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Abstract. Instrumental measures have been primarily used in order to predict speech quality or
speech intelligibility. The aim of the present work is to evaluate the performance of a broad range of
established instrumental measures in terms of their ability to predict the amount of musical noise
present in enhanced noisy speech signals. The considered instrumental measures were evaluated
using musical noise quantity scores obtained from a specially designed listening-test which was
performed by normal-hearing listeners. Of all considered instrumental measures, a mean squared
distortion measure, the PESQ measure, and the STOI measure yielded the highest correlations.
These results confirm the ability of instrumental measures to predict the amount of musical noise,
but further evaluation shows limitations to their applicability as musical noise predictors. However,
subsequently the results suggest that simultaneous optimization for the amount of musical noise
and speech quality or speech intelligibly is not possible using a single instrumental measure.

1 Introduction

The interest in the prediction of speech quality and speech intelligibility has led to the development of
multiple instrumental speech-quality and speech-intelligibility measures. This development is supported
by the demand for replacement of time consuming and expensive listening tests. However, as instrumental
measures are not perfect, both instrumental measures as well as listening tests, are essential to judge the
performance of speech enhancement algorithms. Over the years, many noise suppression algorithms have
been introduced attempting to find optimal noise suppression without introducing loss of speech-quality
or intelligibility under a diversity of distortion measures, see e.g., [1,2]. The performance of such speech
enhancement algorithms is in general a trade-off between reduction of the noise and the extent in which
the algorithm distorts the speech signal. Finding the right tradeoff which is crucial in the field of hearing
aids, where the sound to be presented to the hearing impaired listener should be as natural and with as
high quality as possible.

However, removing all the noise in a noisy speech signal without introducing loss of speech quality
requires that the noise is known exactly. This is unrealistic for any practical application. Therefore,
many noise reduction methods employ the statistics of the speech and noise processes, e.g. the speech
and noise power spectral densities. As a result of working with statistical descriptors of the signal, instead
of the actual realizations, artifacts are introduced during the noise reduction process. Among these is
the highly annoying residual noise known as musical noise [3], which can remain after processing, and
decrease the quality and speech intelligibility of the enhanced speech signal. Although it is possible to
hide or reduce the musical noise to some extent by adjusting certain parametric settings of the noise
reduction algorithm [3,4], this is not straightforward without a clear instrumental measure.

While some instrumental measures have shown to predict the quality of enhanced noisy speech with
high correlation (see [5], [6], [7]), only little is known about the ability of instrumental measures to
predict the amount of musical noise, even though this is an important aspect of speech quality. The
aim of this contribution is to evaluate the ability of an instrumental measures to predict the amount
of musical noise in the enhanced signal. Given that there are measures which are able to predict the
amount of musical noise, these could be used to draw additional conclusions about the performance of
noise reduction methods and be of use in their development.

In 2008, Uemura et. al [8] proposed a novel measure based on the kurtosis of the power spectral
density (PSD) of the enhanced noisy speech signal which can be used specifically for predicting the
amount of musical noise in the enhanced speech signal. Besides this measure, we consider various other
established instrumental measures in terms of their ability to predict the results of a specially designed



listening experiment. The results of the subjective listening-test characterize the quantity of musical noise
in several enhanced noisy speech signals generated by applying the spectral subtraction noise reduction
method (SS), and varying the amount of noise reduction. Evaluation of the prediction performance of
the different instrumental measures is based on Pearson’s correlation coefficient and the Kendall rank
correlation coefficient [9].

2 On spectral subtraction and musical noise production

We consider a noisy speech model that can be described as a clean speech signal s(n) that is degraded by
an additive uncorrelated noise signal v(n), i.e., y(n) = s(n) + v(n), where y(n) represents the observed
noisy speech with time-sample index n. It is assumed that both s(n) and v(n) are wide-sense stationary
for short time segments, and a DFT based analysis-modification-synthesis procedure is applied, with the
aim of reducing noise. After applying a short-time Fourier transform (STFT) to the noisy signal, the
noisy observation can be described by,

Y (i, k) = S(i, k) + V (i, k), (1)

where upper case letters describe the signal in frequency domain. The frame-index and transform coeffi-
cients are described by i and k respectively. The spectral subtraction noise reduction method [3,10] can
be used to modify the frequency spectrum of the noisy observation. By subtracting a noise PSD estimate,
σ2

V (i, k), from a noisy observation, |Y (i, k)|2, a clean speech periodogram, |Ŝ(i, k)|2, is estimated. The
SS noise reduction procedure is described by,

|Ŝ(i, k)|2 =
{
H(i, k)|Y (i, k)|2 for H(i, k)|Y (i, k)|2 > αssσ

2
V (i, k)

αssσ
2
V (i, k) otherwise

(2)

where H(i, k) is given by,

H(i, k) = 1− βssσ
2
V (i, k)

|Y (i, k)|2 . (3)

βss is called the over-subtraction factor and represents a scalar weight on σ2
V (i, k), αss denotes a

flooring parameter which introduces a minimum value for gain, H(i, k). After modification the signal is
reconstructed using an inverse STFT.

However, even when the noise PSD is perfectly known, it is impossible to remove all the noise as this
requires all noise realizations to be known. These variations of the power of these noise realizations around
its PSD will introduce estimation errors in H(i, k). These estimation errors result in variations in H(i, k)
with musical noise as a consequence. Consider a noise-only segment, y(n) = v(n), where |V (i, k)|2 >
βssσ

2
V (i, k) thus H(i, k) > 0, this means that part of the noise power will remain in the enhanced

periodogram. If this power residue is isolated in both time and frequency, i.e. a narrow-band spectral
peak, it will introduce a short tonal artifact after reconstruction of the signal. Whenever isolated spectral
peaks occur in multiple time-frames across different frequency bands, the residual noise is described as
musical noise. Generally, altering βss and αss provides a trade-off between the amount of musical noise,
broadband noise reduction and speech distortion.

3 Instrumental measures

A broad range of established instrumental measures is used with the objective to evaluate their ability
to predict the amount of musical noise in enhanced noisy speech. Included are the often used Percep-
tual Evaluation of Speech Quality measure, the log-likelihood ratio, the segmental SNR, the frequency
weighted segmental SNR, and the normalized frequency weighted segmental SNR. But also several spec-
tral distance measures are taken into account, i.e. the weighted spectral slope, the cepstral distance, the
log-spectral distance, two mean squared error measures, the Itakura-Saito distance, a COSH distance
measure based on the IS measure, and two composite measure for noise distortion, which is based on a
combination of seven objective SQ measures. Additionally we apply one musical noise measure, based



on the kurtosis-ratio between the PSD of the enhanced and the noisy speech signal, and one speech-
intelligibility measure, the short-time objective intelligibility measure. Table (1) provides a summary of
all instrumental measures with their corresponding abbreviations. For the PESQ, LLR, fwSEG, fwSEGn,
IS1, CEP, WSS and COMP measure we apply the implementations as provided by Loizou in [2], whereas
for IS2, segSNR and the COSH metric we apply the implementation as provided in the VOICEBOX
toolbox [11]. The IS1 and IS2 measures are the same, however IS1 is an LPC based implementation,
where IS2 is calculated using the PSD of the clean and enhanced speech. Both these IS measures and
the COSH measure have been limited to 100. The two different Mean Squared Distance methods, dMSD1

Instrumental Measures
PESQ Perceptual Evaluation of Speech Quality [12]
LLR Log-Likelyhood ratio [13]

segSNR Segmental SNR [13]
fwSNR Frequency weighted segmental SNR [13]
fwSNRn normalized Frequency weighted segmental SNR [5]
LSD Log-Spectral Distance [14]
MSD1 Mean Squared Distance
MSD2 Mean Squared Distance (PSD)
IS Itakura-Saito Distance [13]

COSH Symmetric version of IS
CEP Cepstral Distance [13]
WSS Weighted Spectral Slope [13]
STOI Short-Time Objective Intelligibility Measure [14]
KURT Kurtosis ratio [8]

COMPovl Composite Noise Distortion Measure, overall quality [5]
COMPbn Composite Noise Distortion Measure, background distortion [5]

Table 1. The various different instrumental measures used for evaluation

and dMSD2, are implemented based on respectively the complex DFT coefficients (X = S), and the
periodogram (X = |S|2) of the estimated clean and noisy speech signal.

dMSD(X) = 1
M

∑
k

√
1
L

∑
i

|X(i, k)− X̂(i, k)|2 (4)

where M describes the total number of frequency coefficients, and L denotes the total number of
time-frames. The ’kurtosis ratio’ measure is described by the ratio between the kurtosis of the PSD of
the noisy signal, kurtnoisy, and the kurtosis of the PSD of the enhanced signal, kurtenhanced, i.e.,

dkurtosis−ratio =
1

M

∑
k kurtenhanced(k)

1
M

∑
k kurtnoisy(k)

, (5)

where kurt is defined by,

kurt(k) =
1
L

∑
i X(i, k)4

( 1
L

∑
i X(i, k)2)2 (6)

Dependent on whether kurtnoisy or kurtenhanced is computed, X represents either the realizations of
the noisy signal, |Y (k)|2, or the realizations of the enhanced speech signal, |Ŝ(k)|. In [8] it was stated
that a high kurtosis-ratio corresponds to a high amount of musical noise, i.e. the distribution of the
isolated residual noise coefficients correspond to a high kurtosis values, which indicates a distribution



with a sharp peak. However, this measure contains some practical limitations, e.g. the proposed measure is
solely applied on noise-only segments, [8]. This is solved using a binary mask based on a SNR threshold of
0 dB. Also note that calculating the frequency average in Eq. (4,6), does only make sense for distributions
which are spectrally flat.

4 Listening experiments

The data-set, Q, used for this experiment includes a set of 20 different clean speech estimates, ŝ(n).
These clean speech estimates are generated by applying the SS noise reduction method, Eq. (2), to
a noisy speech signal, and varying the subtraction-factor βss. Hence, these enhanced signals contain
different amounts of musical noise. As masking of residual background noise is undesired for this specific
experiment, the spectral floor, αss, is set to 0.

The clean speech, s(n), used for generating the stimuli, consisted of a concatenation of two sentences
which originated from the TIMIT [15] database sampled at 16 kHz. The two different sentences where
respectively read by a female and a male, with a combined total signal length of approximately 7 seconds.

A noisy speech signal, y(n), is produced by degrading this clean speech signal with additive white
Gaussian noise, v(n), and the signal-to-noise ratio is set to 5 dB. The noise PSD is estimated over
10 seconds of noise-only signal. All noise reduction is performed in the power spectral domain, using
time frames of 32 ms with 50% overlap and a 512 point FFT is used to transform each time-frame
into the DFT domain, and a square-root Hann window is used as analysis and synthesis window. As
stated before, altering the over-subtraction factor, βss, allows changing the amount of musical noise.
The over-subtraction factor is varied in steps of 0.5 from βss = 0, i.e. no noise reduction, to βss = 9.5
where the estimated clean speech consists of highly distorted speech and little to no musical noise due
to the large over-subtraction. Such a large value of βss is rarely in practice due to the amount of speech
distortion that it introduces. However, it is an important for a musical noise predictor to be able to
identify situations in which little or no musical noise remains.

The listening test is designed to characterize the amount of musical noise in an enhanced noisy
speech signal. Listeners were asked to specifically grade the amount of musical noise, by answering the
following two, equivalent, questions: ’How much musical noise is present in the stimuli? That is, How
musical is the background noise perceived?’. However, comparison of the 20 enhanced signals at once
is too tiring for the listener, therefore, the data-set, Q, is split into two different subsets of each 10
enhanced speech signals, Qset1 and Qset2, respectively containing the enhanced signals, ŝ(n) generated
with over-subtraction factors βss ∈ {0, 1, 2, ..., 9}, and βss ∈ {0.5, 1.5, 2.5, ..., 9.5}.

All subjects preformed a training round, which consists of subset Qset2 and two test rounds, where
Qset1 and Qset2 are successively presented to the listener. The signals in each subset are presented
simultaneously, compared among each other, and graded individually by assigning a single number in
the range 1 to 5 with decimal steps of 0.1, providing a numerical indication of the amount of musical
noise. That is, the listeners rate the amount of narrow-band residual noise present in the background
of the presented stimuli by comparing the 10 presented signals. Grade 1 is assigned to signals with no
musical noise e.g. broadband noise or no background distortion, while grade 5 is assigned to signals with
extreme amounts of musical noise. The ratings are depicted in Table 2.

score The amount of musical noise
5 Extreme
4 A lot
3 Medium
2 A little
1 Broadband or no musical noise

Table 2. Grading scale for the amount of musical noise



Prior to the actual listening test, 3 signals are presented to the listener to make the subject accustomed
to the signals presented in the listening test. Two of these signals contain enhanced noisy speech with
some degree of musical noise while the other signal contains the unprocessed noisy speech. Subjects are
asked to explain the task at hand, to ensure complete understanding of the test. The listening test was
performed in total by 20 subjects inside a sound proof listening room. The group of subjects consists
90% male, and 10% female listeners, within the age-range of 23 up to 51 years old. The average age of
a listener was 30 years old, and the listeners were not hearing impaired to the best of their knowledge.
Finally a mean opinion musical noise quantity score is calculated by averaging over the obtained scores.
The average scores of the listening tests are depicted Figure 1.

Fig. 1. Listening-test results for quantifying musical noise, i.e. The mean-opinion musical noise quantity score.

5 Evaluation

All instrumental measures (Table 1) are evaluated using data-set Q, after which we apply two different
performance metrics to measure the performance in terms of their ability to predict the amount of musical
noise. Performance measures are commonly used for evaluating correlations between instrumental and
listening test data, see [2]. First, the Pearson correlation coefficient, ρ, is included,

ρ =
∑

l(Sl − S)(Dl −D)√∑
l(Sl − S)2 ∑

l(Dl −D)2
. (7)

Here, S and D describe, respectively, the mean opinion musical noise quantity scores (Figure 1) and the
instrumental scores. S and D define the means of the sets S and D, and l denotes the over-subtraction
index. Secondly we imply Kendall’s tau rank correlation coefficient,

τ = Nc −Nd
1
2N(N − 1)

. (8)

Here, Nc describes the concordant pairs, while Nd describes the discordant pairs [9]. N denotes the total
number of enhanced speech signals applied for the subjective test, i.e. N = 20. This latter measure is
used to support the conclusions made based on the correlation coefficient ρ.

To compare the performance of the different instrumental measures, the absolute value of both coef-
ficients is applied, i.e. |ρ| and |τ | must be in the range of 0 < |ρ| < 1 or 0 < |τ | < 1. Here, a coefficient
close to one corresponds to a high agreement between the instrumental measure and the subjective data,
whereas a coefficient close to zero indicates the data to be independent. An overview of the performance
of all instrumental measures is shown in Figure 2.



Fig. 2. Performance overview, the ability of instrumental measures to predict the amount of musical noise.

6 Results and Discussion

The results displayed in Figure 2 indicate that the STOI, PESQ and MSD2 measure provide a good
prediction of the amount of musical noise present in the enhanced signal, there a strong correlation
exists between the output of these instrumental measures and the listening test scores. Therefore, we will
evaluate the performance of these three methods in more detail. The results of these three metrics are
depicted in Figure 3, illustrated by the dashed line. To gain insight into how the gain function, H(i, k),
distorts the clean speech, we apply gain H(i, k) to the the clean speech |S(i, k)|2, and calculate the results
for the three instrumental metrics. These results are portrayed in Figure 3, and illustrated by the dotted
line. And immediately a rather important observation can be made when comparing the dashed and
dotted curves for each of the three measures. Although the dashed curves of the PESQ and the STOI
measure provide a strong correlation with the listening test results, we can not conclude that these two
metrics are good measures for predicting musical noise in general. Note that the dotted curves represent
processed clean speech, which does not contain any musical noise. However, for these signals the PESQ
and the STOI measure produce high results, and therefore it is not possible to predict the amount of
musical noise without prior knowledge on the presence of musical noise. This limits the applicability of
the PESQ and the STOI measure as a musical noise predictor drastically. Considering the performance
of MSD2, it can be seen that this measure is sensitive to scaling of the enhanced noisy speech signal,
there scaled versions of the enhanced noisy speech signal will produce different outputs. However, the
perception of the sounds will not change.

Fig. 3. Results of the three instrumental measures that show high performance for predicting musical noise

Consider the minimum of the MSD2 measure as a function of βss, here the average distance between
|S(i, k)|2 and |Ŝ(i, k)|2 is small, i.e. the average distortion is small. But note, comparing Figure 1 and 3,
that whenever the MSD2 at its minimum, the amount of musical noise is high. This indicates that the
best clean speech estimate contains according to this instrumental measure the largest amount of musical
noise. A similar conclusion can be drawn when evaluating the results of the PESQ measure, there the



maximum mean opinion scores, i.e. the maximum speech quality scores, are predicted for βSS values
that lead to high amounts of musical noise. Likewise, in case of the STOI measure, the maximum speech
intelligibility scores are predicted whenever the amount of musical noise is high according to Figure 1.
This means that when optimizing the enhanced speech signal for intelligibility, quality or the distortion,
the signal will contain a high amount of musical noise. Subsequently, optimizing for both the minimum
amount of musical noise and the best speech quality simultaneously is not possible using the instrumental
measures considered in this paper.

Another observation can be made, based on the results of the PESQ and STOI measure. From Figure
3 it can be seen that it is possible to apply high values of βss and largely reduce the amount musical
noise, without loosing a lot of speech quality, and on account of introducing only a limited decrease in
speech intelligibly.

Additionally we can conclude from Figure 2 that the background distortion measure, COMPbn, and
the musical noise prediction method, KURT, do not correlate well with the listening test results. In case
of the COMPbn measure this result is consistent with the observations made in [5]. However, in case
of the KURT measure this is a more unexpected result, but can be explained as follows. First consider
Equation (6). If βss is increased, then more and more spectral values will be set to zero, and the PDF
of the enhanced speech will become increasingly peaky. As a consequence, the kurtosis of the PDF of
the enhanced signal will increase until all spectral values are set to zero, for which the method becomes
undefined. By comparing this with the results in Figure 1, it can observed that the increasing dkurt−ratio

has a strong correlation for the range 0 < βss < 2, which is consistent with the experiments in [8].
However, for the range βss > 2 the dkurt−ratio metric keeps increasing, where the listening test results
show a decrease in the amount of musical noise. We can thus conclude that the KURT metric performs
poorly for values of βss > 2.

Form Figure 2 we observe that a large group of instrumental methods show low correlation with the
listening test results. This could be caused by the fact that both τ and ρ only provide a metric to illustrate
a linear relation. In order to obtain a better correlation between the results of the instrumental measures
and the listening test scores, a mapping could be used to account for nonlinear relations, see [14].

7 Conclusions

The results provided in this paper concluded that it is possible to predict the amount of musical noise in an
enhanced noisy speech signal by either using a mean squared distance measure, MSD2, the PESQ measure
or the STOI measure. There the results of these instrumental methods indicate strong correlations with
the listening test results. However, this high correlation suggests that simultaneous optimization for the
minimum amount of musical noise and maximum speech quality or speech intelligibly is not possible using
a one of the considered instrumental measure. Surprisingly, the instrumental method, KURT (Table 1),
which was specially designed for predicting of the amount of musical noise shows low correlation with
the listening test results. On basis of the analysis that existing instrumental methods are limited in the
prediction of musical noise, we can speculate on the need for a better metric specifically designed to
measure the musical noise quantity.
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