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ABSTRACT
Accurate estimation of glottal closure instants (GCIs) and
opening instants (GOIs) is important for speech processing
applications that benefit from glottal-synchronous process-
ing.

This paper proposes a novel improvement to the DYPSA
framework, based upon a multiscale analysis technique and
an accurate estimation of glottal volume velocity. This re-
places the linear prediction residual for candidate selection
and enables the reliable detection of both GCI and GOI can-
didates. A two-stage dynamic programming process then de-
tects the GCIs and removes them from the candidate set, be-
fore detecting GOIs from the remaining candidates. A post-
processing step improves GOI detection using the estimated
GCIs.

Evaluation against hand-labelled data on a large speech
database shows that GCI detection is marginally improved
compared with original DYPSA at 96% but, more impor-
tantly, shows that GOI detection can be achieved to a similar
accuracy of 95%.

1. INTRODUCTION

In voiced speech, the primary acoustic excitation normally
occurs at the instant of vocal fold closure which is defined
as the glottal closure instant (GCI). This marks the start of
the closed phase, during which there is little or no airflow
through the glottis. The GCIs are difficult to locate in the
recorded speech signal due to spectral shaping by the vocal
tract. Following the closed-phase, the vocal-folds open, often
creating a smaller secondary excitation in the source signal
at the time defined as the glottal opening instant (GOI).

The detection of glottal closure instants (GCIs) in voiced
speech is important for glottal-synchronous speech process-
ing algorithms such as pitch tracking, prosodic speech mod-
ification, speech dereverberation, and certain areas of speech
synthesis. Identification of glottal opening instants (GOIs) is
necessary for closed-phase linear predictive coding [1] and
pathological speech analysis that relies on the ratio of the
open phase to the cycle period, termed the open quotient
(OQ) [2].

Automatic identification of GCIs has been an aim of
speech researchers for many years for which numerous tech-
niques have been proposed. A widely used approach is the
detection of discontinuities in a linear model of speech pro-
duction [3, 4]. The use of a group delay measure to deter-
mine the acoustic excitation instants was first proposed in [5]
and later refined in [6] and [7]. The method calculates the

frequency-averaged group delay over a sliding window ap-
plied to the linear prediction residual. It has been found to
be an effective method for locating the GCIs from the linear
prediction residual of speech. The technique was employed
in the DYPSA algorithm [8] which provides improved GCI
estimates by employing phase-slope projection [9] and dy-
namic programming (DP).

Glottal opening instants are a more difficult to detect ow-
ing to the small effect they cause in both speech signals and
the corresponding linear prediction residual, e(n). In this pa-
per, we propose a new preprocessor that is novel in i) the
use of a new preemphasis technique in the estimation of the
derivative of glottal flow, u′(n), and ii) application of a mul-
tiscale product [10] for the detection of discontinuities in
u′(n). Using the group delay function, a candidate set is de-
rived, then a two-stage dynamic programming is performed.
The first stage detects the GCIs, which are of high amplitude
compared with GOIs, that are then removed from the candi-
date set. The second DP stage detects a preliminary set of
GOIs, upon which a postprocessing stage removes erroneous
detections and inserts missing GOIs using the periodicity of
the GCIs as a reference. The new algorithm’s performance is
evaluated against a hand-labelled database of speech signals
and shows that GCI detection is marginally improved over
the existing version but, more importantly, that GOIs can be
detected to a similarly high degree of accuracy.

The remainder of this paper is organized as follows: Sec-
tion 2 describes the enhanced inverse-filtering method for de-
riving the the approximate glottal flow derivative. Section 3
reviews the operation of the DYPSA algorithm application
and describes the proposed preprocessing and GOI postpro-
cessing stages. Evaluation results of the GCI and GOI detec-
tion against hand-labelled data is presented in Section 4 and
conclusions are drawn in Section. 5.

2. EXCITATION IN VOICED SPEECH

Voiced excitation instants are difficult to locate in speech sig-
nals because of spectral shaping by the vocal tract transfer
function, V (z). Detection of excitation instants is more easily
performed on an estimate of the excitation signal by remov-
ing the spectral contribution of the vocal tract.

2.1 The Source-Filter Model
Consider the source-filter model of speech production [3].
Let s(n) be a frame of voiced speech with z-transform S(z)
such that

S(z) = D(z)G(z)V (z)R(z) = U ′(z)V (z), (1)
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Figure 1: a) Time-domain excitation signal, ū′(n), b) Time-
domain inverse excitation signal, φ(n), c) Frequency-domain
excitation signal, Ū ′(e jω) (blue) and 1st order integrator
(red), d) Frequency-domain inverse excitation signal, Φ(e jω)
(blue) and 1st order differentiator (red).

where D(z) is a periodic sequence of unit impulses, G(z) is a
glottal pulse shaping filter, V (z) is an all-pole vocal tract filter
and R(z)' 1− z−1 models lip-radiation. The term D(z)G(z)
and the differential effect of R(z) are usually combined and
described as the glottal volume flow derivative, U ′(z).

In order to determine the excitation signal, the all-pole
filter V (z) is estimated with LPC; however, LPC cannot
distinguish between the spectral contribution of V (z) and
U ′(z). Consider a preemphasis filter, Φ(z), compensates for
G(z)R(z), such that

S̃(z) = S(z)Φ(z)' D(z)V (z), (2)

where S̃(z) is the preemphasised speech signal. Modelling
G(z)R(z) as a pole near unity, Φ(z) is usually chosen to be
single zero placed below 50 Hz. As the term D(z) is approx-
imately white compared with vocal tract filter, V (z) can be
estimated with LPC as V̂ (z)'V (z).

It is common to derive a linear prediction residual, E(z),
as the result of inverse-filtering S̃(z) with V̂ (z),

E(z) =
S̃(z)
V̂ (z)

=
D(z)V (z)

V̂ (z)
' D(z)+η(z), (3)

where η(z) is an additive noise term. E(z) is useful for glottal
closure detection [8] and coding [11] but the noise power of
η(z) is significant enough to mask any evidence of glottal
opening.

Many models of the glottal excitation waveform such
as [12, 13, 4] model U(z) or U ′(z) where the effect of glot-
tal opening constitutes a more significant contribution. In
order to approximate U ′(z), an inverse-filtering operation is
performed on S(z) and not S̃(z) as in (3),

Û ′(z) =
S(z)
V̂ (z)

=
U ′(z)V (z)

V̂ (z)
'U ′(z)+η(z). (4)
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Figure 2: a) u′(n) derived with proposed preemphasis filter,
b) u′(n) derived with standard preemphasis filter, c) e(n)

Though theoretically valid, this relies on V̂ (z) being a good
approximation to V (z), which is in itself reliant on the pre-
emphasis filter fully removing the spectral effects of U ′(z).
This presents a contradiction as U ′(z) should be known prior
to the LPC analysis. The following subsection describes an
approach that addresses this problem.

2.2 Improved Preemphasis
Let us assume that the single pole model of u′(n), and hence
the single zero preemphasis filter, are over-simplified. Con-
sider instead a ‘prototype’ waveform that represents an av-
erage excitation waveform, ū′(n). From this, an enhanced
preemphasis filter, φenh(n) with z-transform Φenh(z), can be
derived with least-squares inverse filtering that satisfies

φenh(n)∗ ū′(n)' δ (n). (5)

The waveform ū′(n) is calculated by averaging glottal exci-
tation cycles of û′(n) derived in (4) from a large database
of voiced speech so as to attenuate noise and any remaining
effects of V (z) not removed by inverse filtering,

ū′(n) = ∑
r

u′r(n), (6)

where r is the cycle index and u′r(n) is a glottal cycle in
u′(n). The voiced speech is obtained from the APLAWD
database [14] which contains contemporaneous EGG and
audio recordings of ten repetitions of five phonetically-
balanced English sentences spoken by five male and five fe-
male talkers, sampled at 20 kHz. The SIGMA algorithm [15]
detects GCIs from the EGG signal which are refined by find-
ing the maximum in e(n) that lies in the vicinity of ± 0.5 ms
of each SIGMA-derived GCI. This corrects for small devia-
tions in the EGG-to-speech time alignment in the database.

The averaging operation is rendered scale and amplitude
independent by first resampling each cycle to a constant 20
ms in length and normalizing their A-weighted energy [16].
All utterances of one sentence (100 in total) were excluded
from the training data for use in evaluation in Section 4.
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Figure 3: a) Original DYPSA preprocessor whose output is a linear prediction residual, e(n). b) Enhanced DYPSA preproces-
sor where Φenh(z) is derived from an average glottal waveform and whose output is the multiscale product of the derivative of
glottal volume velocity, u′(n).

Figure 1 shows a) ū′(n), b) its least-squares inverse filter
and c), d) their corresponding frequency-domain plots. Plot
a) exhibits little evidence of glottal opening as the varying
open quotients have averaged to a smoothly-varying wave-
form. Strong excitation is present at the instants of glottal
closure towards the ends of the cycle as they are aligned so
that they coincide and reinforce. In b), only the first few
taps of the inverse filter are shown as it is close to a perfect
differentiator with the majority of taps close to zero. The
frequency domain plots in c) and d) show straight slopes of
slightly greater gradient than 6 dB/oct predicted by the tradi-
tional single pole model.

Figure 2 shows three types of excitation signal: a) u′(n)
derived using Φenh(n) preemphasis, b) u′(n) derived with
conventional preemphasis and c) the linear prediction resid-
ual, e(n). The key improvements in (a) compared with (b) are
the reduced noise during the closed phase (the flat portion of
the waveform) and the reduced overshoot at the glottal clo-
sure instant caused by improved estimation of the vocal tract
filter coefficients. Though glottal closure instants are clearly
seen as spikes in (c), little evidence of glottal opening is seen
as it is buried in the noise floor.

3. CANDIDATE GENERATION AND SELECTION

The current release of DYPSA [8] derives a GCI candidate
set by peak detection in the linear prediction residual, e(n),
using a group delay function [9]. We propose an improve-
ment in the form of a new method for deriving a candidate
set that detects peaks in the multiscale product of u′(n). This
section describes the main components of the DYPSA algo-
rithm, followed by the proposed preprocessor enhancements
and the GOI postprocessing stage.

3.1 The DYPSA Algorithm
The DYPSA algorithm comprises three main parts:

(i) Group Delay Function – defined as the average slope
of the unwrapped phase spectrum of the short time Fourier
transform of the prediction residual. GCI candidates are
selected based on the negative-going zero crossings of the
group delay function.

(ii) Phase-Slope Projection – introduced to generate
GCI candidates when a local maximum is followed by a lo-
cal minimum without crossing a zero. The midpoint between

these is identified and projected onto the time axis with unit
slope. In this way, GCIs whose negative-going slope does
not cross the zero point (those missed by the group delay
function) are identified.

(iii) Dynamic Programming (DP) – uses known char-
acteristics of voiced speech (such as pitch consistency and
waveform similarity) and forms a cost function to select a
subset of the GCI candidates that are most likely to corre-
spond to the true ones. The subset of candidates is selected
according to the minimisation problem defined as

min
Ω

|Ω|

∑
r=1

λ
T cΩ(r), (7)

where Ω is a subset of GCIs of size |Ω|, λ is a vector of
weighting factors and cΩ(r) is a vector of cost elements eval-
uated at the rth GCI of the subset.

3.2 The Enhanced Preprocessor
The derivative of glottal volume velocity, u′(n), is first de-
rived from s(n) as described in Section 2. The stationary
wavelet transform (SWT) reinforces discontinuities in a sig-
nal by calculating its derivative at multiple dyadic scales.
The technique is described in detail in [15] where it is ap-
plied to the electroglottogram (EGG) signal for the detection
of glottal closure and opening instants.

The dyadic wavelet transform [17] involves iteratively
decomposing a signal into decimated subbands. Let filters
g(n) and h(n) have high- and low-pass characteristics respec-
tively. Filterbank trees using wavelets with one vanishing
moment detect discontinuities in a signal’s smoothed deriva-
tive, displaying maxima at the discontinuity across multiple
scales [18]. As the signal traverses deeper into the tree of
filter banks, the derivative is estimated at increasing levels of
smoothing as shown in Fig. 4.

The dyadic wavelet transform is dyadic in both scale and
time; however, as we only wish to determine the projection
of x(n) on different subspaces, the filters g(n) and h(n) are
instead upsampled by 2 at each iteration to implement the
change of scale to form g j(n) and h j(n) at scale j. This over-
complete representation of a signal is commonly referred to
as the Stationary Wavelet Transform (SWT).

Denote the wavelet φs(t) = (1/s)φ(t/s), where s =
2 j, j ∈ Z. The SWT of signal x(n), 1 ≤ n ≤ N at scale j
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Figure 4: Stationary wavelet transform, for decomposing a
signal x(n) into detail and approximation components with-
out decimation.

is
W2 j x(n), j = 1,2, . . . ,J−1, (8)

where J = log2N, plus the remaining coarse scale informa-
tion denoted SJ(n). This is a simple linear filtering operation

ds
j(n) = W2 j x(n) = ∑

k
g j(k)as

j−1(n− k), (9)

where ds
j(n) is the SWT of x(n) at scale j and as

j−1 are the ap-
proximation coefficients at scale j−1. The multiscale prod-
uct, p(n), is formed by

p(n) =
j1

∏
j=1

d j(n) =
j1

∏
j=1

W2 j x(n) (10)

where it is assumed that the lowest scale to include is al-
ways 1. The de-noising effect of the h(n) at each scale in
conjunction with the multiscale product means that p(n) is
near-zero except at discontinuities across the first j1 scales
of x(n). The value of j1 is bounded by J, but it is often no
greater than j1 = 5 as the region of support (RoS) of hi(n) and
gi(n) becomes prohibitively large, demanding high process-
ing resources and smoothing adjacent discontinuties. j1 = 3
is a good compromise [19].

Using the same approach as existing DYPSA, the group
delay function, τ(n), is determined for p(n), whose negative-
going zero crossings locate peaks in the multiscale product.
Phase slope projection locates missed zero crossings, provid-
ing the complete candidate set ncand

r .

3.3 GOI Postprocessing
The high-amplitude GCIs, nc

r , are extracted from the candi-
date set by the DYPSA DP. A new candidate set is defined,

{nocand
r }= {nccand

r }4{nc
r} (11)

where 4 denotes the symmetric difference (union minus in-
tersection) of the two sets. This candidate set is fed into an
identical DP stage to find a set of detected GOIs, no

r . A fi-
nal post-processing stage removes erroneous GOIs and adds
missing detections using the GCI periodicity as a reference.

Figure 5 shows a) the glottal volume flow derivative,
u′(n), b) the group delay function, τ(n), and c) the multi-
scale product, p(n), with overlayed GCIs (green), GOIs (red)
and candidates (cyan). Candidates corresponding to GCIs
show negative-going zero crossings with unit negative slope,
whereas GOI candidates would not be identified from τ(n)
without phase slope projection. GCIs are straightforward to
identify from p(n) by eye but GOIs are less apparent, yet the
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Figure 5: a) Excitation signal, u′(n), b) Group Delay Func-
tion, τ(n) c) Multiscale Product, p(n), with overlayed GCIs
(green4), GOIs (red5) and candidate set (cyan ◦).

algorithm successfully identifies them. A number of erro-
neous candidates with high cost, c, are removed by dynamic
programming.

4. PERFORMANCE ASSESSMENT

The APLAWD sentence set excluded from the calculation of
ū′(n) was analysed with the proposed algorithm.

An evaluation strategy identical to that defined in [8] was
employed, depicted in Figure 6. Detection rate is the per-
centage of all reference GCI periods for which exactly one
GCI is estimated. Accuracy, σ , and bias, µ , are respectively
the standard deviation and mean of the error, ζ , between es-
timated and reference GCIs, when exactly one GCI is esti-
mated in a reference GCI period. False alarm rate is the
percentage of all reference GCI periods for which more than
one GCI is estimated and Miss rate is the percentage of all
reference GCI periods for which no GCIs were estimated.

The results are shown in Table 1, showing marginal
improvement in GCI detection over the current version of
DYPSA. GOI detection shows similarly high identification
rates but with around half the identification accuracy.

5. CONCLUSIONS

A novel enhancement to the DYPSA algorithm has been pro-
posed, enabling accurate detection of both glottal closure and
opening instants from speech signals. A new preprocessor
replaces the linear prediction residual with a signal derived
from the multiscale product of an estimate of glottal volume
flow derivative. Using DYPSA’s existing group delay func-
tion to generate a candidate set, a two-stage dynamic pro-
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Table 1: Performance comparison current and improved (I)
DYPSA algorithms on the APLAWD database.

ID Miss FA Bias, ID
Rate Rate Rate µ Accuracy, σ

(%) (%) (%) (ms) (ms)
DYPSA GCI 96.37 1.73 1.89 0.09 0.68
I. DYPSA GCI 96.41 1.33 2.25 0.08 0.58
I. DYPSA GOI 95.00 1.90 3.09 0.02 1.09

gramming stage first detects GCIs, then removes them from
the candidate set before a second dynamic programming step
detects GOIs. A post-processing stage removes erroneous
detections and inserts missing GOIs using the GCI periodic-
ity as a reference. A marginal improvement in GCI detection
is achieved, with a 96% detection rate and 0.68 ms identifi-
cation error but, more importantly, GOI detection is achieved
with a 95% detection rate and 1.09 ms error.
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