
2162 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 10, OCTOBER 2013

Blind Channel Magnitude Response Estimation in
Speech Using Spectrum Classification

Nikolay D. Gaubitch, Member, IEEE, Mike Brookes, Member, IEEE, and Patrick A. Naylor, Senior Member, IEEE

Abstract—We present an algorithm for blind estimation of the
magnitude response of an acoustic channel from single micro-
phone observations of a speech signal. The algorithm employs
channel robust RASTA filteredMel-frequency cepstral coefficients
as features to train a Gaussian mixture model based classifier
and average clean speech spectra are associated with each mix-
ture; these are then used to blindly estimate the acoustic channel
magnitude response from speech that has undergone spectral
modification due to the channel. Experimental results using a
variety of simulated and measured acoustic channels and additive
babble noise, car noise and white Gaussian noise are presented.
The results demonstrate that the proposed method is able to
estimate a variety of channel magnitude responses to within an
Itakura distance of 0.5 for SNR 10 dB.

Index Terms—Blind channel estimation, GMM.

I. INTRODUCTION

W HEN speech is captured by a microphone positioned at
some distance away from the talker, the spectrum of the

observed speech will be modified due to propagation through
the acoustic channel between talker and microphone. We de-
fine the channel as encompassing the combined effects of the
acoustic environment, the positioning of the microphone and
the characteristics of the microphone and associated sound cap-
turing equipment. In all practical cases the captured signal will
contain ambient background noise in addition. Thus, the ob-
served signal at the microphone can be expressed as

(1)

where is the desired speech signal, is the channel im-
pulse response, is additive observation noise and denotes
convolution.
The channel can degrade perceived quality and reduce intel-

ligibility of the captured speech signal; the reduction in intelli-
gibility due to the channel effects becomes more severe in the
presence of noise [1]. Knowledge of the channel characteris-
tics offers the potential to design an equalization filter which
enhances the speech. It can also provide information about the
capturing environment and has been used in, for example, codec
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identification [2]. Consequently, channel estimation has devel-
oped into an important topic in acoustic signal processing [3].
There exist many robust methods for the identification of fre-

quency response functions when both the input signal, ,
and the observed signal, , are known [4]–[7]. However, in
practical scenarios only the observed signal, , is available
which leads to the need for unsupervised, blind channel estima-
tion procedures as proposed by Stockham et al. in [8]. In the
case of multiple microphones, spatial information is available;
the channels between the source and each microphone are dif-
ferent while the source is the same. This fact is exploited by
several channel estimation algorithms [3], [9], [10]. In contrast,
single microphone blind channel estimation is inherently a more
challenging problem since the spatial information is not avail-
able and it is therefore necessary to exploit alternative informa-
tion such as a speech production model or other characteristics
of the speech signals. For example, Stockham et al. [8] derived a
method based on homomorphic deconvolution [11] and showed
that the channel can be found as the difference between the av-
erage log-spectrum of the clean signal and that of the observa-
tion. The method, however, requires that a representative ver-
sion of the clean signal is available. Alternative methods based
on [8] use the Long Term Average Speech Spectrum (LTASS)
of clean speech to obtain the channel magnitude spectrum from
the observed speech [12], [13]. A different approach is taken
by Hopgood and Rayner [14] who proposed using a time-in-
variant Autoregressive (AR) model for the channel and a time-
varying AR model for the speech signal; this was later extended
to the case of moving talkers [15]. Although good results were
demonstrated for low order channels, the method performs less
well with more complex channels such as acoustic impulse re-
sponses in rooms. Moreover, the method requires knowledge
of the channel order—a common restriction in blind channel
identification.
In this paper, we consider single channel blind estimation of

the magnitude spectrum of an unknown channel. The log-spec-
trum estimate of the underlying clean speech in each frame is
found using RASTA filtered Mel-frequency Cepstral Coeffi-
cients (MFCC) [16] and a Gaussian Mixture Model (GMM)
based classifier [17] and it is subtracted from the observed
speech. This method is an extension and generalization of the
of the method by Stockham et al. [8] and the LTASS based
blind channel estimation methods in [13], [12] as will be
discussed in Section III. A preliminary version of the algorithm
was presented in [18].
The remainder of the paper is organized as follows. In

Section II the classification-based algorithm is derived and its
relation to the previous methods is shown in Section III. In
Section IV the effects of noise are discussed and robustness to
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additive noise is introduced to our approach through the use of
an additional processing step. Simulation results demonstrating
the effects of different parameters of the algorithm and its
performance with a variety of noise types and channels are
given in Section V. Finally, conclusions from this work are
drawn in Section VI.

II. CHANNEL MAGNITUDE SPECTRUM ESTIMATION

A. Preliminaries

Expressing (1) in the frequency domain and using the Short
Time Fourier Transform (STFT) we can write

(2)

for frequency bin and time frame . This approximation re-
lies on the frame length of the STFT being large compared to
the impulse response ; a detailed examination of its va-
lidity is given in [19]. The effects of the frame length on the
channel estimation are discussed in Section V. We assume that
the channel varies muchmore slowly than the speech and, there-
fore, does not vary significantly with . In the noiseless
case, , we can write

(3)

It was shown in [8] that given prior knowledge of the magnitude
spectrum of the speech signal, , we can estimate the
log-magnitude spectrum of the channel as

(4)

where denotes an estimate of and
is the total number of speech frames. The effects of noise on

the estimation will be discussed in Section IV.
In practice, is not known but can be estimated as

. In the remainder of this section we will dis-
cuss a method for finding such estimates based on a clean speech
model. The accuracy of the channel estimation will depend on
the match between the estimated speech log-spectrum
and the true speech spectrum . Since the absolute level
of the speech is unknown, the channel can be estimated only to
within an unknown scale factor.
The channel estimate in (4) includes the true channel

response convolved with the Fourier transform of the STFT
window. The effect of varying the STFT frame length is exam-
ined in Section V-C.

B. Clean Speech Model

The channel estimation procedure relies on a trained GMM
[17] clean speech model with mixtures and a known average
log-spectrum associated with each mixture. The procedure for
obtaining this from clean speech training examples, , is il-
lustrated in the upper panel of Fig. 1. This is an offline process
that only needs to be performed once.
Given a training data-set of clean speech, the speech

signal, , is divided into overlapping windowed frames

Fig. 1. System diagram of the channel estimation algorithm.

and the STFT applied to give . A feature vector,
, of RASTA-MFCCs

is calculated for the th frame and the corresponding log-spec-
trum for that frame, , is obtained. The mean of the
log-spectrum is subtracted

(5)

where defines the number of frequency points in the STFT.
RASTA filtered MFCC coefficients [16] are employed since
they will be used to distinguish between different speech spectra
in filtered speech and RASTA-MFCCs are designed to be robust
to channel effects.
The feature vectors, , are used to train an -mixture

GMM defined by the means, , diagonal covariances, ,
and weights, , of each mixture. The mixture probabilities,

, are calculated as [17]

(6)

where denotes a multivariate Gaussian dis-
tribution.
We combine and to obtain a weighted average of

the short-term log-spectra over all available frames of training
data and thus, obtain the set of average clean speech log-
spectra:

(7)

In this way, each mixture is associated with a clean speech spec-
trum, which is formed from the weighted average of the speech
spectra assigned to a particular mixture.

C. Classification-Based Channel Estimation

The clean speech model from Section II-B is now used
to estimate the unknown channel as shown in the lower
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panel of Fig. 1. The STFT is applied to the observed
speech signal, and an -dimensional feature vector,

, with the corresponding
log-spectrum for that frame, , is obtained; the log-spec-
trum mean is subtracted as in (5).
The estimate of the clean speech log-spectrum, , is ob-

tained using the feature vectors, , and the GMM param-
eters . The probability of feature vector
arising from each of the mixtures is calculated as in (6).
Thus, for each mixture , we obtain the
probability, , of arising from that mix-
ture and . Using these probabilities, we calculate
the estimate of the clean speech spectrum for the th frame as a
weighted average of the average clean-speech spectra, ,
associated with each mixture:

(8)

Using this weighted approach rather than a Maximum Likeli-
hood (ML) selection can be advantageous when there is an un-
certainty in the classification.
The channel magnitude response can now be estimated ac-

cording to (4) with calculated as either the
ML or the Minimum Mean Squared Error (MMSE) estimate of
the clean speech models obtained from the GMM. Having a rich
model of clean speech spectra, , facilitates more rapid
and more accurate channel estimation, as will be discussed in
Sections III and IV.

III. RELATIONSHIP TO PREVIOUS METHODS

In previous work the clean speech spectrum was approx-
imated using the average log-spectrum from a clean version
of the audio signal [8] or the more generic LTASS [12], [13]
such that in (4) . This LTASS-based
approach is a special case of the GMM-based classification
method, in the case of only one mixture. It can be seen from the
derivation of the average speech spectra in Section II-B that,
when , the likelihood of the frame belonging to that
mixture is . Consequently, from (7) we can write

(9)

Increasing the number of mixtures, so as to classify different
sounds in the speech separately, decreases the estimation time
and increases the accuracy of the channel estimation because
a more accurate estimate of the clean speech average spectrum
is obtained at each and any time instant; there is less reliance
on the match between a talker’s speech and the generic spectral
representation of the LTASS.

IV. CHANNEL MAGNITUDE ESTIMATION IN NOISE

In most scenarios, noise is present in the observed speech
signal, which may limit the channel estimation accuracy. The
adverse effects of additive noise on the channel estimation pro-
cedure are potentially twofold. First, noise will introduce errors

in the classification since the GMMparameters are derived from
clean speech, which may result in wrong selection of the clean
speech average spectrum. Second, it will introduce a bias in
the channel estimation in (4) [8]. It was shown in [8] that the
bias can be compensated for where the compensating factor is
found based on the assumptions that the audio signal is a sta-
tionary random process and that noise and speech are indepen-
dent. In the following, we do not make an assumption on the
speech statistics and derive an expression that is based on the
Signal-to-Noise Ratio (SNR).
Consider the power spectrum of the noisy observation in (2)

(10)

where and we have omitted the frame
and the frequency indices for reasons of clarity. Dividing by

on both sides of (10) and taking the log gives

(11)

with

(12)

and

(13)

is the SNR. Equation (12) shows that the error in the channel
estimate is related to the SNR. In the remainder of this section,
we show how this can be used in order to add noise robustness.

A. Noise Bias Correction

It is evident from (11) that the bias in the channel magnitude
estimate due to noise can be corrected given an estimate, , of the
error term, , in (12). In practice, this requires knowledge of the
SNR, , and of the phase term .While there are several existing
methods for noise spectral estimation [20], [21], estimators for
the phases are not readily available. However, it will be shown
in the following that (12) can be approximated closely in terms
of the SNR only.
In order to calculate the expected value of (12) over
we consider three separate cases: and
. The phase term is the difference between the speech and
noise phases and can be assumed uniform if the two signals are
independent. For positive SNR we can write (12) as

(14)

where denotes the real component of . Next, taking the
expectation over and substituting , we
have that

(15)
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Fig. 2. Mean approximation error (solid line) standard deviation (dashed
line) for the approximate estimation of (12) by (18).

where the integrand in the contour integral is analytic within the
unit circle and hence the integral equals zero. For negative SNR

(12) can be written as

(16)

which, following the same procedure as for (15) results in

(17)

For the special case of , continuity implies that .
Combining the results from (15) and (17) the noise error term is
written as

(18)

The accuracy of this expression is illustrated in Fig. 2 where it
can be seen that the mean error for a frame of estimation is zero
and that the standard deviation of the error has a peak of 8 dB
at 0 dB SNR but decreases rapidly at higher or lower SNRs;
as the estimates are averaged over many frames, the error will
generally be close to zero. The SNR is estimated as

(19)

where, is the spectral floor parameter and is
the noise spectrum estimate, which we obtain using the MMSE
method [22], [21]. This term can now be subtracted from the
channel magnitude estimate obtained with the algorithm de-
scribed in Section II. The benefits of the bias correction will be
demonstrated by the simulation results in Section V.

Fig. 3. Scatter plot and a quadratic polynomial fit for Log-spectral distance
versus Itakura distance for four different channels.

V. SIMULATION RESULTS

Simulation results are now presented to demonstrate the per-
formance of the channel estimation algorithm and to investigate
the effects of different parameters.

A. Experimental Setup

The speech data of the TIMIT corpus was used in the eval-
uation. TIMIT contains 6300 sentences; ten sentences spoken
by each of the 438 male and 192 female talkers. Two of the
ten sentences are dialect diagnostics and use the same text for
all talkers while the remaining sentences represent a total of
2342 distinct texts. The corpus is divided into a training set (462
talkers) and a test set (168 talkers) with entirely distinct sen-
tence texts apart from the dialect diagnostics. The duration of
each utterance is approximately three seconds and the sampling
frequency is kHz.
Following the procedure described in Section II-B, the full

training set was used to train the GMM and to calculate the av-
erage log-spectra of clean speech. Processing was performed
using Hanning windowed frames overlapping by 50%. From
each frame, RASTA-MFCCs were calculated and used
to train the GMM. The choices of frame length and number of
mixtures are discussed in Section V-C. The complete TIMIT test
set was then used for the channel estimation experiments. The
testing and training data sets are exclusive. The test sentences
for each of the 168 talkers were concatenated to form one utter-
ance per talker with an approximate duration of 30 s.
In these experiments three sets of acoustic channel responses

were considered: (i) The identity channel, , (ii)
synthetic room responses with a range of reverberation times,
(iii) four measured real impulse responses. The synthetic room
responses were generated using the source-image method [23]
for a rectangular room with dimensions 6 5 4 m. The source
andmicrophonewere positioned in the room separated by 1.5m;
reverberation times, , included 0.05 s and a range between
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Fig. 4. Acoustic impulse responses and corresponding magnitude spectra. All the impulse responses are truncated at their estimated reverberation time.
(a) Occluded microphone. (b) Gramophone horn. (c) Car cabin. (d) Reverberant room.

0.1 and 1 s in 0.1 s increments. Source and microphone posi-
tions were changed for each reverberation time keeping the sep-
aration distance constant in order to introduce variation in the
magnitude responses between the different conditions. The third
set includes four measured acoustic channel responses, which
were chosen to represent different spectral characteristics: an
occluded microphone channel, a gramophone horn, a car cabin
and a reverberant room; the impulse responses and their corre-
sponding magnitude spectra are shown in Fig. 4. Additionally,
three types of noise were considered: babble noise, car noise and
white Gaussian noise at SNRs in the range of 10 dB to 60 dB
in steps of 10 dB. The samples containing noise and channel
were generated as follows: (i) clean speech was convolved with
the impulse response under investigation; (ii) the active speech
level was calculated from the reverberant speech according to
ITU-T P.56 [22], [24]; (iii) the noise was added with its level
adjusted to achieve the desired SNR.

B. Spectral Distance Metric

The proposed channel estimation method was employed to
estimate a variety of channel magnitude spectra which were

evaluated by comparison with the magnitude spectra of the true
channels. Since the estimation is only defined up to a scale
factor, the scale-independent Itakura spectral distance defined
by [25] was used

(20)

It is interesting to see the relationship of to the widely used
log-spectral distance. The four measured channel responses de-
fined in Section V-A were perturbed by adding normally dis-
tributed random errors to their magnitude responses to create
different levels of log-spectral distance and the resulting Itakura
distance was computed in each case. The resulting data points
are shown in Fig. 3 together with a quadratic polynomial fit of
the points. The log-spectral distance is thus approximately given
by . Following the discussion in Section (II-A), the true
channel magnitude response, , was convolved with the
frequency response of the STFT window before the evaluation.
It can be seen that Itakura distances of 0.1–0.5 correspond to
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Fig. 5. Effect of increasing the duration of the utterance on channel estimation
accuracy for different number of mixtures, . The horizontal line at
represents the convergence threshold.

Fig. 6. Effects of frame length and number of mixtures on the convergence
time and convergence accuracy. (a) Convergence time vs. number of mixtures
and frame length. (b) Convergence accuracy vs. number of mixtures and frame
length.

log-spectral distances of 1.5–4.5 dB; this, as will be seen in the
following experimental results, is the general operating range of
the proposed method.

Fig. 7. Variance of estimation accuracy across talkers as a function of number
of mixtures. The line in the box is the median, the box edges are the quartiles and
the whiskers correspond to approximately 2.7 standard deviations, covering
99.3% of the data.

Fig. 8. Estimation accuracy in terms of Itakura distance as a function of rever-
beration time and frame length.

C. Algorithm Parameters

The key parameters of the algorithm are now investigated
including the number of mixtures and the frame length. Frame
lengths of 32, 64, 128, 256, 512 ms and mixtures for

were considered. As discussed in Section III,
the method is equivalent to that using LTASS [13], [12] when

, which served as the baseline method for comparison.
The objective was to investigate these parameters in relation

to the time required for the estimation and accuracy of the esti-
mates. Using the identity channel, , the channel
estimation algorithm was applied directly on clean speech from
the TIMIT test set, which should result in an estimate of a flat
channel response over all frequencies, . All
combinations of frame length and number of mixtures were con-
sidered. In each case, the available speech data for the estima-
tion was increased in increments of half a frame length until
the complete length of the utterance was reached. A random
offset was applied so that the estimation always initiated with
speech present but not necessarily at the beginning of a word;
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Fig. 9. Channel magnitude estimation in noise—simulated room impulse re-
sponses. (a) Babble noise. (b) Car noise. (c) White Gaussian noise.

this was done in order to provide realistic and fair conditions
for the timing evaluation. The Itakura distance was measured at
each increment. An example result with a frame length of 32 ms
and four different number of mixtures averaged over all talkers

Fig. 10. Channel magnitude estimation in noise—measured responses.
(a) Babble noise. (b) Car noise. (c) White Gaussian noise.

is shown in Fig. 5. It can be seen that in all cases the estimation
error reduces rapidly during the first 1–4 s before converging to
a limit of ; the time it takes to reach this limit decreases



GAUBITCH et al.: BLIND CHANNEL MAGNITUDE RESPONSE ESTIMATION IN SPEECH 2169

with increasing number of mixtures and also the final estimation
accuracy at the end of the utterance is improved.
Based on these observations, a robust estimate of the conver-

gence threshold was defined as the 10th percentile of over
all speakers and frame lengths; this is indicated in Fig. 5 for the
case of one mixture, , by the horizontal line at .
Additionally, the time to reach the convergence threshold for

and the final convergence accuracy for each and
for the different frame lengths were measured. The results are
shown in Fig. 6. The following observations can be made:
1) the convergence time decreases with an increased number
of mixtures and reaches a lower limit of approximately
2.5 s at ,

2) there is an improvement in the accuracy of up to
at ,

3) the improvement in speed and accuracy is smaller as the
frame length increases.

These results are intuitively consistent. The improvement in
speed and accuracy with increased number of mixtures comes
from the fact that a more accurate model of the underlying
speech spectrum is used in the estimation at each frame. As
the frame length increases the average spectrum for each
mixture becomes less distinct and more closely resembles that
of the LTASS. Thus, the error increases because of the larger
inter-talker variability of the model.
We also investigated the spread of the estimation accuracy

across talkers. The results for a frame length of 32 ms are shown
in Fig. 7. For each value of , the plot shows the median, the
quartiles and the range of Itakura distances. The spread of the
errors becomes significantly smaller for compared to
the LTASS based approach, .
In the next experiment, the simulated acoustic impulse re-

sponses were used to study the effects of estimation accuracy as
a function of the reverberation time, , and the frame length.
The results are shown in Fig. 8 where we observe that the es-
timation accuracy decreases significantly if the frame length is
less than about half the channel length. For example, at a frame
length of 32 ms and s the error is ; the Itakura
distance is halved as the frame length is increased to 0.5 s and
the majority of the error is due to mismatch between the true
speech spectra and the average models. On the other hand, a
frame length that is longer than the impulse response has little
effect on the estimation accuracy.
From the results this far, it appears that is a rea-

sonable choice for the number of mixtures and that the frame
length should be as short as possible, both in terms of conver-
gence speed and accuracy. However, as noted above, spectral
smoothing will occur if the frame length is substantially shorter
than the channel response. Consequently, there is a trade off be-
tween the convergence time and the accuracy, which could be
controlled depending on the channel order. It was found empir-
ically that a good choice of frame length is 128 ms for many
typical practical scenarios such as those used in the following
experiments.

D. Blind Channel Estimation in Noise

Based on the results in Section V-C, a GMM with 256 mix-
tures and frame length of 128 ms was used. The first experiment

Fig. 11. Estimation improvement in terms of Itakura distance using bias cor-
rection compared to direct estimates.

was conducted with the simulated acoustic impulse responses
and the babble, car and white Gaussian noises, as described
in Section V-A. The results, averaged over the 168 talkers, are
shown in Fig. 9. It can be seen that, an estimation with accuracy
of is obtained for all noise types for dB.
The greatest degradation due to noise is observed in the case
of white Gaussian noise. This is to be expected, since both car
noise and babble noise have similar shape to the long-term av-
erage speech spectrum and thus largely cancel out in the estima-
tion procedure. This is due to the relationship between bias and
SNR shown in (18): if the noise spectrum is of a similar shape
as the long term speech spectrum, will be close to a constant
over all frequencies and will result in a scalar shift of the esti-
mated channel.
The same experiment was performed using the measured

channels in Fig. 4. The results are shown in Fig. 10, and show
the same trends as for the simulated acoustic impulse responses.
The results in Figs. 9 and 10 are the outcome of the channel

estimation with noise bias reduction from Section IV-A. Fig. 11
shows the gain in Itakura distance for the noisy estimates when
using the bias correction compared with estimates without the
correction. The results are averaged over all simulated and mea-
sured impulse responses. The greatest benefit is seen for white
Gaussian noise, which is not surprising since it covers the entire
spectrum. For babble and car noise, the procedure is beneficial
at dB. At high SNRs, the procedure slightly reduces
the accuracy of channel response estimate because of errors in
the SNR estimate.
Finally, Fig. 12 shows an example estimate for each of the

four channels estimated from one talker in car noise at
dB and dB. It can be seen that the estimates at

dB for the occluded microphone, the gramophone
horn and the car cabin response are very close to the true channel
response , while the error is larger
for the room response. This is due to the use of a window that
covers only about 1/5 of the impulse response length. Neverthe-
less, large scale features of the magnitude response are captured
even in this case. When the noise level is increased such that the

dB, the estimation becomes worse; this is mainly in
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Fig. 12. Example of true and estimated magnitude responses estimated from one talker in car noise at 60 dB SNR (upper plots) and 10 dB SNR (lower plots) for
each of four measured impulse responses; the difference between the true and the estimated responses, , is also shown as the
lowest trace on each plot. (a) Occluded microphone. (b) Gramophone horn. (c) Car cabin. (d) Reverberant room.

the frequency region below 300 Hz where the noise spectrum
is most significant and also where there are deep nulls in the
channel responses, where there is little signal above the noise.
However, the main features of the channels are identified cor-
rectly as desired.

VI. CONCLUSION

A new classification-based algorithm has been proposed for
the identification of the magnitude response of an unknown
channel from an observed reverberant single-channel speech
signal including additive noise. The algorithm is based on spec-
trum classification using channel robust RASTA-MFCC fea-
tures and a GMM-based classifier. There is a trained average
spectrum associated with each class that is used for the identifi-
cation of the channel. A previously published method based on
LTASS has been shown to be a special case of our algorithm. In
comparison to the baseline of the LTASS-basedmethod, the new

algorithm is more accurate and requires up to ten times less data
to estimate the channel response. Experimental results using
a wide range of simulated and measured acoustic impulse re-
sponses showed that channel magnitude responses can be iden-
tified with the new method to an accuracy of for all
noise types for dB. Even where there are errors,
the large-scale features, including overall spectral shape, spec-
tral peaks and valleys, of the channel responses are identified
correctly.
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