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ABSTRACT
The inverse-filtering of acoustic impulse responses (AIRs) can be
achieved with existing methods provided a good estimate of the
channel is available and the observed signals contain little or no
noise. Such assumptions are not generally valid in practical scenar-
ios, leading to much interest in the issue of robustness. In particular,
channel shortening (CS) techniques have been shown to be more ro-
bust to channel estimation error than existing approaches. In this pa-
per we investigate CS using the relaxed multichannel least-squares
(RMCLS) algorithm in the presence of both channel error and ad-
ditive noise. It is shown quantitatively that shortening the acous-
tic channel to a few ms duration is more robust than attempting to
equalize the channel fully, giving better resultant sound quality for
dereverberation. A key point of this paper is to provide an explana-
tion for this added robustness in terms of the equalization filter gain.
We provide simulation results and results for practical settings using
speech recordings and room impulse response measurements from
a real acoustic environment.

1. INTRODUCTION

Inverse-filtering of room acoustics is important for applications
such as speech dereverberation and listening room compensation.
Acoustic impulse responses (AIRs) generally have a nonminimum
phase characteristic such that a stable single-channel inverse does
not necessarily exist. Single-channel approximations to the inverse
problem can be obtained by the method of least squares (LS) but
they are of limited use in acoustic channel equalization [1]. When
multichannel observations are available, the multiple-input/output
inverse theorem (MINT) can provide an exact inverse provided the
AIRs are known exactly and do not share any common zeros [2].
In the presence of common zeros, MINT and its multichannel
least squares (MCLS) formulation [3] can be shown to completely
invert those factors that are not common and perform a LS inver-
sion of those parts with common zeros [4]. Subband and iterative
algorithms have also been proposed to reduce computational com-
plexity [5, 6], although the convergence rate of iterative algorithms
is often limited due to ill-conditioning of the problem.

Channel shortening (CS) techniques have been extensively de-
veloped in the context of digital communications to mitigate inter-
symbol and inter-carrier interference, whereby low-order taps are
unconstrained in a so-called relaxation window. A common frame-
work for CS can be found in [7]. In the equalization of acoustic
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systems, CS is used to remove audible echoes such that inaudible
ones remain, thereby relaxing the design constraints on an equaliza-
tion filter [8, 9]. A generalization of CS as the shortening/reshaping
of an AIR with p-norm optimization aims to exploit additional psy-
chacoustic effects in the design of the equalization filter [10].

Existing inverse-filtering techniques perform well providing the
AIR is time-invariant and estimated exactly. However, in many
practical scenarios, the AIRs can be disturbed by factors such as
source position and temperature that lead to the inversion of a poor
estimate of the system [11]. The inverse filter energy is often large,
where filter energy is defined as the `2 norm of the filter coefficients.
This amplifies small fluctuations in the AIR, leading to increased re-
verberation rather than a reduction. Efforts to reduce sensitivity to
error have involved constraining the filter energy at the expense of
reduced dereverberation [3, 1]. Filter gain can also be reduced by
introducing a modelling delay into the equalization filter so as to re-
lax causality constraints. Previous studies have also considered the
effect of noise from the recording apparatus and acoustic sources
upon inverse-filtering. It has been shown that constraints placed
upon the gain of the equalization filter can improve noise robust-
ness in addition to channel estimation error [3, 1]. Channel shorten-
ing algorithms have been shown to possess an additional desirable
property in that they tend to be more robust to channel estimation
errors than existing least-squares techniques [12].

In this paper we consider channel equalization using CS in the
presence of both channel estimation error and additive noise. We
investigate the robustness of the relaxed multichannel least-squares
(RMCLS) algorithm [12] as a function of the relaxation window
length and modelling delay. This investigation also provides an
insight into an empirical optimum relaxation window length, and
shows that RMCLS can be used for practical channel equalization
of real-world recordings. The filter gain is also investigated as a
function of relaxation window length so as to provide a link between
robustness enhancement with CS and explicit gain constraints.

The remainder of this paper is organized as follows. A problem
formulation is given in Sec. 2, the least-squares equalization algo-
rithms are reviewed in Sec. 3, performance evaluation is presented
in Sec. 4 and conclusions are given in Sec. 5.

2. PROBLEM FORMULATION

Consider a speech signal recorded in a noisy, reverberant environ-
ment with an array of microphones. The observed signals at micro-
phone m ∈ {1, 2, . . . ,M} are given by

xm(n) = Hms(n) + νm(n), (1)
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where s(n) = [s(n) s(n − 1) . . . s(n − 2L + 1)]T , xm(n) =
[xm(n) xm(n−1) . . . xm(n−L+1)]T , νm(n) = [νm(n) νm(n−
1) . . . νm(n − L + 1)]T are segments of the speech signal, noisy
observation and noise starting at sample n respectively and Hm

denotes the L × (2L − 1) filtering matrix derived from the AIR.
Segments are L samples in length. The filtering matrix

Hm =

26664
hm,0 . . . hm,L−1 . . . . . . 0

0 hm,0 . . . hm,L−1 . . . 0
...

. . .
. . .

. . .
. . .

...
0 . . . . . . hm,0 . . . hm,L−1

37775
(2)

is derived from the filtering vector hm = [hm,0 . . . hm,L−1]
T .

Impulse responses are assumed to be slowly time-varying such that
hm is independent of n. By concatenating all M outputs of (1), a
system of equations

x(n) = Hs(n) + ν(n) (3)

can be obtained using the following quantities

x(n) = [xT1 (n) xT2 (n) . . . xTM (n)]T , (4)

H = [HT
1 HT

2 . . . HT
M ]T , (5)

ν(n) = [νT1 (n) νT2 (n) . . . νTM (n)]T . (6)

The noise signals are assumed to be mutually uncorrelated with the
source signal. Equalization filters can be calculated by solving the
following system of equations

MX
m=1

hm(j) ∗ gm(j) = d(j) for j = 0, . . . , L+ Li − 2, (7)

where Li is the length of gm and

d(j) =

8<: 0 if 0 ≤ j < τ ;
1 if j = τ ;
0 otherwise,

(8)

represents the target response with delay τ . In matrix form, (7) can
be written as

H̃g = d, (9)
where d = [d(0) · · · d(L+Li−2)]T represents the target response
vector and

H̃ = [H̃1 · · · H̃M ], (10)

with H̃m an (L+ Li − 1)× Li filtering matrix of hm,

H̃m =

266666666666664

hm,0 0 · · · 0
hm,1 hm,0 · · · 0

...
. . .

. . .
...

hm,L−1 · · ·
...

...

0 hm,L−1

. . .
...

...
...

. . .
...

0 . . . 0 hm,L−1

377777777777775
. (11)

Let ĥ be an estimate of h that contains misalignment error, with
corresponding inverse filter ĝ and filtering matrix Ĝ defined in a
similar fashion to (5). The aim is to estimate the speech signal s(n)
from the noisy, reverberant observations using

ŝ(n) = Ĝx(n). (12)

3. LEAST-SQUARES EQUALIZATION

3.1. Least Squares (LS) and MINT

For single channel case, where M = 1, (9) is always an over-
determined system of equations. The LS solution that minimizes

J = ‖H̃g − d‖22, (13)

is given by
g = H̃†d, (14)

where {·}† denotes Moore-Penrose pseudo-inverse [13]. The multi-
channel least-squares (MCLS) formulation of the MINT algorithm
minimizes the cost function in (13) for M ≥ 2. Exact solution(s)
that satisfy (9) exist when the following two conditions are both
satisfied [2]:
(C1) Hm(z−1), the z-transforms of the multichannel AIRs hm do

not have any common zeros.
(C2) Li ≥ Lc, with Lc = d L−1

M−1
e and dκe denotes the smallest

integer larger than or equal to κ [14].

3.2. RMCLS

The RMCLS algorithm calculates a CS equalizer for AIRs by re-
laxation of the target function, which in the case of the MCLS for-
mulation of the MINT algorithm is a unit impulse with τ = 0. We
refer to MINT as full equalization. It has been shown that early re-
flections in the AIR are perceived to reinforce the direct sound and
are considered to be beneficial to speech intelligibility. The cost
function in (13) is therefore modified with a weighting function,

w = [1 . . . 1| {z }
τ

1 0 . . . 0| {z }
Lr

1 . . . 1]T(L+Li−1)×1, (15)

where Lr is the length of the relaxed window. The modified cost
function becomes

J = ‖W(H̃g − d)‖22, (16)

where W = diag{w} is a diagonal weighting matrix with w =
[w0 . . . wL+Li−2]

T , wi 6= 0 ∀ i, that is minimized by

g = (WH̃)†Wd. (17)

The weighting function in (15) contains entries exactly equal to 0
within the relaxed window such that in the minimization of (16), the
samples in the relaxed window are unconstrained. The first entry in
the relaxed window is set to 1 to avoid the trivial solution.

3.3. Robustness Issues

Experimental studies have revealed that existing least-squares
equalization algorithms are particularly sensitive to (a) noise and
(b) channel estimation error [3]. It has been shown that CS algo-
rithms are more robust to (a) [12] than existing LS algorithms and
that an additional constraint upon filter gain significantly improves
robustness to both (a) and (b) [3]. These findings lead to some
outstanding questions regarding the robustness of CS equalization
that are investigated in the following section:

1. The performance of a CS equalizer as a function of both
noise and channel estimation error.

2. Whether there exists an empirical optimum Lr for a given
condition in 1.

3. The relationship between and Lr and filter gain.
4. The feasibility of CS equalization for real measurements.
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Figure 1: PESQ PMOS results with fixed channel misalignment and
variable SNR as a function of Lr . Solid line: processed, dashed
line: unprocessed.

4. EVALUATION

The performance of RMCLS was evaluated under controlled SNR
and channel misalignment as a function of relaxation window length
Lr . In the case Lr = 1, RMCLS is identical to the MCLS imple-
mentation of MINT. In experiment 1, simulated results aim to pro-
vide insight into an empirical optimum Lr for the condition under
test. In experiment 2, a real-world experiment was conducted to
provide audio examples.

4.1. Experimental Setup 1

A room measuring 5 × 4 × 4 m was simulated using the source-
image method [15] with sampling frequency fs = 8 kHz, M = 2,
L = 1024. Gaussian distributed channel errors were generated pro-
portional to the filter taps such that the misalignment between the
true AIR, h, and corrupted AIR, ĥ, was [−∞, −40, −30, −20
and −10] dB. Equalization filters ĝ, with Li = Lc = 1023, were
calculated from ĥ with delay τ = 0. Noise was added at the re-
ceiver to obtain a received SNR in [10, 20, 30, 40, ∞] dB. For
each combination of channel error and additive noise level, a source
was placed in 20 random locations 2 m from a pair of receiving
microphones. A clean speech signal from the SAM database [16]
of duration 10 s was produced at the source and reverberant obser-
vations calculated with (3). The speech signal was estimated from
the noisy observations with (12). The clean and processed speech
signals were analysed using the objective speech quality measure
ITU-T P.862 (PESQ) [17] to estimate perceptual speech quality as
a predicted mean opinion score (PMOS) in the range 1–4.5. The
averaged results are summarized in Figs. 1 and 2, where solid and
dashed lines are the PESQ score of the processed and unprocessed
speech signals respectively. The average filter gain E{‖g(k)‖2},
where k enumerates the solution and E{·} denotes mathematical
expectation, is plotted in Fig. 3.

4.2. Experimental Setup 2

Two DPA 4060 microphones spaced by 16 cm were placed in a
5.14 × 3.16 × 3 m room with reverberation time (T60) of 170 ms.
A Genelec 8030a loudspeaker was placed 1.2 m away and channel
estimates, L = 1366 at fs = 8 kHz, were found with MLS [18];
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Figure 2: PESQ PMOS results with fixed SNR and variable channel
misalignment as a function of Lr . Solid line: processed, dashed
line: unprocessed.
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Figure 3: Mean equalization filter gain as a function of Lr .

higher sampling rates require optimization of the software imple-
mentation due to a large memory footprint. A speech signal from
the SAM database [16] was recorded using the same configuration.
Inverse filters of length Li = Lc = 1365 were calculated using
the MLS-derived channel estimates for a range of Lr and applied
to the recorded signals in a similar way to Experiment 1. It was
expected that source position and temperature variation in the room
contributed to the overall channel misalignment [3]. Microphone
self-noise and acoustic noise from air ducts etc. contributed to the
noise. PESQ results are shown in Table 1. 1

4.3. Discussion

The results in Figs. 1 and 2 represent the full range of channel short-
ening values. When Lr = 1, RMCLS is equivalent to the MCLS
implementation of MINT; when Lr = Li, the equalizer taps take
random values as they are entirely unconstrained.

In the case where SNR=∞ dB, misalignment is −∞ dB, and
Lr = 1, PMOS takes the maximum value of 4.5 as the AIR is per-
fectly inverted. The introduction of CS in this case is detrimental
to the quality of the processed signal. The addition of noise or mis-
alignment leads to an increase in the empirical optimum Lr , where
noise has a more significant influence over the speech quality. Pro-
viding the SNR is greater than ∼ 30 dB, channel equalization can
benefit significantly from CS; below 30 dB CS does not give im-
proved results but are generally no lower than the unprocessed val-
ues. In all cases, PMOS scores reach a maximum and converge to

1Examples of clean, unprocessed and processed speech can be found at
http://www.commsp.ee.ic.ac.uk/∼mrt102/projects/samples.html.
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Table 1: PESQ PMOS results for a real-world measurement.

Unproc. Lr=1 Lr=50 Lr=100 Lr=200 Lr=400
(0 ms) (6.25 ms) (12.5 ms) (25 ms) (50 ms)

2.6 2.2 3.0 3.1 2.9 2.6

the unprocessed PMOS with increasing Lr . As a rule-of-thumb, a
relaxation window in the order of 10 ms provides better results than
attempting full equalization.

The inverse-filtering approach in [3] suggests that increased ro-
bustness to channel error and noise is achieved by reducing the filter
gain. The results in Fig. 3 show the mean filter gain for Experiment
1 as a function of Lr and reveal that it decreases almost monoton-
ically with increased channel length, with the most pronounced ef-
fect within the first 10 ms. This is largely consistent with the PMOS
scores in this experiment. The advantage of CS over explicit gain
constraints is that CS forces errors to lie only within the relaxation
window where they are less perceivable. It was also suggested in [3]
that the introduction of a modelling delay, such that τ > 0, reduces
gain by relaxing causality constraints. The same experiment was
conducted for τ = L/2, giving marginally improved PMOS scores
but with similar characteristics as those in Figs. 1 and 2.

The audio results of Experiment 2 are consistent with those of
Experiment 1. When Lr = 1, the audio samples exhibit a much
greater noise floor than the unprocessed signals and the reverbera-
tion time appears to be increased. This is reflected in the low PMOS
score of 2.2. As in Experiment 1, a small amount of channel short-
ening significantly improves the results. A high value of Lr in-
troduces noticeable spectral distortion caused by the unconstrained
filtering within the relaxation window. PMOS peaks at 3.1 when
Lr = 100. Perceptually the noise drops, dereverberation becomes
appreciable and the talker appears closer to the microphone.

5. CONCLUSIONS

An experimental study into the robustness of the RMCLS channel
shortening algorithm for acoustic channel equalization has been
conducted. Building upon the known result that CS improves ro-
bustness to channel misalignment, simulated and real-world exper-
iments considered the additional problem of measurement noise.
Objective speech quality measurements with PESQ reveal that
channel inversion is more sensitive to noise than channel misalign-
ment, and that an empirical optimum exists that is dependent upon
the level of distortion. It was also shown that channel shortening
reduces the equalizer gain, which is already known to increase the
robustness of a channel equalizer. These results motivate an ana-
lytical study into the performance of channel shortening algorithms
with noise and channel misalignment.
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