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ABSTRACT

We present a non-intrusive data driven method for codec
detection and identification in the presence of background
noise. The method uses a number of speech features which
are then used to train a CART classifier. We demonstrate the
performance of the method using several different noise types
over a wide range of SNRs. Our results show that we can
identify a codec and its bit rate to an accuracy of 92% and we
are able to detect the presence of a codec with an accuracy of
97% at -5 dB SNR.

Index Terms— Speech CODEC Detection, Automatic
Diagnosis, Quality of Service

1. INTRODUCTION

The past two decades has seen the standardisation of a num-
ber of speech coding and encoding (CODEC) algorithms and
with the large volume of users of telecommunication systems,
the challenge is to develop algorithms that minimise the data
throughput in terms of bits per second while maximising the
quality of the signal. Many of the speech CODECs operat-
ing with narrowband signals therefore have a low perceptual
quality due to the high levels of compression that must be
applied. The type of CODEC used in the transmission chan-
nel has a dominating effect on speech quality in the absence
of channel artefacts [1]. Additionally, in the field of law en-
forcement audio processing, it is often required to validate the
collection mechanism where an important issue is the identi-
fication of the CODEC used in the transmission channel. The
presence of a particular CODEC has been shown to have ad-
verse effects on many speech processing systems. A study by
Besacier et al. [2] has shown that the presence of a GSM cod-
ing significantly degrades the performance of speaker identi-
fication and verification. The identification is required to be
non-intrusive, since the original source speech signal is not
usually available. Previous studies on CODEC identification
include a study by Ludwig et al. [3] which presents a multi-
dimensional Gaussian classifier that is able to detect low and
high bit rate CODECs with an accuracy of 97%. A more re-
cent study presents a spectral harmonic decomposition (SHD)
based CODEC detection method which is able to detect five
types of CODEC with an accuracy better than 92% [4]. This

method uses the average long term noise spectrum from the
SHD of the input signal as the feature and a simple cross cor-
relation based classifier is used to assign the signal to one of
the noise templates. It should be noted that previous studies
have concentrated on CODEC identification in clean speech.

In this paper we present a non-intrusive CODEC detection
method that is robust to additive noise. The method is tested
with 180 conditions (car, babble and hum noise) at realistic
SNR’s (−5 to 15 dB range) and nine coding systems. Also,
we present the signal properties that are useful in CODEC
class detection. Our method is able to detect the bit rate of
the system as well as the type of CODEC. The remainder of
this paper is organised as follows: in Section 2 we present
the algorithm along with the features used in the method. In
Section 3 the database and evaluation criteria are presented
and the experimental results are given in Section 4. Finally,
conclusions are drawn in Section 5.

2. ALGORITHM OVERVIEW

The algorithm presented here is a data driven, non-intrusive
approach to CODEC detection and identification based on the
feature extraction framework described in [5, 6]. The algo-
rithm begins by segmenting the sampled speech signal s(n)
into non-overlapping frames of 20 ms duration using a Han-
ning window. Then for each of the N frames of the signal, 85
features are extracted (ψn). The method then computes the
statistics from the local features, resulting in a single vector
of 340 features per signal (Ψ). These are then used to train a
classification tree (CART ).

2.1. Frame Based Feature Extraction

The first step is to extract the 85 dimensional per frame fea-
ture vector (ψ), which includes the 10th order Linear Predic-
tion Coding (LPC) coefficients as well as the spectral flatness,
spectral centroid and spectral dynamics of the magnitude re-
sponse of the LPC spectrum. The energy per frame, zero-
crossing rate and the Hilbert envelope is calculated per frame
and its variance and dynamic range are included. The Im-
portance weighted Signal to Noise Ratio (iSNR) is calculated
according to [5] and included along with the pitch period es-
timate using the PEFAC algorithm [7, 8]. The rate of change



of all features are also included (except for spectral dynamics
feature). We also include 12th order Mel Frequency Cepstral
Coeffcients using FFTs along with the acceleration and veloc-
ity coefficients. Finally, an estimate of the long term acoustic
channel is derived using a blind channel estimation (BCE) al-
gorithm [9] and the spectral flatness, dynamics and centroid
of the channel estimate are included.

2.2. Statistical Description

The mean, variance, skewness and kurtosis of the 85 per-
frame features provides a statistical description of the features
for each signal. This results in a 340 dimensional global fea-
ture vector (Ψ) per audio file.

2.3. CART Classifier

The global features (Ψ) and their corresponding class la-
bels (Θ) are used to train a classification and regression tree
(CART) [10]. The CART method is an recursive partitioning
tree based method and has the desirable property of being
human interpretable and low computational complexity in
the test mode. The initial CART model is further pruned
by 10-fold cross-validation over the training partition of the
database with the objective of removing branches giving
small reductions in the misclassification rate.

3. METHODOLOGY

In order to evaluate the performance of our algorithm, a
database was constructed, as described in Section 3.1. The
partitioning of the database into a test and training set is
described in Section 3.2, followed by an explanation of the
metrics used for evaluation in Section 3.3.

3.1. Database

The database used for the experiments in this paper is based
on speech from 48 speakers from the TIMIT database [11].
The TIMIT database contains speech from American English
speakers representing various accents. The test and training
partitions each contain 24 distinct speakers, without any over-
lap of speech. The database consists of 180 conditions, repre-
senting nine coding conditions:

• Linear PCM - uncompressed data transmission.

• GSM Full Rate (GSM-FR) [12] - representing baseline
mobile transmission.

• GSM Adaptive Mulit Rate (AMR) at 4.5kbs, 5.4 kbs,
7.4kbs and 12.4kbs [13] - representing commonly oc-
curring mobile transmission bit rates.

• ITU-T G.711 [14] - representing typical infrastructure
routed transmission.

• GSM transcoding (TRANS) - an example transcoding
scenario. GSM to GSM communication that has to be
routed through infrastructure, which is typically using
a G711 CODEC (GSM-G711-GSM).

• MP3 (16 kbs) - represents speech recorded by portable
recorders.

The speech is grouped into 20 base conditions, of which 5
conditions represent clean speech and the remaining 15 con-
ditions are additive noise conditions. The noise types include
car, babble and hum at signal-to-noise ratios (SNRs) of 15,
10, 5, 0, −5 dB. The base conditions are then processed by
the nine coding systems described above.

3.1.1. Training

The database is partitioned into a test and train partition, each
containing 3360 audio files representing all conditions. The
noise sources in the test and train partitions are separate (sep-
arate recordings) to ensure the classifier is not trained with the
same noise source as that in the test set. A 50% cross valida-
tion is used to evaluate the performance of our method (the
test and training partitions contain different speakers, speech
material and noise files).

3.2. Evaluation

The performance of the CODEC detection classification is as-
sessed with three key metrics:

• Hit Rate - this is the percentage of files correctly clas-
sified.

HRx =

∑N
i=1 I(Θ̃

x
i ,Θ

x
i )

N
× 100, (1)

where Θ̃x
i is the estimated class label according to de-

tection criteria x and Θx
i is the actual class label for the

ith file. The total number of files in the test set is N
and I(a, b) is an index function defined as:

I(a, b) =

{
1 if a = b
0 otherwise (2)

• False Positives Rate - this is the percentage of files that
have been classified as belonging to the class of interest
when the ground truth suggests a different class:

FPRx =

∑N
i=1 I(

˜Θx=1
i ,Θx=0

i )

N
× 100, (3)

where ˜Θx=1
i is the estimated class label when the al-

gorithm estimates the detection class to be present and
Θx=0

i is the ground truth class label when the detection
class label if false.



!
!

Global!!
Description!

CART!Model!

Feature!
Extraction!

STest(n))

Global!!
Description!

 1:340

 1:85

 1:340,⇥

STrain(n))

Feature!
Extraction!

 1:85

Training!
Mode!⇥̃

Fig. 1. Algorithm framework with training mode shown in
the right partition of the figure and test mode in the left half.

• False Negatives Rate - this is the percentage of files
where the class of interest is present in the ground truth
but the algorithm failed to detect it:

FNRx =

∑N
i=1 I(

˜Θx=0
i ,Θx=1

i )

N
× 100, (4)

4. RESULTS

In this section, the performance of our non-intrusive method
is assessed on the database described in Section 3. A number
of classifiers have been tested as shown in Table 1 .

4.1. CODEC Type and Bit Rate Detection (ΘAll)

In this configuration, the CART model is trained and tested
with each individual CODEC type. The objective of the sys-
tem is to identify the type of CODEC present along with the
bit rate used for encoding the signal. This is the most chal-
lenging objective and our method achieves a hit rate of nearly
92% in this scenario. The average power of the LPC residual
per frame is the most important feature for this type of clas-
sifier. The classification tree in this mode uses 29 of the 340
global features to perform the classification.

4.2. CODEC Type Detection (ΘClass)

The model in this configuration is tasked with identifying the
class of CODEC used, that is one of (PCM, GSM, G711,
MP3, Transcoding or AMR). The bit rate of the system is
not identified and this gives a hit rate of nearly 95%. This
compares favourably with previous CODEC type detection
algorithms presented [4]. The most important feature here is
the kurtosis of the rate of change of the pitch period, with the
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Fig. 2. CODEC type detection (ΘClass) with different noise
types (hum, car, babble) and SNR in terms of the hit rate.

classifier using 17 global features in total. Figure 2 shows the
performance of this classifier for different test noise types and
SNR. The performance can be seen to be very similar for all
conditions, suggesting that the method is robust to additive
noise with hit rates greater than 91% and a standard deviation
of 1.7%.

4.3. Single CODEC Detection (Θx)

In addition to identifying the type of CODEC present, it
is sometimes beneficial to test for the presence or absence
of a single CODEC. Table 1 shows the performance of the
possible binary classifiers for our database. The classifier
in each case is trained to identify just one CODEC (Θx,

x = [PCM,G711, GSM − FR,AMR,MP3, TRANS]).
In this configuration the performance of the algorithm is very
good due the easier classification task with hit rates better
than 97% in all cases. Also, the false positive rate is generally
lower than the false negative rate. The mean and variance are
important global descriptors and LPC and BCE are important
per-frame features, which the CART model using between 6
and 14 features in all.

5. CONCLUSIONS

In this paper, we have described a non-intrusive CODEC de-
tection and identification algorithm that is able to identify
both the CODEC used in a communication channel and its
operational bit rate with an accuracy of 92%. The algorithm
was tested using a 50% cross validation on a database with
180 test conditions comprising three noise types (car, bab-
ble and hum) at five SNRs processed through nine CODECs.



Detection Criterion HR (%) FPR (%) FNR (%) NFeatures Best Per-Frame Feature Global Descriptor
ΘAll 91.9 - - 29 LPC Residual Power Mean
ΘClass 94.9 - - 17 d/dt(Pitch) Kurtosis
ΘPCM 98.4 0.5 1.1 6 d/dt( Spectral Dynamics of BCE) Variance
ΘG.711 97.1 1.0 1.9 8 d/dt(6th LPC Coefficient) Variance
ΘGSM−FR 97.0 1.8 1.2 14 LPC Residual Power Skewness
ΘAMR 99.0 0.8 0.2 9 d/dt(10th LPC Coefficient) Mean
ΘMP3 98.0 1.1 0.9 7 Spectral Flatness of BCE Mean
ΘTRANS 98.2 0.6 1.2 7 LPC Residual Power Mean

Table 1. Classification results for 50% cross validation on database (Section 3.1). The Hit Rate (HR), False Positives Rate
(FPR) and False Negative Rate (FNR) are given as a % of the total number of files in the test set. The decision criteria are
shown in the first column and the most important per-frame feature and associated statistical descriptor as the last two columns.
The number of global features deployed in the final CART model is also shown (NFeatures).

Also, the features most important for each detection criteria
were presented.

It was found that the LPC, blind channel estimate (BCE)
and pitch period based features were generally most impor-
tant, with the mean and variance being important global de-
scriptors. Our method has been shown to be robust to addi-
tive noise, with standard deviation in hit rate being 1.7% over
the SNR range. Additionally, the algorithm has been tested
with various binary classification criteria, where the average
hit rate is higher than 97%, comparable to results from previ-
ous studies on clean speech.
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