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ABSTRACT
Accurate estimation of glottal closure instants (GCIs) in voiced
speech is important for speech analysis applications which bene-
fit from glottal-synchronous processing. Electroglottograph (EGG)
recordings give a measure of the electrical conductance of the glot-
tis, providing a signal which is proportional to its contact area. EGG
signals contain little noise or distortion, providing a good refer-
ence from which GCIs can be extracted to evaluate GCI estimation
from speech recordings. Many approaches impose a threshold on
the differentiated EGG signal which provide accurate results dur-
ing voiced speech but are prone to errors at the onset and end of
voicing; modern algorithms use a similar approach across multi-
ple dyadic scales using the stationary wavelet transform. This pa-
per describes a new method for EGG-based GCI estimation named
SIGMA, which is based upon the stationary wavelet transform, peak
detection with a group delay function and Gaussian Mixture Mod-
elling for discrimination between true and false GCI candidates.

In most real-world environments, it is necessary to estimate
GCIs from a speech signal recorded with a microphone placed
at some distance from the talker. The presence of reverberation,
noise and filtering by the vocal tract render GCI detection from
real speech signals relatively difficult to achieve compared with the
EGG, so EGG-based references have often been used to evaluate
GCI detection from speech signals. Evaluation against 500 hand-
labelled sentences has shown an accuracy of 99.35%, a 4.7% im-
provement over a popular existing method.

1. INTRODUCTION

Identification of glottal closure instants (GCIs) in voiced speech is
important for speech processing algorithms such as prosodic speech
modification [1], speech dereverberation [2], glottal-synchronous
processing in speech synthesis [3] and some fields of speech ther-
apy [4]. A method for detecting GCIs is through the examination of
the Electroglottograph (EGG) (or Laryngograph) signal [4], which
is a measurement of the electrical conductance of the glottis. It
passes a low-voltage, high-frequency signal through a pair of elec-
trodes on the subject’s neck in line with the glottis and measures
the conductance. The signal is proportional to the glottal contact
area, whose derivative (DEGG) during voiced speech is an impulse
train-like signal. An example of a voiced speech segment, the cor-
responding EGG recording and its derivative is shown in Fig. 1.
Many approaches exploit this property [5, 6, 7, 8] in conjunction
with dynamic thresholds to obtain an accurate estimate of GCIs
during voiced speech. However, they are often prone to errors at
the onset and end of voicing as shown in Section 2 using the High-
Quality Tx (HQTx) algorithm [8] as an example.

Recent approaches have applied multiscale analysis to detect
GCIs as singularities in the EGG signal [9] and from the speech
signal [10]. This paper describes the Singularity detection In EGG
with Multiscale Analysis (SIGMA) algorithm, which uses the same
back-end processing. Thereafter, peak detection is performed on
the multiscale product using a group delay approach [11], where the
negative-going zero crossings of the average slope of the negative
unwrapped phase of the Fourier transform of the EGG derivative are
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Figure 1: Speech signal, the corresponding EGG signal and the
EGG time derivative. In this instance, the negative peaks due to
glottal opening are very weak.

identified, calculated over a sliding window. This method has been
applied previously to GCI estimation from an LP residual [12] and it
circumvents the need for dynamic thresholds as the method is based
entirely upon phase information. A number of false candidates may
arise and these are removed by modelling three-dimensional feature
vectors as Gaussian distributions and clustering with an unsuper-
vised EM algorithm. The result is a parameterless algorithm which
makes no assumptions about the nature of the EGG signal other than
the maximum glottal frequency and that a GCI is characterized by
a singularity. It may therefore have many further uses, making it
suitable for singularity detection in almost any signal.

In practical applications, GCIs are usually derived from an es-
timation of the excitation source from real speech recordings which
can be distorted in combination of four distinct ways:

(i) Filtering by the vocal tract. This may be modelled as an all-
pole filter by LP analysis [13] and then inverse-filtered to give
an LP residual. The residual contains strong spikes at times of
glottal closure which are a good indication of their true loca-
tion.

(ii) Filtering by the nose and vocal articulators. Nasal phonemes
(such as /m/) and the use of the tongue, teeth and lips can in-
troduce zeros into the vocal transfer function. Methods for
blindly determining poles in any transfer function [13] are
generally more accurate than those for determining zeros [14].
In addition, full knowledge of the locations of zeros may not
always be helpful as they are not necessarily minimum phase,
leading to unstable inverse filters and the need for specialized
inversion algorithms [15].
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Figure 2: A speech signal (a), EGG signal (b), its time derivative
(c) and HQTx GCI estimation markers at the end of a voiced speech
segment. The first three GCIs are identified correctly (marked ◦) but
the last four (marked×) are erroneous. In this instance, the negative
peaks due to glottal opening are significant.

(iii) Background noise. This can be periodic (computer fans), im-
pulsive (doors closing) or quasi-periodic (other talkers). Any
type of noise can cause spurious peaks in the LP residual and
may fool many algorithms into recognising them as GCIs.

(iv) Reverberation. Sound reflected from walls, desks and other
hard objects cause further unwanted peaks in the LP residual,
which may be indistinguishable from the true GCIs.

Distortion by (iii) and (iv) may be avoided with recordings in
anechoic environments, but this is unrealistic for real-world appli-
cations. Estimation and inversion of the all-pole vocal tract filter
is a powerful technique but the effect of zeros in the transfer func-
tion is usually ignored. Recent developments in speech-based GCI
algorithms such as Multichannel DYPSA [16] give good GCI es-
timation from noisy, reverberant speech recordings and have been
shown to work well with glottal-synchronous algorithms [17]. GCI
estimation from distorted speech recordings is therefore viable, but
with the increased interest in glottal-synchronous processing there
has been a corresponding demand for more accurate GCI detection
algorithms. The proposed algorithm uses EGG signals to provide
‘ground-truth’ GCIs, against which speech-based GCI detection al-
gorithms may be evaluated.

This paper is organized as follows: Section 2 reviews the inter-
pretation of an EGG signal. Section 3 describes multiscale analysis
and the use of the group delay function for peak detection in the
multiscale product. The proposed SIGMA algorithm and the HQTx
algorithm are evaluated against 500 hand-labelled sentences in Sec-
tion 4 and conclusions are drawn in Section 5.

2. INTERPRETING EGG RECORDINGS

A voiced speech signal, the corresponding time-aligned EGG signal
and the EGG derivative are shown in Fig. 1. Time alignment is
achieved by measuring the source-microphone propagation distance
and calculating the delay. The convention used in this paper is for a
positive EGG signal to correspond to high contact area of the glottis.
During glottal closure there is a large positive transient in the EGG
waveform and a corresponding spike in the derivative at each GCI.

The detection of GCIs in the middle of a segment of voiced
speech is a relatively straightforward task as the positive peaks in
the derivative are distinct. Difficulty arises at end of voiced speech
when the air velocity can drop to a point where the glottis no longer
snaps shut but is “flapping in the breeze” [18], as seen in Fig. 2.
In this region, the EGG signal is a damped sinusoid of decreasing

frequency with low corresponding speech energy. In the example
of Fig. 2, the hand-labeller would not mark any GCIs from 20 ms
onwards as there is no visible instant which defines the periodicity.
However, the HQTx algorithm flags a number of erroneous GCIs
until the amplitude of the DEGG signal drops below a threshold
level. The proposed algorithm is robust to these errors.

Large changes in amplitude of EGG can also cause errors in dy-
namic threshold-based algorithms, sometimes causing missed peaks
if the threshold gain is set too high, or run the risk of flagging er-
roneous GCIs from noise if it is set too low. GCIs can sometimes
be unclear when they are spread out in time [9] which is also often
difficult to detect with dynamic thresholds but this is also addressed
by the proposed approach.

A glottal closure instant must always be followed by a glottal
opening instant (GOI), which manifests itself as a weaker peak of
opposite sign in the EGG derivative [5]. GOIs can be useful for
closed-phase analysis of speech signals [19] and determining open
quotients (OQ) [7]. Some of the aforementioned methods attempt
to detect GOIs with the same approach as GCI detection, but it is
sometimes impossible as the GOI can be buried in noise and ren-
dered undetectable. Comparing EGG time derivatives in Figs. 1
and 2, the negative peaks caused by GOIs are almost non-existent
in the former case and very clear in the latter. Although GOI detec-
tion is outside the scope of this paper, our robust GCI detector can
provide much useful information for this task.

3. SINGULARITY DETECTION WITH SIGMA

Detection of glottal activity from an EGG signal involves isolating
regions of discontinuty (or singularities). Finding the derivative of
the EGG signal is a useful approach, where strong peaks and weaker
peaks of opposite sign correspond to glottal closure and opening
respectively. True and false peaks are often discriminated by as-
sessing the peak amplitude of the EGG derivative (DEGG) and a
longer-term measure of the change in EGG amplitude based upon
some predetermined window.

3.1 Multiscale Analysis
Let us consider a generalisation of this approach. The dyadic
wavelet transform [20] involves iteratively decomposing a signal
into decimated subbands; a three-level decomposition is shown in
the upper plot of Fig. 3, where the downsampling and filtering op-
erations split the signal into octave-wide subbands.

The filters g(n) and h(n) have high- and low-pass character-
istics respectively. Singularities can be detected by finding the re-
gions in which the maxima of the multiscale decompositions, d j(n),
converge. A wavelet with n vanishing moments is a multiscale dif-
ferential operator of order n with some degree of smoothing, so a
wavelet with one vanishing moment detects discontinuities in a sig-
nal’s smoothed derivative, displaying maxima at the discontinuity
across multiple scales [21]. It is shown in [22] that one vanishing
moment is suitable for singularity detection in EGG signals; as the
signal traverses deeper into the tree of filter banks, the derivative
is estimated at increasing levels of smoothing. Biorthogonal spline
wavelets with one vanishing moment are often chosen for singular-
ity detection as they approximate the first derivative of a Gaussian
function [23], giving the smoothing and differention we require.

The dyadic wavelet transform is dyadic in both scale and time;
however, in this case we only wish to determine the projection of
x(n) on different subspaces, so we do not decimate as shown in
the lower plot of Fig. 3. Instead, the filters g(n) and h(n) must be
upsampled by 2 at each iteration to implement the change of scale
to form g j(n) and h j(n) at scale j.

This overcomplete representation of a signal is discussed in de-
tail in [21] and is given many names including: Stationary Wavelet
Transform (SWT), Algorithme à Trous (Hole Algorithm), Redun-
dant Wavelet Transform (RWT) and Undecimated Wavelet Trans-
form (UWT). The result is a signal whose length is unchanged
throughout the filterbank tree, allowing sample-by-sample multipli-
cation of the signal at different scales to find converging maxima.
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Figure 3: Three-level dyadic signal decomposition on a signal x(n)
into detail d j(n) and approximation a j(n) parts. The upper fig-
ure is the dyadic wavelet transform, where each iteration involves a
downsampling by a factor of two. The lower figure is the station-
ary wavelet transform, where no downsampling is performed on the
signal but the filters gs

j(n) and hs
j(n) (s indicating stationary) are

instead upsampled by 2 upon each iteration.

Denote the wavelet ψs(t) = (1/s)ψ(t/s), where s = 2 j, j ∈ Z.
The SWT of the EGG signal, x(n), 1 ≤ n ≤ N at scale j is

W2 j x(n), j = 1,2, . . . ,J−1, (1)

where J = log2N, plus the remaining coarse scale information de-
noted SJ(n). This is a simple linear filtering operation

ds
j(n) = W2 j x(n) = ∑

k
g j(k)as

j−1(n− k), (2)

where ds
j(n) is the SWT of x(n) at scale j and as

j−1 are the approx-
imation coefficients at scale j−1. The multiscale product, p(n), is
formed by

p(n) =
j1

∏
j=1

d j(n) =
j1

∏
j=1

W2 j x(n) (3)

where it is assumed that the lowest scale to include is always 1. The
de-noising effect of the h(n) at each scale in conjunction with the
multiscale product means that p(n) is near-zero except at discon-
tinuities across the first j1 scales of x(n) as depicted in the centre
plot of Fig. 4. The function p(n) can be half-wave rectified to con-
tain peaks pertaining only to GCIs, p+(n), or GOIs, p−(n), which
aids the group delay function in the following step. The value of j1
is limited by J, but it is often no greater than j1 = 5 as the region
of support (RoS) of hi(n) and gi(n) becomes prohibitively large,
demanding high processing resources and smoothing adjacent dis-
continuties. j1 = 3 is a good compromise [24].

3.2 Group Delay Function
A group delay function (GD) was used in [11] for detection of peaks
in linear prediction residuals of speech and can be applied to locate
spikes in any signal if their minimum separation is known. In the
case of GCIs, the maximum frequency of the singularities due to
GCIs is in the order of 400 Hz, leading to a window size of 2.5 ms.

Consider the multiscale product, p+(n), and an R-sample win-
dowed segment beginning at sample n

xn(r) = w(r)p+(n+ r) for r = 0, . . . ,R−1 (4)

The Fourier transform of xn(r) at a frequency ω = 2kπ/R is

Xn(k) =
R−1

∑
r=0

xn(r)e− j 2π

R rk (5)
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Figure 4: EGG waveform, multiscale product and Group Delay
Function. Candidates are marked ‘×’ and chosen candidates are
marked ‘◦’. The ideal slope, marked dashed on the lowest plot, is
the simulated slope from perfect impulses at the GCIs.

where k can vary continuously. The group delay of xn(r) is given
by [12]

τn(k) =
−darg(Xn)

dω
= ℜ

(
X̃n(k)
Xn(k)

)
(6)

where X̃n(k) is the Fourier transform of rxn(r). If xn(r) = δ (r−r0),
where δ (r) is a unit impulse function, it follows from (6) that
τn(k) ≡ r0∀k. In the presence of noise, τn(k) becomes noisy, so
an averaging procedure needs to be performed over k; different ap-
proaches are reviewed in [11]. The Energy-Weighted Group Delay
was deemed the most appropriate [16], defined as

γ(n) =
∑

R−1
k=0 |Xn(k)|2τn(k)

∑
R−1
k=0 |Xn(k)|2

− R−1
2

. (7)

Manipulation yields the simplified expression

γ(n) =
∑

R−1
r=0 rx2

n(r)

∑
R−1
r=0 x2

n(r)
− R−1

2
(8)

which is an efficient time-domain formulation and can be viewed
as the ‘centre of energy’ of xn(r), bounded in the range [−(R−
1)/2,(R−1)/2]. The location of the negative-going zero crossings
of γ(n) give an accurate estimation of the location of a peak in a
function as depicted in the lower plot of Fig. 4. Additionally, if
a peak is spread in time then the group delay will tend to find its
centre, which is particularly useful in the case of the ‘redoubled’
GCI discussed in [9].

3.3 Candidate Selection
The negative-going zero crossings of the γ(n) will usually occur
at the location of the true GCIs, with additional false crossings
during unvoiced speech, silence and occasionally between GCIs.
Let the number of candidates be Mcand occurring at samples ncand

m ,
m = {0,1, . . . ,Mcand −1}. Three measurements construct a feature
vector, fm = [ fm,1 fm,2 fm,3]T , from which is derived a feature ma-
trix, F = [f0 f1 . . . fMcand−1]. The measures are:

(i) Consistency of the group delay gradient. In the case of an
impulse, γ(n) is a negative unit slope, with a zero crossing at
the location of the impulse and width R samples, as shown in
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Figure 5: A typical distribution of feature vectors for a segment of
voiced/unvoiced/silent speech. The chosen cluster, whose members
are marked ‘◦’ is the one whose mean f3 is furthest from the origin.
Rejected candidates are marked ‘×’.

the lower plot of Fig. 4. Spread pulses or noise will cause the
slope to deviate from the ideal shape, denoted I(n). The RMS
error between ideal and measured is calculated:

fm,1 =

√√√√ 1
R

(R−1)/2

∑
n=−(R−1)/2

(γ(n+ncand
m )− I(n+ncand

m ))2. (9)

(ii) Peak value of multiscale product’s jth1 root inside group delay
window. It is shown in [22] that the jth1 root of p+(n) gives a
‘zooming in’ on the signal, particularly at weak amplitudes
(in this case j1 = 3). Experimentation with this algorithm
has shown that the group delay function gives best results on
p+(n) but that its jth1 root has better discriminative properties.

fm,2 = max j1
√

p+(n), ncand
m − R−1

2
≤ n ≤ ncand

m +
R−1

2
(10)

(iii) Area beneath multiscale product’s jth1 root inside group delay
window. In the case of a spread discontinuity, the area beneath
the multiscale product’s jth1 root can provide better discrimi-
nation of candidates.

fm,3 =
(R−1)/2

∑
n=−(R−1)/2

j1

√
p+(n+ncand

m ) (11)

The feature vectors are modelled as a Gaussian distribution
and are divided into two clusters using an unsupervised EM al-
gorithm [25] (k-means), initialized with two random data points.
Fig. 5 shows a typical distribution of the feature vectors for a seg-
ment of mixed voiced/unvoiced/silent speech. It has been found em-
pirically that the cluster whose mean f3 is furthest from the origin is
most likely to contain the chosen candidates, marked ‘◦’. Rejected
candidates are marked ‘×’.

A system diagram for SIGMA is shown in Fig. 6.

4. RESULTS AND DISCUSSION

The APLAWD database [26] contains speech and contemporaneous
EGG recordings of five short sentences, repeated ten times by five
male and five female talkers. GCIs were hand-labelled on every
sentence independently of the algorithms under test. The same EGG
recordings were run through the HQTx and SIGMA algorithms and
evaluated by finding the number of estimated GCIs per true period
then classified as follows as shown in Fig. 7:

Stationary

Transform

Wavelet
Group Delay

Function Clustering
x(n) p+(n)

γ(n)
ncand

m

nest
m

Figure 6: SIGMA system diagram. The EGG signal, x(n), is de-
composed into multiple scales from which the half-wave rectified
multiscale product, p+(n), is derived. Peak detection is performed
on p+(n) by the negative-going zero crossings of the group delay
function, γ(n), at samples ncand

m . Feature vectors derived from the
ideal group delay slope and p+(n) are clustered by an unsupervised
EM algorithm to obtain the GCI estimates, nest

m .

1. Hit. One GCI per true larynx cycle.
2. Miss. No GCIs per true larynx cycle.
3. False Alarm. More than one GCI per larynx cycle. In this case

the closest estimate is a hit and the remaining are false alarms.
Denote nest

m , m = {0,1, . . . ,Mest − 1}, the sample locations of the
estimated GCIs and ntrue

m , m = {0,1, . . . ,Mtrue − 1}, the ground-
truth. The measures are defined as:
1. Hit%=n. hits/Mtrue×100
2. Miss%=n. miss/Mtrue×100
3. False Alarm%=n. false alarms/Mest×100
4. Overall%=n. hits/(Mtrue + n. false alarms)×100
The overall figure of merit combines the measured values. Hit ac-
curacy, δ , and hit bias, ζ , are the the RMS and mean errors between
all hits and the corresponding ground-truth GCIs respectively.

The results in Table 1 show that SIGMA performs significantly
better than HQTx and this is reflected in the derived measure, Over-
all, where HQTx achieves 94.88% and SIGMA 99.35%. Hit and
miss rates are similar between the two algorithms, though it is not
necessarily indicative of good performance as indicated by the large
number of HQTx’s false alarms. This agrees with the qualitative
analysis of HQTx’s performance in Section 2 which showed that it
is prone to false alarms at the onset and end of voiced speech. Hit
accuracy is very good for both algorithms, showing negligible bias
of under one sample. This agrees with the statement in Section 3.3
that the true GCIs are almost always a subset of the SIGMA candi-
date GCIs before clustering.
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Figure 7: Testing strategy. A hit is when one or more estimated
GCIs occur during a reference cycle. A miss is the absence of an
estimated GCI per reference cycle. A false alarm is every estimated
GCI when more than one estimated GCI occurs per reference cycle.
Hit accuracy is the RMS error between a hit and the corresponding
reference GCI. Accuracy and bias are the RMS and mean errors be-
tween hits and false alarms and the corresponding reference GCIs.



Table 1: Performance comparison between HQTx and SIGMA on
the APLAWD database.

Hit Hit
Hit Miss FA Acc., δ Bias, ζ

(%) (%) (%) (ms) (ms)
HQTx 99.68 0.32 4.82 0.1427 0.0231
SIGMA 99.73 0.27 0.37 0.0673 0.0259

5. CONCLUSIONS

It has been seen that robust detection of GCIs from EGG signals
is very challenging at the onset and ending of voiced regions of
speech. A new method for GCI detection from EGG recordings has
been presented which is accurate even in these challenging areas.
It first reinforces singularities in the EGG signal by the multiscale
product of three dyadic scales, followed by a group delay function
which detects peaks in the multiscale product. False candidates are
removed by clustering of three-dimensional feature vectors using
an unsupervised EM algorithm. A comparison was made between
the proposed approach and a popular existing method, HQTx, by
evaluating their performance against 500 hand-labelled sentences.
The overall figure of merit shows near-perfect GCI detection with
the proposed method. Additionally, the algorithm can be used for
singularity detection in almost any signal provided the minimum
separation of singularities is known, as no further assumptions are
made about the input signal.
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