the block di-
agram in Fig. 4. The B(z) are adapted by the NMCFLMS
algorithm. B(z) estimates are copied into F(z) at different
times during the adaptation following an update decision cri-
terion.
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Figure 4: Block diagram of the multichannel DF approach
for the BCI.

The characteristics of the convergence ofB(z) for a noisy
system are illustrated in Fig. 3 and exhibit a critical point. We
define the critical point as the instant in time when the NPM
is minimum; this being after initial convergence and before
misconvergence. The critical point is denoted by tc in Fig. 3.
3.1 Estimation of the critical point
The critical point of B(z) in the DF approach is determined
by smoothing the cost function J(n) using a 1024 tap rectan-
gular window moving average filter. Smoothed J(n) initially
decreases then flattens to a certain value which is specific
to the SNR of the system. Denoting the initial value of the
smoothed J(n) in dB as Ji and its value when it flattens in dB
as Jf , we define

δJ = |Jf − Ji| dB. (11)

The value of δJ has been found to be proportional to the SNR
of the system but independent of the number of channels,M,
as well as the length, L, of the system and the specific value
of h(n) which is shown in the Fig. 5. The flattening time,
t f , is the instant in time when J(n) decreases to Jf as shown
in Fig. 3. The critical point tc is found empirically from the
flattening time t f using the following relationship

tc = t f ×2
δJ
10 . (12)

3.2 The Dual filter Approach
The DF approach aims to avoid misconvergence in the pres-
ence of observation noise. The procedure is to copy the co-
efficients of B(z) to F(z) according to a decision criterion.
γ is used as a flag to implement the decision criterion. B(z)
is initialized after every time interval TBG and adapts using
the NMCFLMS algorithm during the interval. Interaction be-
tweenB(z) and F(z) is controlled by the value of γ as shown
in Fig. 6 with γ initialized to 1. When γ = 1, B(z) estimates
are copied into F(z) after each iteration until B(z) reach the
critical point tc then estimates are not copied. At the end of
TBG interval, γ is set to 0. In the next TBG interval γ = 0 so
B(z) estimates are not copied after each iteration, instead just
once after reaching the critical point tc. During B(z) adap-
tation J(n) is analyzed at each iteration for a change equal
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Figure 5: Relationship of δJ with (a) SNR (b) Length of the
system (c) Number of channels (d) Two different systems.

to δJ after its flattening. This δJ change in J(n) reflects a
change in the system. In this case, γ is reset to 1 and the new
value of γ is used in the following TBG. Hence the DF ap-
proach always keeps the best estimates in F(z), avoiding the
misconvergence which is otherwise observed in multichan-
nel BCI in the presence of observation noise. Fast update
of F(z) could be achieved by adapting multiple instances of
B(z) with a small TBG. Hence F(z) is more frequently up-
dated but with a price of higher computation.

4. SIMULATIONS AND RESULTS
We now present simulation results to compare the perfor-
mance of the DF approach against the NMCFLMS algo-
rithm [4] in the context of acoustic room impulse response
identification. The dimensions of the room are (5×4×3) m
and impulse responses are generated using the method of
images [9] with reverberation time T60 = 0.1 s which are
then truncated to length L = 128. A linear microphone
array containing M = 5 microphones with uniform sepa-
ration d = 0.2 m is used. The source and the first micro-
phone are placed at (1.0,1.5,1.6) m and (2.0,1.2,1.6) m,
respectively and a source at (1.0,3.0,1.6) m is used to sim-
ulate change in the system. Input signals are white Gaus-
sian noise (WGN) and a male speech while uncorrelated
zero-mean WGN is added to achieve the SNR specified for
each experiment. The sampling frequency is 8 kHz and
the SNR is 20 dB unless otherwise specified. Defining
h = [hT1 hT2 . . . hTM]T , the SNR for this BCI application is
given [4] as SNR ! 10log10[σ2s ‖h‖2/(Mσ2b )] where σ2s and
σ2b are the signal and noise powers, respectively, while the
following parameters are chosen for all simulations: γ = 1
at the start, λ = [1− 1/(3L)]N , ĥi(0) = [1 0 . . .0]T/

√
M

for B(z) filters.
Figure 7 shows the comparison of convergence of the DF

approach with the NMCFLMS algorithm using a WGN input
signal at an SNR = 20 dB. The step-size for both algorithms
is µ = 0.6. TBG for B(z) of the DF approach is 20 s. In
Fig. 7(a) NMCFLMS clearly misconverges after initial con-
vergence upto tc. The NPM of B(z) is shown with a dotted
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Figure 6: Flow Diagram of the DF approach for multichannel
BCI.
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Figure 7: Comparison of convergence of NMCFLMS, B(z)
and F(z) filters with WGN input for (a) Single system
(b) Step change in the system.

line and misconverge within the TBG interval. B(z) are re-
initialized at the end of every TBG interval. F(z) initially
converge with B(z) but after tc they keep the best estimates
of the unknown channels following the update decision crite-
rion hence do not misconverge. Fig. 7(b) shows the compar-
ison of convergence with a step change in system after 50 s.
F(z) has the best estimate of the first system for 50 s but has
wrong estimate after system change until the following TBG
starts. Then it has the best estimate of second system copied
from B(z) following the update decision criterion.

Figure 8 shows the comparison of convergence of the DF
approach with the NMCFLMS algorithm with speech signal
input at an SNR= 40 dB. The step-size for the algorithms is
µ = 0.08 and TBG for B(z) is 32.88 s. Fig. 8(a) shows the
DF approach does not misconverge while NMCFLMS does
and Fig. 8(b) shows the DF approach tracks changes in the
system successfully.

5. CONCLUSION

The NMCFLMS is an effective algorithm for adaptive blind
system identification but suffers from misconvergence in the
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Figure 8: Comparison of convergence of NMCFLMS, B(z)
and F(z) filters with speech input for (a) Single system
(b) Step change in the system.

presence of noise. To alleviate this problem, we proposed a
dual filter approach. An expression, which is proportional
to the SNR but invariant to channel coefficient values, chan-
nel length and number of channels was given, relating the
smoothed cost function of an adaptive background filter with
the critical point of misconvergence. We then employed this
relation in a decision criterion for the update of a foreground
filter. In this way, misconvergence is avoided and system
variations can be tracked. Finally, simulation results demon-
strated the performance improvement over the standard NM-
CFLMS using the proposed approach.
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