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ABSTRACT

The effect of additive sensor noise on single-input-multiple-output
(SIMO) blind system identification (BSI) algorithms based upon
cross-relation (CR) error is investigated. Previous studies have
shown that additive noise in the observed signal results in systems
comprising the true estimated channels convolved with an erroneous
‘common filter’, and additionally that identification and removal
of this filter significantly improves estimation error. However, the
source of the common filter remained an open question. This paper
explains the common filter through a first-order perturbation analysis
of the CR matrix, showing that it be estimated from the perturbation
and the eigenvectors of the noiseless CR matrix. The analysis given
in this paper provides a new insight into the effect of noise on SIMO
BSI algorithms and forms the first step towards an overall noise ro-
bust solution.

Index Terms— Blind system identification, common filtering,
cross relation algorithm.

1. INTRODUCTION

Blind system identification (BSI) is an important analysis task for
signals captured in a reverberant environment. A number of mul-
tichannel least-squares and subspace methods have been proposed
that exploit the cross-relation (CR) error [1–4]. These are able to
identify channels from multichannel observations if the channel or-
der is known and identifiability conditions are satisfied [1]. When
these constraints are satisfied, perfect system identification can be
achieved in the absence of noise by identification of the null space
of the CR matrix.

The robustness of such algorithms in the presence of additive
noise is a problem that has received much attention in the literature.
In the noisy case, the solution from the null space in the CR matrix
is replaced by a set of solutions with small eigenvalues [3] and, with
adaptive algorithms, misconvergence to an incorrect solution [5, 6].
Of particular interest is the common filter that appears in systems es-
timated from noisy observations, so-called because the solutions to
all estimated channels are equivalent to the true channels convolved
with a single, common, filter. Studies in [7–9] have shown that su-
pervised identification and removal of the common filter improves

The authors acknowledge the financial support of the Future and Emerg-
ing Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under FET-Open grant
number: 226007 SCENIC. Mark Thomas was at Imperial College London
during the course of this work.

the error in the estimated system and avoids misconvergence in the
adaptive case. Other studies model the common filter as a spectral
tilt in the identified systems [10] that can be removed given some a
priori knowledge of the magnitude spectrum of the channel.

However, the cause of the common filter remained an open ques-
tion. In this paper we present a study into the effect of uncorrelated
additive noise and show, by the analysis of a perturbation to the CR
matrix, that noise causes a common filter to be present in all esti-
mated channels. The analysis considers all eigenvectors of the CR
matrix in the noiseless and noisy cases, establishing that all solu-
tions with corresponding nonzero eigenvalues are related to the true
system by a common filter.

The remainder of this paper is organized as follows. In Sec. 2,
some background on CR-based algorithms is given. The common
filtering resulting from additive noise noise is analysed in Sec. 3.
An experimental example is given in Section 4 and conclusions are
drawn in Sec. 5.

2. BACKGROUND ON CR ALGORITHMS

Consider a speech signal recorded in a noisy environment with
an array of microphones. The observed signals at channel m ∈
{1, 2, . . . , M} are given by

xm(n) = ym(n) + νm(n) (1)
ym(n) = Hms(n), (2)

where s(n) = [s(n) s(n − 1) . . . s(n − 2L + 1)]T , xm(n) =
[xm(n) xm(n−1) . . . xm(n−L+1)]T , ym(n) = [ym(n) ym(n−
1) . . . ym(n−L+1)]T , νm(n) = [νm(n) νm(n−1) . . . νm(n−
L+1)]T are segments of the speech signal, noisy observation, clean
observation, and noise starting at sample n respectively and Hm de-
notes the filtering matrix. The length of each segment is L samples.
The filtering matrix is defined by

Hm =

2

6664

hm,0 . . . hm,L−1 . . . . . . 0
0 hm,0 . . . hm,L−1 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . hm,0 . . . hm,L−1

3

7775
,

(3)

which is derived from the filtering vector hm =
[hm,0 hm,1 . . . hm,L−1]

T . Since the impulse responses are
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assumed to be slowly time-varying, hm is independent of n. By
concatenating all M outputs of (1), a system of equations

x(n) = Hs(n) + ν(n) (4)

can be obtained where x(n) = [xT
1 (n) xT

2 (n) . . . xT
M (n)]T , H =

[HT
1 HT

2 . . . HT
M ]T and ν(n) = [νT

1 (n) νT
2 (n) . . . νT

M (n)]T .
The aim is to find h = [hT

1 hT
2 . . . hT

M ]T using only x(n). This
means that, for a given output x(n), a unique solution to h should be
obtained up to a non-zero scale factor across all channels. This scale
factor is irrelevant in most of acoustic signal processing applications.
The identifiability conditions [1] state that the covariance matrix of
s(n) be full rank and that there are no common zeros shared between
channels; in the noiseless case h can then be identified exactly.

2.1. The CR Algorithm

From (2) the following cross-relation can be deduced [1] in the ab-
sence of noise,

xm ∗ hm′ = s ∗ hm ∗ hm′ = xm′ ∗ hm,

m, m′ = {1, 2, . . . , M} , m $= m′, (5)

so that at time n,

xT
m(n)hm′ = xT

m′(n)hm. (6)

Multiplying (6) by xm(n) and taking the expectation on both sides
leads to

Rxmxmhm′ = Rxmxm′hm, (7)

where Rxmxm′ = E{xm(n)xT
m′(n)} is the cross-correlation ma-

trix between xm(n) and xm′(n). The relation described by (7) re-
sults in M(M − 1) distinct equations. Summing (7) over M − 1
cross-relations associated with one particular channel hm results in

MX

m=1, m#=m′

Rxmxmhm′ =
MX

m=1, m#=m′

Rxmxm′hm. (8)

For m = 1, . . . , M we then have a total of M equations that can be
expressed in matrix form as

Rh = 0[ML×1] (9)

with

R =

2

6666666664

X

m#=1

Rxmxm −Rx2x1 · · · −RxM x1

−Rx1x2

X

m#=2

Rxmxm · · · −RxM x2

...
...

. . .
...

−Rx1xM −Rx2xM · · ·
X

m#=M

Rxmxm

3

7777777775

(10)
and 0ML×1 is a ML × 1 null vector. If the channel identifiability
conditions are satisfied, the rank of R is ML − 1, and the solution
to h lies within the null space of R [1, 2].

3. THE EFFECT OF NOISE ON CR-BASED ALGORITHMS

In the presence of additive noise, νm(n) $= 0 ∀m. This section
analyses the effect of noise on CR algorithms by demonstrating that
a common filter is present in the solution. The equality in (9) must
first be rewritten as

Rĥ = e, (11)
where ĥ is an estimate of h and e is an error term. Recall that
y(n) and x(n) are, respectively, the noiseless and noisy observa-
tions. Considering an eigenanalysis for both noisy and noiseless
cases, the following relations are found:

Ryyĥyy
i = λyy

i ĥyy
i (12)

Rxxĥxx
i = λxx

i ĥxx
i , (13)

where the superscripts yy and xx denote the CR matrices and eigen-
vectors for noiseless and noisy cases respectively and the subscript
i = {0, 1, . . . , ML − 1} enumerates the solution. In (12) the only
solution equal to the true channel is that which corresponds to the
null space of Ryy where λyy

0 = 0 and ĥyy
0 = h. In the presence

of noise, where only ĥxx
i are available, it is sensible to choose the

solution that corresponds to the smallest eigenvalue as it represents
a total least squares solution to (11). However, it has been noted that
solving to minimize e by selection of the eigenvector corresponding
to the smallest eigenvalue Rĥ = λĥ does not lead to a noise-robust
solution [3].

3.1. Common Filtering in Noiseless Solutions

In the noiseless case, there exist ML viable solutions to the eigen-
value problem Rh = λh. The eigenvectors ĥyy

i are assumed to be
normalized such that they form an orthonormal basis in RML [11].
Let Hcyy

i be a filtering matrix that maps h to ĥyy
i such that

ĥyy
i = Hcyy

i h, (14)

where Hcyy
0 = IML×ML. Therefore, in the noiseless case, if (12) is

a solution then
RyyHcyy

i h = λyy
i Hcyy

i h (15)
is also a solution. The orthogonality of the eigenvectors requires that
the filtering matrix satisfies

hT (Hcyy
i )T Hcyy

j h = 0. (16)

We will refer to Hcyy
i as a common filtering matrix since it is applied

to a stacked vector h containing M channel responses.

3.2. Perturbation Analysis of Noisy Solutions

In the case of noisy solutions, Rxxĥxx
i $= 0. An eigenvalue pertur-

bation analysis has been conducted in [12] where the authors investi-
gate first- and second-order perturbations with a view to obtaining an
accurate estimate of the estimated channel as a function of perturba-
tions to Ryy . In this paper we apply first-order perturbation analysis
to establish that all noisy solutions are related to the true channel by
a common filter Hcxx

i .
It is expected that sensor noise causes small perturbations to the

clean cross-relation matrix such that [11]

Rxx = Ryy + Rδ (17a)

λxx
i = λyy

i + λδ
i (17b)

ĥxx
i = ĥyy

i + ĥδ
i . (17c)
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where {Rδ, λδ
i , ĥ

δ
i } = O(ε) and ε is presumed to be small. Substi-

tuting (17) into (13) and expanding gives

(Ryy + Rδ)(ĥyy
i + ĥδ

i ) = (λyy
i + λδ

i )(ĥ
yy
i + ĥδ

i ), (18)

Ryyĥyy
i + Ryyĥδ

i + Rδĥyy
i + Rδĥδ

i

= λyy
i ĥyy

i + λyy
i ĥδ

i + λδ
i ĥ

yy
i + λδ

i ĥ
δ
i . (19)

The first terms on the LHS and RHS of (19) are necessarily equal ac-
cording to (12). Assuming further that the second-order terms Rδĥδ

i

and λδ
i ĥ

δ
i are small, (19) reduces to

Ryyĥδ
i + Rδĥyy

i ' λyy
i ĥδ

i + λδ
i ĥ

yy
i . (20)

We assert in (17a) that the solutions to the clean and noisy case are
related by a small perturbation Rδ . Given this and that the ĥyy

i form
an orthonormal basis in RML, it is assumed that small perturbations
can be decomposed using the unperturbed solutions as a basis [11]
such that

ĥδ
i =

ML−1X

j=0

ci,jĥ
yy
j , (21)

where ci,j are scalar weights. A first-order eigenvalue perturbation
analysis yields a standard result for the eigenvalues of the perturbed
system [11],

λδ
i ' λ̂δ

i = (ĥyy
i )T Rδĥyy

i . (22)
Correspondingly the approximation to (17b) is given by

λ̂xx
i = λyy

i + λ̂δ
i . (23)

Similarly the weights ci,j can be estimated by the standard re-
sult [11]:

ci,j ' ĉi,j =

(
((ĥyy

j )T Rδĥyy
i )/(λyy

i − λyy
j ) for i $= j

0 for i = j.
(24)

The noisy solutions ĥxx
i can therefore be approximated by substitut-

ing (21) and (24) into (17c),

ĥxx
i = ĥyy

i + ĥδ
i

' ĥyy
i +

ML−1X

j=0
i"=j

(ĥyy
j )T Rδĥyy

i

λyy
i − λyy

j

ĥyy
j . (25)

A final simplification comes from defining a new set of weights,

d̂i,j =

(
ĉi,j for i $= j

1 for i = j,
(26)

and reformulating (25) as

ĥxx
i '

ML−1X

j=0

d̂i,jĥ
yy
j . (27)

Having established a closed-form expression for ĥxx
i in terms of

ĥyy
i , Rδ and λyy

i , we return to the relation in (14) and substitute
into (27),

ĥxx
i '

ML−1X

j=0

d̂i,jH
cyy
j h. (28)

All solutions ĥxx
i are therefore related to h by a common filter

Hcxx
i =

PML−1
j=0 di,jH

cyy
j , whose first-order approximation is

given in (28). The result would be exact if the true weights di,j

were known.

3.3. Limit Approximations

It is often assumed in existing studies that the noise is spectrally
white and uncorrelated with the signal such that E{ν(n)T y(n)} =
0; given a sufficiently long observation time, the cross terms are as-
sumed negligible and the noise CR matrix is simplified to Rδ =
σ2I [3]. This has the property of adding σ2I to the eigenvalues of
Ryy while leaving the corresponding eigenvectors intact [3]. This
result is consistent with (22) since when Rδ = σ2I,

λδ
i = (ĥyy

i )T Rδĥyy
i = σ2 ∀i. (29)

Similarly the perturbation to the eigenvalues in (25) becomes,

(ĥyy
j )T Rδĥyy

i = σ2(ĥyy
j )T ĥyy

i = 0, (30)

leading to ĥxx
i = ĥyy

i .
Although the assumption of Rδ = σ2I provides an elegant

simplification to the noise analysis, the common filtering analysis
is better-suited to practical implementations of such algorithms in
which a limited amount of data is available such that Rδ $= σ2I, so
the effect of noise must be considered.

4. EXPERIMENTATION

The following experiment demonstrates the common filter in an es-
timated system using noisy observations and aims to validate the
closed-form estimation of the perturbed eigenvalues λxx

i and coeffi-
cients di,j . An acoustic impulse response (AIR) was simulated using
the method of images [13] for a room measuring 5 × 6 × 3 m and
reverberation time T60 = 0.3 s with a linear array of 5 microphones
spaced at 0.2 m intervals. The channels were truncated to 128 taps
and a clean observation, y(n), was generated with a WGN source
of duration 5 s. A noisy observation, x(n), was created by adding
WGN to the clean observation to achieve an SNR of 10 dB. The sys-
tem was analysed by finding eigenvector ĥxx

0 corresponding to the
smallest eigenvalue of Rxx. The normalized projection misalign-
ment (NPM) [14] between h and ĥxx

0 was −8.2 dB.
Fig. 1 shows (a) the true channel h, (b) the estimated channel

from noisy observations ĥxx
0 and (c) the first 64 taps of the estimated

common filter hcxx
0 . The effect of the common filter can be observed

in (b) immediately following sparse peaks in (a), for example around
130 samples. Fig. 2 (a) shows the clean eigenvalues λyy

i (◦), noisy
eigenvalues λxx

i (!) and the eigenvalues estimated using (23), λ̂xx
i

(×). In the clean case, the smallest eigenvalue is necessarily near-
zero as Ryy is known to be rank deficient. In the noisy case there are
approximately 15 small eigenvalues of similar value. The clean and
noisy eigenvalues differ by a constant that is approximately equal
to the noise variance as predicted by (29). Fig. 2 (b) shows the de-
composition coefficients of ĥxx

0 on ĥyy
j (◦) calculated by the inner

product d0,j = (ĥyy
j )T ĥxx

0 . The estimated decomposition coeffi-
cients, d̂0,j , were calculated with (26) (!). Coefficients beyond the
20th solution are near-zero, suggesting that the common filter can be
decomposed into a function of relatively few low-order clean eigen-
vectors ĥyy

i . In both (a) and (b) a close correlation is seen between
the calculated and estimated values, validating the assumptions made
in the perturbation analysis. Small errors can attributed to the limita-
tion of the analysis to first order perturbations and numerical errors
in estimating the eigenvalues and eigenvectors of Rxx and Ryy .
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Fig. 1. (a) Simulated acoustic system h, (b) system estimated in the
presence of observation noise ĥxx

0 and (c) the first 64 samples of the
common filter hcxx

0 that relates (a) to (b).
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Fig. 2. (a) Eigenvalues of the noiseless CR matrix (◦), noisy CR
matrix (!) and estimated noisy eigenvalues using (23) (×), (b) co-
efficients estimated by d0,j = (ĥyy

j )T ĥxx
0 (◦) and (26) (!). A close

correlation is seen in both cases. In (a) the eigenvalues of the noisy
and clean systems differ approximately by the noise variance.

5. CONCLUSION

The cross-relation algorithm for SIMO blind system identification
has been investigated in the presence of additive noise. Previous
studies have revealed, through experimentation, the presence of a
common filter that relates the estimated system to the true system,
however the cause remained an open question. This paper consid-
ered the effect of first-order perturbations to the cross-relation ma-
trix and showed analytically that noise produces a common filter in
the estimated system. The deleterious effects of the common filter
remain problematic as a solution to its blind estimation and removal
is yet to be found. However, the explanation presented in this paper
provides new insight for future algorithms that exploit knowledge of
the cause of common filtering.
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