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Abstract 

Fundamentally, loudspeaker design has changed very little in the past 30 years. The late 70s saw the 

introduction of electromechanical modelling techniques which remain the basis for the design and 

analysis of loudspeakers today. 

 

Aside from the use of lighter, stronger materials in the construction of drive units, the area which has 

undergone the most development is the design of equalisers. Classically, loudspeakers use a passive 

analogue filter network to compensate for a non-flat frequency response, but they are far from ideal 

and are prone to variation with temperature and age. Recent years have seen the use of linear DSP 

equalisers which conform to much tighter specifications.  

 

However, there are two major flaws in the design of even the latest equalisers. Firstly, it has long been 

known that at extreme voice coil excursion a loudspeaker is a nonlinear device, though no documented 

attempt at producing a nonlinear equaliser has yet been proposed. Secondly is the use of swept sine 

tones to characterise frequency responses, which can sometimes yield different results to methods 

where excitation energy is spread over a wider bandwidth (which is more akin to music or speech). 

Swept sines generally provide no phase information, which is an area of increasing interest in 

loudspeaker equalisation. 

 

This project investigates the analysis of loudspeaker frequency responses using a Maximum-Length 

Sequence (MLS) or M-Sequence Decorrelation technique, which uses pseudorandom noise to yield 

both amplitude and phase information. The measurements are used to model the frequency response 

over a wide range of amplitudes, fitting a Volterra-Series approximation and defining a level-

dependent equaliser. 
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1 Introduction 
The assessment of the ‘quality’ of a loudspeaker is open to a myriad of objective and subjective 

measurements. Attempts to accurately and concisely model a loudspeaker as a linear circuit by R. H. 

Small in his brilliant set of papers [18] [19] [20] (published in the early 70s) remain the standard by 

which engineers characterise their drivers and enclosures. 

 

It is generally accepted that the most important figure-of-merit is the loudspeaker’s frequency 

response. This is rarely flat over the frequencies of interest (~50Hz – 20kHz) so equalisers are devised 

for Hi-Fi applications to flatten the response of the system. Early equalisers used passive analogue 

networks which were inaccurate as well as being prone to variations with temperature and age. More 

recent developments have seen the use of DSP to replace the analogue networks, providing tighter 

tolerances and no drift. 

 

Existing techniques do, however, contain two major flaws. First is the assumption that the 

loudspeaker’s frequency response is linear. It will be shown analytically and practically that at large 

voice-coil excursions the driving force and damping are no longer proportional to input current. 

Second is the almost universal use of swept-sine methods to characterise frequency responses. With 

swept sines, energy is concentrated over a very narrow bandwidth. It has been shown in [3] that 

frequency responses derived from spot tones can differ from those where the excitation energy is 

spread over a wider spectrum. Given that the energy in music and speech is rarely concentrated over a 

small bandwidth, analysis employing spot tones should be avoided. Swept sines also don’t provide 

phase information, but it can be shown that the phase response (and therefore the group delay) is not 

necessarily linear and perhaps should be taken into consideration in the design of an equaliser. 

 

The most popular techniques for determining frequency responses of linear systems will be described 

in 2.3 and it will be argued that the best method for characterising the nonlinear response of a 

loudspeaker is the Maximum Length Sequence (MLS) or M-Sequence Decorrelation technique. We 

will discuss the theory and implementation issues with MLS in detail as they are an important tool in 

this project. 
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Causes of nonlinearity in loudspeakers and appropriate modelling techniques will be discussed in 

some detail. Using software developed for MLS analysis, a best-fit linear equaliser and a level-

dependent equaliser will be calculated from real measurements and the benefits of level-dependent 

equalisation will be demonstrated. Nonlinear modelling is often based upon Volterra Series 

approximations, which model nonlinearities as polynomials, and it is shown in [11] that a second-

order Volterra ‘Kernel’ is sufficient for describing the nonlinear response of a loudspeaker. From 

empirical results, a Volterra Series approximation is calculated for a test loudspeaker and a method for 

creating an equaliser is discussed. 

 

1.1 Project Objectives 
To summarise, the project objectives are: 

• Analyse where loudspeakers deviate from an ideal case and review existing measurement and 

equalisation techniques. 

• Develop software which uses MLS sequences to determine the amplitude and phase response 

of a loudspeaker as a function of driving frequency and amplitude. 

• Determine the root causes of loudspeaker nonlinearity and show that it is directly related to 

voice coil excursion. 

• Analyse experimental results and attempt to fit nonlinearities to a Volterra-Series 

approximation. 

• Design and test different types of equaliser. 

1.2 Major Achievements 
• At the time of the project’s conception, it was assumed that the measurement of the test 

loudspeakers would be a straightforward swept sine and that most of the project would be 

dedicated to analysis. It became clear that MLS analysis was a much more elegant and 

accurate method (for reasons discussed later) but no open-source implementation existed and 

many of the available papers distinctly lacked in detail about implementation. I changed my 

schedule and spent a significant amount of time developing a set of command-line tools. Once 

the equaliser toolkit neared completion, a sensible progression was to bring the tools together 

in the form of a GUI. This offers the sound engineer a unique tool to analyse a loudspeaker (or 

any system), generate equalisers and test their validity with real measurements. 

• Showing that loudspeaker nonlinearities are present at listening levels and not just at extreme 

clipping, and implementing a method to eliminate them almost entirely. 
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1.3 Report Structure 

Theory 

Chapter 2: Background 

Putting the problem into context with an example loudspeaker frequency response. Describing 

common measurement techniques. Example of an analogue equaliser. Example of a digital equaliser. 

Chapter 3: Maximum-Length Sequences 

Describing the theory and practical implementation of MLS analysis software. 

Chapter 4: Nonlinear Modelling 

Reasons for nonlinearity in dynamic loudspeakers. Volterra-series approximations and their use in 

nonlinear modelling. 

Chapter 5: Formal Equaliser Theory 

Presents mathematical models of equalisers. 

 

Practical 

Chapter 6: Hardware 

Measurement equipment, calibration. 

Chapter 7: Results and Volterra Series Approximation 

Results from a real loudspeaker measurements, implementation of linear- and level-dependent 

equalisers and Volterra Series approximation. 

Chapter 8: Conclusions and Future Work 

 

Reference 

Chapter 9: References 

Appendix 1 - User guide: Command-line tools 

Appendix 2 - User guide: GUI 

Appendix 3 - Command-line tool program listings
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2 Background 
In this chapter we shall discuss the problem of dynamic loudspeaker frequency responses, current 

approaches and how they may be improved. This is followed by a précis of common measurement 

techniques, associated practical difficulties, the information they provide the engineer and justification 

of which are the most useful for this project. 

2.1 The Problem 

Figure 2.1 depicts the sound pressure level of a loudspeaker as a function of the amplitude and 

frequency of an input signal. 0dBFS is the ‘full-scale’ (normalised) amplitude of the input and output 

signals1. In this case, 0dBFS corresponds to about 100dBA at 1m – a moderately high drive level for 

this type of loudspeaker. 

 

__________________________________________________________________________________

______________ 
1 dBFS is dB ‘Full-Scale’. It is necessarily less than or equal to 0, where 0 corresponds to the maximum 
amplitude a system can reproduce before clipping occurs. 1 dBu is equal to 1mW across 600Ω, a common unit 
for measuring audio signal levels. dBA is the ‘A-weighted’ sound pressure level, which takes into account the 

Figure 2.1: Sound pressure level as a function of both input amplitude and frequency for a loudspeaker. SPL is 
measured in dBFS, where 0dBFS corresponds to ~100dBA at 1m. 



EE4(T) Project Report 

5 

We can observe the following features from this graph: 

1. At the extreme low-frequency end, the SPL decreases at a rate of 12dB / octave. [18] models a 

loudspeaker in a sealed enclosure as a high-pass filter with two zeros near the origin. 

2. There is attenuation at the extreme high-frequency end. Loudspeaker drive units must be stiff 

in order to convert movement from the voice coil into sound pressure waves, but must also be 

light. Mass is equivalent to a series inductor: its impedance increases with frequency and so 

loudspeaker gain will decrease at very high frequencies. 

3. Peaks and troughs between ~150Hz and 15kHz. These are caused by a number of different 

reasons, the most common being resonances in the wooden enclosure and cone break-up 

(standing-wave modes across the cone). 

4. Frequency-selective compression at high drive levels. It will be shown in Chapter 4 that low 

frequencies are most affected by nonlinearity at high drive levels. 

2.2 Existing Approaches 
Existing equaliser networks often 

incorporate crossover networks, which 

ensure that the correct frequencies arrive 

at each drive unit. Their ideal function is 

depicted in Figure 2.2, where the blue 

line represents the frequency response of 

the loudspeaker at a typical listening level 

and the green is the frequency response of 

the equaliser; the result is a flattened 

frequency response.  

A truly flat response cannot be achieved 

down to DC as loudspeaker enclosures 

are high-pass filters (shown in [18]) with 

zero DC gain. To flatten the response would require very high gain at low frequencies (or attenuation 

at high frequencies), so equaliser gain is usually constant below a certain threshold as shown. 

The Control Engineer may see this as a straightforward proportional feedback control system, with a 

transducer mounted on the loudspeaker cone providing a feedback signal. This would avoid the need 

to measure frequency responses, providing a dynamic compensator and theoretically better results. 

Attempts have been made to implement such a control system but have had limited success due to 

poor transducer performance and are therefore very uncommon in Hi-Fi audio. 

 

                                                                                                                                                                      
uneven and nonlinear frequency response of the human ear. 0 dBA is defined as the smallest sound pressure 
level audible to a human being. dBFS is used throughout this project. 

Figure 2.2: An ideal equaliser achieves a flat frequency 
response by inverting the response of the loudspeaker 
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2.2.1  Analogue Equalisers 
Analogue equalisers are very common in Hi-Fi loudspeakers as they are simple and can be very cheap 

to manufacture. They are, however, very complicated to design and optimise; a particularly complex 

circuit given in Figure 2.3 is from an LS3/5A-

type loudspeaker and took hundreds of man-hours 

to design. It is far from ideal and C2 and L3 are 

both AOT (adjust-on-test) components to 

compensate for manufacturing variations. The 

network is also prone to drift with temperature 

and age. 

A further drawback is that like most analogue 

crossover networks, it operates on high-level 

signals. A passive network can only attenuate, so 

they are continuously wasting power (in the given 

circuit diagram there is a large amount of HF 

attenuation and R1 has been known to cause the 

loudspeaker damping material to catch fire!). 

2.2.2  Digital Equaliser 
A modern approach is to apply linear DSP to 

loudspeaker equalisation. This operates on low-

level signals, can be specified to arbitrary precision (at the expense of systematic delay), is easy to 

recalibrate and does not drift with age. Figure 2.4 is a screenshot from a state-of-the art Genelec 

system which represents the best in consumer loudspeaker technology. It uses pink noise bursts 

(explained in 2.3.4) to determine the 

amplitude response of the loudspeaker and 

implements up to 4 shelves and 4 notch 

filters to flatten the response. It takes into 

account on-and-off axis measurements and 

can correct some artefacts which are the 

result of poor room acoustics; this is 

outside the scope of this project. 
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6u2

R1
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C4

5u03
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33R
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82R
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-
C1
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LF
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-
C3
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Figure 2.3: Crossover / equaliser network from an 
LS3/5A loudspeaker. 

Figure 2.4: Screenshot from Genelec’s Loudspeaker Editor
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2.3 Improvements 
Existing commercial techniques rely upon digital or analogue shelves, notches and band-pass filters to 

approximate an equaliser. Modern FFT techniques circumvent the need to think in these terms as each 

FFT ‘bin’ can be treated individually like in Figure 2.2, which is conceptually and computationally 

much simpler. However, no documented attempt in a commercial system has been made. Nonlinear 

modelling with conventional techniques is 

virtually impossible. 

Dated measurement techniques are also 

commonly used, such as swept sines and 

pink noise (explained in 2.4) rather than 

impulse or MLS excitation. It is 

demonstrated in [3] that results may differ 

between techniques. 

2.4 Measurement Techniques 
There are five main approaches to 

measuring a frequency response and all 

impulse testing require that a loudspeaker 

be placed in an ‘anechoic chamber’ or ‘free-

field room’ to ensure that the frequency 

response of the loudspeaker – and not the room it is placed in – is measured. An example chamber is 

depicted in Figure 2.5. 

2.4.1  Swept sine excitation 
The loudspeaker under test is fed with a swept sinusoid and the amplitude of the output is measured. 

Traditionally this would be plotted on a chart recorder but modern digital techniques have superseded 

this method. Digital techniques differ in that the sine is stepped in frequency, but the results are the 

same and in both domains slower sweep times result in improved SNR. Normally this method is used 

to obtain a logarithmic frequency axis and generally does not yield phase information, so is not 

suitable for obtaining an impulse response. Swept sines concentrate excitation energy to a very narrow 

spectrum, which can yield different results to signals occupying a wider bandwidth. Speech and music 

tend not to contain single sines but are more noise-like in nature, so swept sine excitation may not 

necessarily give accurate results. 

Sine excitation can also be used to produce a figure-of-merit known as Total Harmonic Distortion 

(THD), which is a ratio of the energy in the harmonics to the total energy, expressed as a percentage. 

Harmonic energy is the total energy with a notch filter placed at the fundamental. 

Figure 2.5: A loudspeaker is placed inside an anechoic 
chamber, which absorbs most of the radiated sound energy, 
allowing the frequency response of the loudspeaker to be 
accurately measured. Depicted is a particularly large chamber 
at NMIJ in Japan. 
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100
energy Total
harmonicsin Energy %THD ×=       (2.1) 

2.4.2  Impulse excitation 
The impulse response of a loudspeaker can be measured by simply sending an impulse through it and 

measuring the output [1] [4] . However, in order to have a flat frequency response in the range of 

interest this pulse has to be very short, but at the same time it must contain enough energy to produce a 

reasonable SNR, requiring very high-amplitude impulses which can sometimes overload the system. 

SNR can be improved by repeating the test and averaging, but the measurement time will increase 

correspondingly. 

2.4.3  MLS excitation 
Maximum Length Sequences (MLS) are pseudo-random signals containing only the values +1 and -1. 

They are spectrally flat but have the important property of an autocorrelation function which is a 

perfect impulse with a DC offset. By measuring the loudspeaker’s output with an MLS signal, the 

impulse response may be obtained by de-convolving the output with the original signal by use of a 

modified Hadamard Transform. MLS processing is computationally simple though theoretically quite 

complex. It also gives good SNR and can be improved by averaging repeated MLS sequences. 

2.4.4  White and Pink Noise 
White noise is by definition spectrally flat. Excitation of a loudspeaker with white noise and analysis 
of a smoothed FFT of the response will therefore yield the amplitude response. However, this may 
give inaccurate results (particularly at high levels) as the nature of music and speech is decreasing 
energy with increasing frequency. White noise can be thought of as ‘equal energy per Hz’; an 
alternative type of noise is ‘pink’ or ‘1/f’ noise, which has been prefiltered at -3dB/octave to have 
equal energy per octave. Pink noise generators are difficult to realise because: 

1. They require infinite gain at DC 

Figure 2.6: Pole-zero plot of a half-band pink noise filter and an octave of its corresponding magnitude 

response. The average slope is -3dB/octave, which is twice the slope achieved by a single reactive component. 
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2. The presence of a zero will cause the frequency response to drop at -6dB/octave, so alternating 
zeros and poles at narrow spacings near the unit circle are needed to approximate a -
3dB/octave slope. 

Figure 2.6 shows a pole-zero plot and one octave of its corresponding magnitude response. Closer 
approximations are achieved by placing poles and zeros closer together. 

Other types of noise shaping are also applicable – for example when the spectrum of unwanted signals 

is known. Suggestions for shaping impulse excitation is proposed in [4] and MLS in [3], but it has not 

been implemented in this project to maintain simplicity. 

2.4.5  Two-channel FFT 
Noise, MLS, Impulse and swept sine methods all require that the system under test is linear. It is 

therefore reasonable to assume that the frequency response of a loudspeaker may be obtained by 

exciting it with any signal and comparing the FFTs of the input and output waveforms. This is more 

computationally complex than the MLS method but provides a greater degree of freedom when 

selecting the excitation signal. 

2.5 Methods employed in this project 
MLS excitation was concluded to be the best method for measuring the frequency response of a 

loudspeaker because of its mathematical elegance, broadband excitation and ability to extract phase 

information. Stepped sine sequences were also implemented to provide a simple comparison to MLS 

amplitude results and to provide THD information. Test signals at a variety of different amplitudes 

will be used to examine the frequency response at different amplitudes. 

2.6 Summary 
Most loudspeakers require a certain amount of equalisation in order to achieve a frequency response 

which is flat within acceptable limits. Existing analogue methods remain unchanged for in excess of 

thirty years and new digital techniques are often no more than digital realisations of analogue theory. 

Modern FFT techniques would allow much simpler design and greater flexibility than the existing 

methods and will be used in this project. No documented attempt at defining an equaliser to 

compensate for nonlinearities has been made so this will be investigated in some detail.  

 

There are many methods available for characterising a loudspeaker’s frequency response. Impulsive 

excitation, swept sines and pink noise have many drawbacks that are addressed by MLS analysis, 

which will be the primary measurement technique used in this project. Swept sines will also be used to 

determine THD values.
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3 Maximum-Length Sequences 
A Maximum-Length Sequence (MLS) is a periodic two-level signal of length P = 2N – 1, where N is 

an integer and P is the periodicity, which yields the impulse response of a linear system under circular 

convolution. The impulse response is extracted by the deconvolution of the system’s output when 

excited with an MLS signal. This chapter presents the underlying theory and how the Fast Hadamard 

Transform can provide a very efficient means of analysing an MLS sequence. A Matlab 

implementation of the algorithm presented in this chapter was written for the project (see Appendix 1). 

In doing so some difficulties arose from lack of emphasis of certain some important points in the 

available literature, so this description is aimed at the engineer interested in writing his own program.  

  

Maximum-Length Sequences have a number of attractive properties. The most important is that with 

the exception of a DC error, the autocorrelation is a perfect impulse. They share many statistical 

properties with white noise despite being entirely deterministic, and may be generated very easily by 

use of shift-registers. Cross-correlation is computationally efficient as binary signals may be analysed 

using only additions and subtractions; no multiplications are necessary. 

3.1 Basic MLS Theory 
The MLS signal may be calculated recursively using the following relation: 

)2()()3( +⊕=+ knknkn         (3.1) 

Where ⊕ denotes an XOR (modulo-2 sum) operation. It can be implemented with a set of shift 

registers (usually initialised to all 1s) and an XOR gate; an example sequence with N=3 is shown in 

Figure 3.1. Note that if the shift registers were initialised to consist entirely of zeros then it would be 

impossible for a 1 to ever occur and the circuit would remain frozen. It is for this reason that MLS 

signals are 2N -1 and not 2N in length. 

The binary MLS is converted to a signal by the mapping: 

11
10
−→

→      (3.2) 

Let the MLS signal be x[n] and the impulse response of 

the system be h[n]. The output, y[n], of the system 

stimulated with x[n] will therefore be: 

  ][][][ nxnhny ∗=  

∑
+∞

−∞=

−=
k

knhkx ][][           (3.3) 

z-1 z-1 z-1

0100111

1010011 1101001 1110100

Figure 3.1: Binary feedback shift register for 

generating a Maximum-Length Sequence, n=3, 

P=7 
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Figure 3.2: Time-aliasing in periodic impulse 
h’[n] caused by insufficiently long MLS. Upper 
figure is h[n] and lower, h’[n], is h[n] repeated 
every P samples. 

h1[n] 

h1[n] h2[n] 

h3[n] 

h’[n]= h1[n]+ h2[n]+h3[n] 

Where ∗denotes discrete linear convolution. The 

assumption of linear convolution is not mathematically 

sound as it requires the MLS to be aperiodic. By 

definition this cannot be true unless N=∞. Circular 

convolution is therefore more applicable in this case. Let 

the periodic impulse response be h’[n] and let the Dirac 

delta δ[n] be defined as: 

otherwise       
0

0
,1

][
=





=
n

nδ    (3.4) 

And the periodic Dirac delta be δ’[n]: 

otherwise    
0mod       

0
,1

]['
=





=
Pn

nδ    (3.5) 

Then, 

∑
+∞

−∞=

−=
k

knhknh ][]['][' δ  

∑
+∞

−∞=

+=
k

kPnh ][             (3.6) 

Qualitatively, the periodic impulse response h’[n] is the true impulse response h[n] repeated at period 

P. If the periodic input is x’[n] and the periodic output is y’[n], 

][']['][' nhnxny ⊗=  

∑
−

=

−=
1

0

][']['         
P

k

knhkx    (3.7) 

Where ⊗denotes circular convolution. [n-k] is calculated modulo P and h’[n], x’[n] and y’[n] are 

periodic in P. 

P must be chosen to be sufficiently large that the transients from previous impulse responses hk[n] 

have died down enough not to cause time-aliasing. Figure 3.2 demonstrates time-aliasing graphically. 

MLS necessarily measures the periodic impulse response and not the true impulse response. However, 

when applied to a real system circular convolution cannot be achieved as real systems apply linear 

convolution, with an unexcited initial state. Circular convolution may be approximated by stimulating 

the system with the MLS sequence twice and analysing the second sequence; again the sequence must 

be long enough to prevent time aliasing. 
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3.2 Deconvolution 
Many texts on MLS present the deconvolution operation in terms of cross-correlation [2], [3]. I shall 

present my discussion in terms of convolution in a similar fashion to [7]. 

Recall that 

][][][ nxnhny ∗=          (3.8) 

Then 

]['][][][][][ nhnznxnhnzny =∗∗=∗        (3.9) 

Iff ]['][][ nnznx δ=∗  and there is negligible time-aliasing. 

If ][][ nxnz −= then ][][ nznx ∗  is the autocorrelation function of x[n] and ]['][][ nnznx δ=∗ is fulfilled 

except for a DC offset. 

By deconvolving, the signal h’[n] is given by:  











−

+
= ∑

=

P

k

nkxky
P

nh
1

][][
1

1]['         (3.10) 

(Recall h’[n] is a periodic version of h[n]). 

In the case when P=7: 


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
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

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




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y
y
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y
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h
h
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h

 

In DSP applications, the matrix containing x[n] is called the M-sequence matrix and shall be referred 

to as such from this point onwards. 

Correlation detection with the M-sequence matrix can become prohibitively complex to compute as P 

becomes large. Applications in room acoustics can involve impulse responses of 5 seconds or more, 

which at a sample rate of 48 kHz requires P to be in the order of 218 samples long. Correlation 

detection requires P2 operations, which on a 100MHz DSP processor would take approximately 11 

minutes to calculate. 

Computational complexity can be dramatically reduced by exploiting similarities between the M-

sequence matrix and the Walsh-Hadamard matrix, reducing the number of additions to Plog2(P) by use 

of the Fast Walsh-Hadamard Transform. 

The M-sequence matrix may be described by: 
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Pjinm Pjiji ,...,2,1,        )modulo(2, == −−+  

Or successive circular left shifts of the top row. For P=7: 





























=

1101001
1010011
0100111
1001110
0011101
0111010
1110100

M    

From the construction of M, every row (column) of M can be expressed as a linear, modulo-two 

combination of the first N rows of M. 

L'S'LSM ==          (3.11) 

Where L is a binary matrix order NP× and S is order PN × and is formed by the first N rows of M. 

Since all the rows of M are distinct, all the rows of L must be distinct, therefore every nonzero binary 

N-vector must appear as some row in L. Also, the first N rows of L form an identity matrix of N. 

Let σ be the square matrix of order N, formed by the first N columns of S. Then, 

'SLσ =           (3.12) 

Every nonzero binary N-vector appears as a row in both L and S’, σ is necessarily non-singular, so, 

1σS'L −=           (3.13) 

Using the above example, 
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S         (3.14) 
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1σ          (3.16) 
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L        (3.17) 

3.3 Walsh-Hadamard Transforms 
A Hadamard Matrix may be constructed by the following recursive relation: 









=+

nn

nn
n HH

HH
H 1          (3.18) 

Where H denotes a binary inversion. An 8-th order Hadamard Matrix is exemplified in (3.19): 

































10010110
00111100
01011010
11110000
01100110
11001100
10101010
00000000

111
011
101
001
110
010
100
000

10101010
11001100
11110000

      (3.19) 

 

Where the surrounding numbers are the binary indices of each row/column. 

In a similar fashion to the factorisation of M into S and L, H may be factored into B and B’, where B 

is a binary representation of the numbers 0 to 2N-1. 
 

 

 

(3.20) 
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Denote L̂ and Ŝ the matrices obtained by bordering the former on top with a row of all zeros and the 

latter on the left by a column of all zeros. The bordered matrix M̂ is then given by: 

SLM ˆˆˆ =           (3.21) 

The factors L̂ and B, Ŝ and B’ each exhaust all N-vectors in their rows and columns respectively. 

They differ only in the order in which the vectors occur, so we can write: 

BPL L=ˆ           (3.22) 

SPB'S =ˆ           (3.23) 

Where PL and PS are NN 22 × permutation matrices describing the N-vector orderings in L̂ and Ŝ . This 

simple relation is due to the fact that the rows of B and columns of B’ occur in natural numerical 

order. Using previous relations, 

SLSL HPPPBB'PSLM === ˆˆˆ        (3.24) 

Relation (3.24) holds regardless of whether values {0,1} or {1, -1} are used. An M-sequence transform 

can be summarised by: 

1. Reorder the received data from the device under test after stimulation with an MLS signal 
according to PS. 

2. Perform a Walsh-Hadamard transform. 
3. Reorder the transformed data according to PL and divide by P+1. 

Note that the Walsh-Hadamard transform by 

matrix multiplication gains no computational 

advantage; instead the Fast Walsh-Hadamard 

transform should be used. 

3.4 The Fast Walsh-Hadamard 
Transform 

There are many different algorithms for 

calculating a ‘fast’ Walsh-Hadamard 

Transform. The following is one of the most 

elegant: 

1. Construct N+1 columns, each with 2N 
rows. 

2. Place the input vector x[n] in the 1st 
column. 

3. Moving left to right, fill in the next 
column as follows:  

a. In the top half of this column, place 
the pairwise, mutually exclusive sums 
of the previous column.  

x a b y 

x[0] a[0]=x[0]+x[1] b[0]=a[0]+a[1] y[0]=b[0]+b[1]

x[1] a[1]=x[2]+x[3] b[1]=a[2]+a[3] y[1]=b[2]+b[3]

x[2] a[2]=x[4]+x[5] b[2]=a[4]+a[5] y[2]=b[4]+b[5]

x[3] a[3]=x[6]+x[7] b[3]=a[6]+a[7] y[3]=b[6]+b[7]

x[4] a[4]=x[0]-x[1] b[4]=a[0]-a[1] y[4]=b[0]-b[1] 

x[5] a[5]=x[2]-x[3] b[5]=a[2]-a[3] y[5]=b[2]-b[3] 

x[6] a[6]=x[4]-x[5] b[6]=a[4]-a[5] y[6]=b[4]-b[5] 

x[7] a[7]=x[6]-x[7] b[7]=a[6]-a[7] y[7]=b[6]-b[7] 

Figure 3.3: A Fast Hadamard Transform 
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b. In the bottom half, place the pairwise differences. 
c. Repeat (Step 3) for each of the remaining columns. 

The last column contains the Hadamard transform, y[n], of the input vector, x[n]. 

3.5 Alternative Permutation 
The matrices PS and PL are presented here merely to clarify the underlying theory. In practice the 

permutation operation may be calculated by finding the sum of the columns of S and the rows of L 

considered as a binary number, then reordering according to these values as follows: 

 

 

 

 

3.6 DC Coupling 
Some papers [2], [6], have wrongly suggested methods for recovering DC components with MLS 

analysis. It is shown in [3] that if a system is AC coupled (as is the case in almost audio applications), 

sum of h[n] over all n is zero: 

0][ =∑
n

nh           (3.25) 

It is suggested in [2] that in order to recover a DC component then equation (x) should be re-written 

with a DC offset term as follows: 
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Which is equivalent to bordering L and S with ∑−
n

ny ][ instead of zeros to form L̂ and Ŝ .  

A simple argument against doing this is that in the case of a DC coupled system, the DC component 

may only by extracted either by infinitely long or assymetrical MLS stimuli, both of which are outside 

the scope of this project. I ignore the DC term entirely as it is inconsequential to loudspeaker 

equalisation. 
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3.7 SNR 
Let the system’s impulse response be h(t) and the noise n(t). Noise sources include quantisation (shot 

noise), thermal noise in the amplifiers and microphone and background noise. The signal received at 

the analyser is g(t)=h(t)+n(t). 

Averaging successive MLS bursts (again ignoring the first burst), we obtain the signal )(tg . Assume 

that the noise process is ergodic, zero mean and white (it has an autocorrelation function of 0 

everywhere but k=0): 

E{n(t)}=0 

∑
−−
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=+=
kP

t
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P
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2
)( )()()(1][ δσ        (3.27) 

Assume also that the system’s impulse response is time-invariant. 
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 21 σ
P

=             (3.28) 

Therefore as ∞→P , 02
)( →tnσ . As signal power is proportional to its variance, for every doubling in 

the number of averaged sequences, the SNR is improved by 3dB. 

3.8 Practical Measurements 
The frequency response at different amplitudes is obtained by analysing bursts of MLS at increasing 

amplitude. In order to correctly time-align the analysis software, an impulse of one sample is used as a 

sync pulse and the alignment of the MLS bursts is referenced to this point. Details of the issues of 

correct time-alignment and general information about the practical implementation of MLS code are 

given in Appendix 1. 
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3.9 Summary 
MLS analysis is a computationally-efficient method for extracting the impulse response of linear 

systems. The steps for conducting an MLS analysis are as follows: 

1. Determine the approximate length of a system’s impulse response. Generate an MLS sequence 

at least as long as the impulse response using a binary feedback register and XOR gate as 

described in equation (1). Convert the sequence using the mapping 0→1, 1→-1. 

2. Stimulate the system with at least two successive MLS bursts and record the output. The SNR 

is improved by 3dB for a doubling in the number of repetitions. 

3. Take the mean of all but the first burst. 

4. Add a zero to the first element and reorder the averaged data according to PS. 

5. Perform a Fast Walsh-Hadamard transform. 

6. Reorder the transformed data according to PL and divide by P+1. 

7. The results is an estimation of a system’s impulse response of length P+1. Perform an FFT to 

find the frequency-domain representation. 

 

The importance of approximating circular convolution is often overlooked and can yield highly 

inaccurate results if it is ignored. 

 

See the user guide in Appendix 1 and the Matlab code in Appendix 3 for further information about 

how this algorithm is implemented. 
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Pole piece Magnet 

Dust cap 
 

Suspension 

Frame 
(basket) 

Spider

Voice coil 

Figure 4.1: A typical dynamic loudspeaker under rest 

conditions 

4 Nonlinear Modelling 
This chapter presents an overview of the major 

causes of nonlinearity in loudspeakers and how 

they can be modelled. We use the assumption that 

loudspeaker nonlinearity can be characterised by 

a second-order Volterra approximation (as 

demonstrated in [11] and [12]) and describe two 

methods for extracting the Volterra Kernels from 

measurements. The latter method is used in 

Chapter 7 to determine the validity of a second-

order model with real results. 

4.1 Loudspeaker Construction 
An electrodynamic loudspeaker is a transducer which converts a voltage to a sound pressure wave 

using a current-passing coil in a static magnetic field. The coil carries the driving current and is 

surrounded by a permanent magnet with an air spacing. The current flow in the coil causes it to 

experience a force, moving the coil perpendicularly to the magnetic field. The diaphragm is glued to 

the coil and is connected to the frame by a suspension and spider, allowing it to move in and out but 

not laterally, keeping it centred between the magnets. See Figure 4.1 for a simplified diagram. 

4.2 Sources of nonlinearity 
Nonlinearities can be grouped into three main 

categories [11]: 

4.2.1  Motor Part 
For low excursions, the coil experiences a linear 

field. As excursion increases, the coil moves 

towards the edge of the magnetic field (see Figure 

4.2), reducing the force factor, ∫ lBd , and therefore 

the force upon the coil. 

The self-inductance of the voice coil is also 

position-dependent, because it protrudes from the 

central pole. This yields a reluctance force 

proportional to the square of the current.  

x
xLiFx d
)(d

2
1 2=    (4.1) 

Fringing 

Voice coil under 

high excursion 

Figure 4.2: Voice coil under high excursion. The 

arrows depict the magnetic flux lines. The voice coil is 

mostly in the fringing field, causing a lower force to 

act upon the coil for a given current.  
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The voltage across the self-inductance is given by more than the time derivative, showing the 

following relation: 

t
x

x
xLi

t
ixLU

d
d

d
)(d

d
d)( +=   (4.2) 

Finally, the operating point of the permanent magnet is influenced by the voice coil current. 

 

4.2.2  Mechanical Part 
The force-displacement curves of the spider and suspension show some hysteresis (Figure 4.3). The 

maximum excursion is limited by mechanical clipping, though this only occurs at extreme drive levels. 

Subharmonics are generated at the loudspeaker diaphragm due to nonlinearities in the cone material, 

again only occurring at extreme drive levels. 

4.2.3  Sound Radiation 
Let p0 be the static pressure inside the loudspeaker enclosure and V0 be the static volume. Let (p0+p) 

be the instantaneous pressure inside the loudspeaker enclosure and (V0+V) be the instantaneous 

volume. Assuming that the box air compression is an adiabatic process, the air in the box obeys the 

following relation: 
γγ

0000 ))(( VpVVpp =++        (4.3) 

Which is clearly nonlinear. 

The final cause of nonlinearity is the Doppler shift caused when the driving signal contains high-

amplitude low-frequency signals and high-frequency signals. 

 

 

2       4       6 F[N]

x[mm]

2

4

6

Figure 4.3: Typical force-displacement curve of suspension 
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4.2.4  Parameters 
At low frequencies, where voice-coil excursion is greatest, the electrical, mechanical and acoustical 

components of a loudspeaker behave as concentrated elements, and may be modelled as lumped-

elements in an equivalent electromechanical circuit. A loudspeaker may be modelled in terms of a 

damped mass-spring system, with nonlinear springs and damping mechanisms. The following is a 

simplified version of the model found in [11]: 

parametersNonlinear 
inductance coil Voice)(

system spring-mass of Stiffness)(
factor Forced
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The nonlinear parameters can be approximated with a 2nd order power series: 

2
21

2
210

2
210

0
xlxlLL

xkxkkk

xbxbBlBl

EE ++=

++=

++=

        (4.4) 

From these definitions we can form two differential equations, which can be solved to give a 

polynomial (Volterra) series, describing voice coil displacement as a function of current (or voltage). 

kxxRxmBli

xBl
dt

iLdiRE

m

E
E

++=

++=

&&&

&
)(

        (4.5) 

Re L(x)

Bl(x)
Fx

x'
m

k(x)Rm
E(t)

I(t)

Figure 4.4: A simple electromechanical model of a loudspeaker in a 
closed-box enclosure. L(x), k(x) and Bl(x) are all nonlinear functions of 
voice coil excursion.  
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Higher order models are suggested in [12] and k can be split into a function of nonlinear air stiffness 

and mechanical stiffness, increasing the complexity of the nonlinear differential equation. Solving this 

is outside the scope of the project as it requires detailed knowledge of the loudspeaker parameters. 

[11] and [12] agree that for frequencies of up to about 250Hz, a second-order Volterra series 

approximation is sufficient to describe the nonlinear behaviour of a loudspeaker, so it will be shown 

later that experimental results can be used to develop such a model. 

4.3 Volterra Series 
A Volterra Series is a concise and elegant method for characterising weakly nonlinear systems. It is 

assumed that the nonlinearity in the transfer function can be approximated by an nth order polynomial: 
n

n xaxaxaay ++++= ...2
210        (4.6) 

Often the DC (bias) term, a0, is ignored. Nonlinear systems cannot be characterised by an impulse 

response alone as the output is not proportional to input amplitude; we therefore replace the notion of 

an impulse response with a Volterra Kernel. The Volterra Kernel describes each order of x as a matrix 

of increasing dimension: 

[ ]
( ) [ ]
( ) [ ]32133213

212212

11

0

,,or  ,:order 3rd
,or   :order 2nd

or )( :(linear)order 1st 
 :DC

kkkh,h
kkh,h
k hh

h

τττ
ττ

τ
 

And so on. h1 is a vector, h2 is a symmetric nn× matrix and h3 is a symmetric nnn ×× matrix. 

Convolution is described as: 
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  (4.7) 

Clearly the computational complexity of Volterra convolution increases exponentially with the order 

of the Kernel. 

Many parametric and non-parametric methods exist for estimating Volterra Kernels. I shall present 

two popular forms which will be applied to experimental results later on. 

4.3.1  2nd Order Volterra System Identification for arbitrary input signals: 
Powers’s Method [22] 

The frequency-domain input-output relationship of the second-order Volterra system under 

consideration is: 

∑
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21
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Assuming ),(*),(),( 212122212 ffHffHffH −−== . Transfer functions )(1 fH and ),( 212 ffH are 

obtained as the least-squares solution to the set of equations, )()( mAmY T b= , where, 
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Where M is the length of the FFT and m=0,…,M/2. 

4.3.2  2nd Order Volterra System Identification for Gaussian input signals: Tick’s 
Method [23] 

A more common and computationally efficient method, Tick’s algorithm uses Gaussian input signals 

and computes their cross-bispectra to obtain an approximation to the first- and second-order Volterra 

Kernels. 

The output of a second-order Volterra system is given by: 
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The linear part h1[k], is estimated in the frequency domain from: 

)()(1 ωω xxyx SHS =          (4.11) 

where )(ωxxS is the power spectrum of process x[n] and )(ωxyS is the cross-spectrum of the processes 

x[n] and y[n]. This relationship assumes that x[n] is symmetrically distributed. 

The quadratic part h2(k1,k2) is estimated in the frequency domain from: 

])[()()()()(),(2),( 2122121221 nyESSSHS xxxxxxyxx ωωδωωωωωωω ++=   (4.11) 

which is obtained under the assumption that h2(k1,k2)=h2(k2,k1) and x[n] is Gaussian. The cross-

bispectrum, ),( 21 ωωyxxS is estimated via the direct (FFT) method in [23]. 

 

A simple test was derived to determine whether Tick’s method could be used to recover the linear and 

quadratic terms for a virtual loudspeaker, with zero gain at DC and at the Nyquist frequency, and with 

arbitrary gain in between. Matlab’s FIR2 function was used to create an FIR filter of for the linear 

part (h1[n]): 
h  = fir2(order-1, [0 0.2 0.4 0.6 0.8 1], [0 0.8 0.3 0.2  0.4  0]); 

The quadratic part, h2[n], was made in a similar fashion and a symmetric matrix was defined: 
  g = fir2(order-1, [0 0.2 0.4 0.6 0.8 1], [0 0.8 0.3 0.2  0.4  0]); 

h2 = g'*g; 
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Figure 4.5: A virtual loudspeaker defined with linear and quadratic terms. 

Figure 4.6: The recovered linear and quadratic transfer functions and impulse responses from 
filtered Gaussian noise using Tick’s method. 
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Figure 4.5 shows the linear and quadratic transfer functions and impulse responses. A signal was 

generated consisting of 64 realisations of 1024-length Gaussian noise, which was then passed through 

a nonlinear convolution with the nonlinear system according to equation (4.6). A Matlab 

implementation of Tick’s algorithm [26] was used to analyse the noise and extract the Volterra 

Kernels, the results of which are shown in Figure 4.6. 

 

There is a clear resemblance between the original and recovered linear transfer functions, with the 

exception of reduced gain. The quadratic terms are markedly different but so too were the examples 

given in the reference material accompanying the Matlab code [26]. We see in Chapter 7 how this 

method can be applied to real measurements and discuss is validity. 

4.4 Efficiency 
Both methods are very inefficient compared with the MLS method in Chapter 3. A Gaussian signal of 

1024 samples and 64 realisations takes about 30 minutes to analyse on a 2.7GHz Athlon processor 

under Matlab, compared with less than two seconds for a 4096-length MLS signal. 

4.5 Summary 
Nonlinearities in loudspeakers is caused primarily by voice-coil excursion and can be approximated 

with a second-order polynomial, described by Volterra Kernels. Some discrepancies exist in the 

analysis of a theoretical experiment, though whether they are a function of the algorithm or its 

implementation is unknown. Measurements presented in Chapter 7 are analysed with Tick’s algorithm 

(4.3.2) with Matlab software obtained from [26] and demonstrate the validity of a second-order 

approximation. 
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5 Formal Equaliser Theory 
This chapter presents equaliser theory in a formal mathematical way which describes the algorithms 

used in Chapter 7 and documented in Appendices 1 and 3. No known conventions exist for describing 

loudspeaker equalisers and the following is an attempt to develop a framework upon future work may 

be made. 

 

Let us define the following symbols: 

aN    Number of driving amplitudes 

fN    Number of driving frequencies 

],...,,[ 21 aNaaa=a  Driving amplitudes 

maxmin ,aa   Lower and upper amplitude boundary 

maxmin ,aa ′′   Indices of lower and upper amplitude boundaries 

],...,,[ 21 fNfff=f  Driving frequencies 

maxmin , ff   Lower and upper frequency boundary 

maxmin , ff ′′   Indices of lower and upper amplitude boundaries 

dB
fa,Γ    SPL as a function of amplitude & frequency (range -∞ to 0 dBFS) 

dB
fa,Φ    Frequency-domain level-dependent equaliser (range -∞ to 0 dBFS) 

dB
fΛ    Frequency-domain linear equaliser (range -∞ to 0 dBFS) 

 

We shall use logarithmic units to represent the equalisers as they may be implemented by addition; 

this reduces computational complexity and simplifies their mathematical representation. 

5.1 Level-Dependent Equaliser 

 

The ideal level-dependent equaliser gain (as a function of input amplitude and frequency) is the 

difference between the amplitude of the input signal and the SPL between two frequency boundaries. 

Outside these boundaries, the gain is set to the mean difference between the amplitudes of the input 

Figure 5.1: Flow diagram for a level-dependent equaliser. x[n] is the sequence to be analysed and y[n] is fed 
to the loudspeaker. The equaliser, dB

fa,Φ , is amplitude and frequency-dependent. 

a

fx[n] dB
fa,Φ IFFT y[n]logFFT Antilog
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and the SPL (see Figure 5.2). The boundaries are set such that the equaliser gain doesn’t become large 

at extreme LF and HF. 
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Where  denotes a mean average and is calculated with f in the range [fmin, fmax]. 

5.2 Linear Equaliser 

The ideal linear equaliser is the mean of the level-dependent equaliser across amplitudes, giving an 

equaliser which depends only upon frequency. 

∑
=′−′

=
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'

'
,

minmax

1 a

ai

dB
f

dB
f iaa aΦΛ        (5.2)  

5.3 Volterra Equaliser 
Due to time restrictions, a Volterra equaliser has not been implemented. Conceptually it may be 

implemented with a simple nonlinear feedback loop as shown in Figure 5.4: 

Lower 
frequency 
boundary 

Upper 
frequency 
boundary 

Figure 5.2: Equalisers are calculated between upper and 
lower frequency boundaries to prevent large gains at 
extreme low and high frequencies. 

Figure 5.3: Flow diagram for a level-dependent equaliser. x[n] is the sequence to be analysed and y[n] is fed 
to the loudspeaker. The equaliser, dB

fΛ , is frequency-dependent and amplitude-independent. 

a

fx[n] dB
fΛ IFFT y[n]logFFT Antilog
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The Volterra system implements equation (4.7) using predetermined kernels. As with the linear and 

level-dependent equalisers, the equaliser should not affect frequencies outside the lower and upper 

frequency boundaries. 

5.4 Equaliser Gain 
In cases when a loudspeaker has been tested to extreme voice coil excursions, an equaliser should not 

introduce gain into the system. The gain of the equalisers derived in 5.1 and 5.2 should therefore be 

reduced so that the maximum gain is 0dBFS. 

( )dB
fa

dB
fa

dB
fa ,,, max ΦΦΦ −→         (5.3) 

( )dB
f

dB
f

dB
f ΛΛΛ max−→         (5.4) 

The drawback of reducing the overall equaliser gain in this way is that it may cause the loudspeaker’s 

operating region to change significantly, reducing the equaliser’s accuracy. Omission of the gain terms 

in equations 5.3 and 5.4 minimises this effect but carries associated risk. 

5.5 Phase Considerations 
Under linear convolution, it is not possible to arbitrarily choose the frequency and phase of each FFT 

bin; this is only possible under circular convolution. The phase of the system is left unaffected, 

changing only the magnitude with no attempt to investigate phase equalisation due to time constraints.  

5.6 Variance Analysis 
A measurement of the deviation from a flat frequency response is to measure its mean variance across 

amplitudes: 
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Then after equalisation, 
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+

Volterra system

-

x[n] y[n]

Figure 5.4: Volterra system used as a 
nonlinear feedback loop. The Volterra 
series is restricted to equalise inside 
lower and upper frequency boundaries 
only. 
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5.7 Summary 
This chapter has demonstrated a method for formally describing the function of linear and level-

dependent equalisers in the context of loudspeaker equalisation. It will not be found in any literature 

and should not be thought of as definitive terminology. 
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6 Hardware 
This chapter briefly discusses the hardware setup, calibration techniques and problems encountered. 

6.1 Apparatus 
• BBC R&D Free-Field Room 

• Brüel & Kjær 4144 measurement microphone 

• Brüel and Kjær 2010 heterodyne analyser (used as mic preamp) 

• Professional audio power amplifier 

• RME Hammerfall DSP PCMCIA adapter & Multiface II (24-bit, 96 kHz) 

• Laptop 

• Prism Sound dScope III PC-based audio oscilloscope 

• Brüel and Kjær 2231 Precision Sound Level Meter 

In order to accurately measure a loudspeaker’s characteristics, it must be placed in an environment 

where background noise and room acoustics do not add significantly to the measured signal. Depicted 

in Figure 6.1 is a Free-Field Room (FFR) or Anechoic Chamber. It is a room measuring 

approximately 10× 10× 10m whose walls are lined with 1-2m long open-pore foam spikes which are 

highly absorbent at audio frequencies. The loudspeaker is mounted on a small metal platform in the 

centre of the room and suspended from the ceiling is a measurement microphone (assumed perfect). 

Figure 6.1: Equipment set-up. The loudspeaker is placed in the centre of an anechoic chamber and is measured 
with a high-quality microphone. The power amplifier, microphone preamplifier, audio interface and PC reside 

outside the chamber and connect via patchbays. 

Power Amplifier

Microphone
preamplifier PC audio interface
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All other equipment is outside the chamber and is connected through patchbays. 

6.2 Setup notes 
The loudspeaker should be placed as centrally as possible in the chamber, with the microphone at 

exactly 1m on-axis from the front of the speaker. 

It is important that a 0dBFS input signal gives a 0dBFS output signal for the generation of equalisers 

to work. It is also important to drive the loudspeaker hard enough to produce significant nonlinear 

effects (100-110dBA at 1m is probably enough for domestic loudspeakers). The calibration procedure 

is as follows: 

1. Use the line-up generator to generate a noise burst at 0dBFS and adjust the power amplifier 

gain until an SPL of 100-110dBA is measured. 

2. Adjust the preamplifier and PC mixer gain so that a -24dBFS line-up burst gives a -24dBFS 

measured peak amplitude. We use -24dBFS instead of 0dBFS to avoid the nonlinear region, 

which would cause over-estimated results if used as the line-up level. 

In our treatment of loudspeaker modelling, we assume that it is a time-invariant system. This is valid if 

there is not significant temperature variation in the voice coils, so it is important to warm them to a 

steady state temperature before undertaking any measurements. White noise at ~85dBA was played 

through the loudspeaker under test for 20 minutes; this is only approximate unless temperature 

measurement is available but was adhered to upon each measurement session nonetheless. 

6.3 Measurement Software 
A Matlab toolbox was written to provide command-line utilities for the generation and analysis of 

MLS and stepped-sine signals and to create various types of equalisers. The functions were wrapped 

up into a GUI which allows a technician to calibrate a measurement setup, stimulate the system with 

various type of test signal, generate equalisers and test within a few minutes. A full user guide is found 

in Appendix 1. 

 

Initial measurements were made with a Prism dScope III, which is an audio measurement oscilloscope 

that measures the amplitude response of a system with swept sine tones. The calibration procedure was 

identical to that used with the later Matlab software. Data was exported in the form of comma-

separated variable files for each measurement amplitude which could be imported using a Matlab 

script. Details of this software are not presented in this report as they are now redundant, but are 

provided on the accompanying CD. 
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7 Results and Volterra Series Approximation 
Here we shall examine the results of a Wharfedale Triton 3 loudspeaker. The test equipment was 

calibrated to produce ~100dBA at 1m, producing weak nonlinearity. The loudspeaker is capable of 

producing sounds at least 15dB louder but was driven moderately for fear of irreparable damage. MLS 

bursts of order 11 were repeated 32 times in 6dB increments from -96dBFS to 0dBFS. Lower and 

upper frequency thresholds were set at 90Hz and 16kHz respectively for specifying the equaliser. 

7.1 MLS Analysis at Multiple Amplitudes 
 

Figure 7.1 shows that this particular loudspeaker is far from ideal. It sounds particularly ‘bass-heavy’ 

and this can be seen in the large hump at around 110Hz. It also demonstrates nonlinearity; the peak at 

~130Hz varies in shape, as does the peak at 5kHz. 

 

 

 

Figure 7.1: Frequency response of a Wharfedale Triton 3 at -96dBFS to 0dBFS where 0dBFS 
corresponds to 100dBA at 1m. The lower amplitudes are corrupted by noise but amplitudes from 
38dBA upwards are clearly defined. Note the nonlinearity near the turnover point at ~90Hz. 

Mean variance 
from 90Hz to 
16kHz: 
21.2165dB 
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7.2 Linear equaliser 
A linear equaliser was defined for frequencies 90Hz-16kHz, amplitudes -78dBFS to 0dBFS and was 

used to pre-equalise an MLS sequence before playback through the loudspeaker. A non-attenuating 

equaliser was chosen as it was known that the loudspeaker would tolerate some additional gain; this is 

also more accurate as it produces a lower overall gain change and therefore reduces the effect of any 

nonlinearity as described in section 5.4. 

 

The linear equaliser has significantly reduced the humps at 150Hz and 5kHz and the -18dB curve is 

almost completely flat. The 0dBFS curves was not equalised as well as the other curves as significant 

nonlinearity (and therefore distortion) was beginning to take effect. We will see in 7.4 that the THD at 

0dBFS is significantly worse and that provides evidence for the preceding statement. The variance has 

reduced from 21dB to 0.22dB in the range of interest which is a significant improvement in the 

flatness of the frequency response overall. 

Figure 7.2: Frequency response after correction with linear equaliser. The equaliser was defined to 
work between frequencies 90Hz and 16kHz from -78dBFS to 0dBFS. 

Mean variance 
from 90Hz to 
16kHz: 
0.2239dB 
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7.3 Level-dependent equaliser 
The advantage of level-dependent equalisation over linear equalisation is apparent: using the same 

parameters as the linear equaliser (90Hz to 16kHz, -78dBFS to 0dBFS) the frequency response has 

been almost completely flattened in the range of interest, with a variance of 0.019dB. 

 

Section 5.4 described how large equaliser gains at a particular frequency can cause the operating 

region of the loudspeaker to change and therefore reducing the effectiveness of the equaliser. Small 

perturbations in the level-dependent equalised response at around 100Hz (where nonlinearity is most 

prevalent) are likely to be due to this effect, though they are very small. Other variations are due to 

measurement errors, time-variance of the loudspeaker and system noise. 

 

The results presented here may not necessarily be as good with speech or music. The measurement 

procedure defined a set of equalisers at specific levels and the test procedure used these same levels, 

Mean variance 
from 90Hz to 
16kHz: 0.019dB 

Figure 7.3: Frequency response after correction with a level-dependent equaliser. The 
equaliser was designed to be valid from 90Hz to 16kHz at amplitudes -78dBFS to 0dBFS. 

Mean variance 
from 90Hz to 
16kHz: 0.019dB 
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giving the best possible results. But speech and music will occur at amplitudes in between those 

measured, giving a maximum error when the amplitude of a particular bin lies mid-way between two 

measured levels. This may be improved either by taking measurements at closer amplitude intervals, 

or interpolating measured values instead of switching between them as is done presently.  

7.4 THD 
THD measurements were made to provide further evidence to the loudspeaker’s operating region. The 

inaccuracy of the linear equaliser in section 7.2 at 0dBFS agrees with the THD plot, which shows a 

significant increase in harmonic distortion at this amplitude caused by nonlinearity. 

 

 

 

 

Figure 7.4: Sine excitation amplitude and the 
corresponding  %THD measurements. Driving 
amplitudes were of 0dBFS to -48dBFS in 12dB steps. 
The THD is significantly worse at 0dBFS when the 
loudspeaker is driven into nonlinearity and harmonics 
are produced at greater levels. 
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7.5 Volterra Modelling 
Can the results obtained with MLS analysis be modelled by a Volterra Series as described in section 

4.3? The same loudspeaker with identical calibration was excited with 64 repetitions of a Gaussian 

noise burst consisting of 1024 samples (23ms) at 0dBFS (~100dBA at 1m). The recordings were run 

through Tick’s Algorithm (section 4.3.2) and the results are presented in Figure 7.5. The Matlab 

implementation of the algorithm was obtained from [26] and was completely unmodified. 

 

The linear transfer function resembles the transfer function from the MLS analysis shown in Figure 

7.1. Without further analysis the quadratic transfer function is meaningless, so the derived nonlinear 

system was convolved with impulses according to the nonlinear convolution principle presented in 

equation (4.7). A Fourier transform was applied and the frequency-domain results are shown in Figure 

7.6. 

Figure 7.5: Linear and quadratic transfer functions derived with Tick’s Algorithm. The loudspeaker was 
excited with 64 1024-sample bursts of Gaussian noise at 0dBFS (~100dBA at 1m). The linear part 
shows is very similar to the results of the MLS analysis as shown in Figure 7.1. 
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7.5.1  Frequency-domain description of the Volterra Model  
The Volterra model was stimulated with impulses at levels -96dBFS to 0dBFS in 12dB increments and 

the results are presented in Figure 7.6. The overall linear shape is correct and some nonlinearities such 

as the shape of the peak at about 3kHz have been reproduced with some degree of accuracy, but the 

overall gain of the system is highly inaccurate. Levels at -60dBFS and below are too low in amplitude 

Figure 7.6: Second-order Volterra Model of the loudspeaker’s transfer function in the 
frequency domain. The curves are the response to impulsive stimulation at levels -96dBFS to 
0dBFS. Although the linear shape is roughly correct and some nonlinear characteristics have 
been faithfully reproduced, the overall gain of the system is completely wrong. This is likely to 
be due to an incorrect implementation of Tick’s algorithm. 
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and those at -48dBFS and above are too high, suggesting that the quadratic part has been 

overestimated in the same way as in the test case in Section 4.3.2. It is unknown whether this is due to 

a flaw in the algorithm or the implementation as insufficient time was available for in-depth 

investigation. 

The level-dependent equaliser was capable of equalising small nonlinearities caused by effects 

localised in frequency and driving amplitude, such as cone break-up. A 2nd order Volterra Kernel 

would be unable to correct these nonlinearities, but they may be small enough to be neglibible. 

7.6 Summary 
We have seen how an example loudspeaker can be equalised with linear and level-dependent 

equalisers. An attempt was also made to fit the results to a 2nd order Volterra Series. 

 

A linear equaliser provides good equalisation at most listening levels and frequencies, but a level-

dependent equaliser is required to achieve a truly flat response for all types of excitation. 

 

Tick’s Algorithm is convergent with the loudspeaker and has provided 2nd order Volterra Kernels, 

though implementing this model in the frequency domain yielded suspicious results. Whether this is a 

flaw in the algorithm or the implementation used is unknown. 

 

A significant problem encountered with Tick’s algorithm is processor loading. A 1024-length signal 

with 64 realisations takes about 30 minutes to analyse on a 2.7GHz Athlon processor under Matlab. 

For a comparison, a 4096-length MLS sequence with 64 repeats takes approximately two seconds to 

analyse, so faster algorithms must be devised if this is to be a viable analysis tool given present 

technology.
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8 Conclusions 
In this project we have reviewed the problem of loudspeaker equalisation, current approaches and their 

downfalls and measurement techniques for determining a loudspeaker’s frequency response. A 

detailed discussion of MLS analysis and issues pertaining to its implementation was given; MLS was a 

particularly useful tool for measurement of a loudspeaker’s impulse response and will hopefully see 

greater use in future commercial systems. Causes of nonlinearity and their mathematical modelling 

were presented, with particular reference to the use of a second-order Volterra Series. Finally we have 

seen results of practical experiments with MLS measurement, THD measurements, linear equalisers, 

level-dependent equalisers and Volterra approximation. 

 

Theoretical modelling and practical measurements provide strong evidence that loudspeakers are 

nonlinear devices, and that nonlinearity is mainly due to voice-coil excursion. Low frequencies are 

more heavily affected as voice coil excursion is greater in low-frequency drive units. Through testing a 

system at a variety of amplitudes, an accurate nonlinear model of a loudspeaker can be determined in a 

relatively short period of time. An attempt to fit results to a 2nd order Volterra Series has shown 

promising results, though work needs to be done to improve the accuracy of the extracted kernels and 

the speed of execution.  

 

Three types of equaliser were investigated: linear, level-dependent and Volterra. Linear equalisers are 

simple to implement and can be determined by averaging the frequency response of a loudspeaker at a 

variety of levels, then finding an equaliser to do the inverse. Level-dependent equalisers can equalise 

frequency responses at any number of different levels but are not a standard task for a DSP processor. 

Volterra equalisers model the impulse response of a system as an nth-order polynomial and provide the 

most mathematically elegant solution. However, the determination of Volterra Kernels is highly 

computationally demanding, as is real-time equalisation. 

 

State-of-the-art systems such as those by Genelec and JBL are not capable of achieving a frequency 

response as flat as the linear system presented in this project. Creating a stand-alone system capable of 

conducting an MLS analysis, determining a nonlinear equaliser and implementing it in real-time could 

be the next big turning point in loudspeaker design. 

 

A useful tool developed for this project was a Matlab GUI, capable of conducting MLS and swept sine 

analysis, using the information to create linear and level-dependent equalisers. An equaliser can be 

designed and tested on real audio within a few minutes, and data can be easily imported and exported 

for processing and analysis in Matlab. This tool may be useful for future measurements on any audio 

system. 
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8.1 Future Work 
Extend MLS theory to efficiently estimate Volterra kernel. 

 

Determine a method for allowing the use of a level-dependent equaliser while maintaining linear 

phase. 

 

Investigate frequency responses on- and off-axis and determine equalisers which give faithful 

equalisation for any listening position. 

 

Extend the equaliser to correct each drive-unit independently. 

 

Very little time was dedicated to the subjective testing of results. It is expected that although 

frequency response can be flattened with a nonlinear equaliser better than with a linear equaliser, the 

perceived improvement will be negligible. 

 

Recent development in MEMS (Micro-Elecro-Mechanical Decvices) accelerometers could be applied 

to flattening a loudspeaker’s frequency response without the need for detailed testing. Section 2.2 

describes how a feedback mechanism based on transducer mounted on a loudspeaker cone can be used 

to develop a classic feedback control system. Early attempts did not yield good results because of the 

quality of the transducers, but recent MEMS developments may provide a feasible feedback 

mechanism.  

 

Develop a level-dependent system which accounts for perceived loudness. Figure 8.1 shows the ISO-

standard and Fletcher-Munson contours, which are empirical models describing how the ear perceives 

sound at different levels. It is clear from the diagram why audio sounds bass-light when the volume is 

low. Take for example a classical concert: the composer wrote the music to be listened to live at a 

particular volume, but in a home listening environment, the music will almost certainly be played at a 

lower level. Knowing the sound pressure level at which the music was played and the sound pressure 

level in the listening environment, a correction may be applied so that the relative perceived loudness 

between each frequency is constant regardless of listening volume. There are a number of issues to be 

resolved: how often should the correction factor be updated? Are the contours accurate enough? How 

is the listening SPL determined in a room with multiple seats? This would make a good MEng project. 
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Figure 8.1: Equal loudness curves 
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Appendix 1 - User Guide: Command-line tools 

A1.1 MLS Toolkit 
Name  AnalyseFullSequence 

Purpose Detects alignment impulse and analyses multi-level MLS bursts 

Syntax [impulses] = AnalyseFullSequence(signal, offset, burstlevels, repetitions, N, 

DCCoupling) 

Description signal:   Recorded sequence from system under test 

offset:   The impulse detection finds the point where the signal exceeds a 

certain rate of change. Pulse spreading may cause the detection to be 

erroneous by a few samples (rarely more than 10) and this may be 

corrected with the offset parameter. Positive offset causes negative 

time shift. 

  burstlevels: 1xM vector of burst amplitudes (can be linear or dBFS). 

  repetitions: The number of repetitions of each amplitude (cannot be less than 2). 

  N:  Order of the MLS, where P=2N-1 

AnalyseFullSequence.m

FindImpulse.m AnalyseMLS.m GeneratetagL.m GeneratetagS.m GenerateMLS.m

GenerateFullSequence.m

PermuteSignal.m FastHadamard.m PermuteResponse.m

CreateFIREqualiser.m

CreateLinearEqualiser.m

GenerateSteppedSequence.m

AnalyseSteppedSequence.m

GenerateSignal.m

circonv.m

NonlinearConv.m

NonlinearTick.m

NonlinearPowers.m CrossBispectrum.m NonlinearFFTFilt.m

MLS Toolkit

Volterra
Series
Toolkit

Equaliser
toolkit

Stepped
sine toolkit

Figure A1.1: Software hierarchy. Boxes show related 
functions. 
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  DCCoupling: Set to true for DC recovery method. Set to false for loudspeaker  

    measurements. 

impulses: An MxN vector of impulse responses, where M is the number of 

amplitudes and N is the order of the MLS. 

Algorithm A signal is assumed to be of the form:  

Positive impulse; 

Pause 2N samples;  

for i=1 to length(burstlevels) 

for j=1 to repetitions 

 Play MLS at level burstlevels(i); 

end 

Pause 2N samples;  

  end 

The second and subsequence repeats are averaged for each amplitude and analysed, 

yielding impulse responses for each amplitude. 

Reference Chapter 3 

 

Name  GenerateFullSequence 

Purpose Generates an impulse followed by bursts of MLS at different levels. 

Syntax [sequence] = GenerateFullSequence(burstlevels, leveltype, repetitions, N) 

Description burstlevels: A 1xM array of amplitudes in dBFS or normalised linear. 

  leveltype: Can be ‘dbfs’ or ‘lin’. 

  repetitions: Number of repetitions of each amplitude. 

  N:  MLS order, where P=2N-1. 

sequence: The generated sequence. 

Algorithm Sequence is of the form:  

Positive impulse; 

Pause 2N samples;  

for i=1 to length(burstlevels) 

for j=1 to repetitions 

 Play MLS at level burstlevels(i); 

end 

Pause 2N samples;  

  end 

Reference Chapter 3 
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Name  FindImpulse 

Purpose Detects a positive impulse 

Syntax  [impulseIndex] = FindImpulse(sample) 

Description sample:  The sample to be analysed. 

  impulseIndex:  The index of the detected impulse  

Algorithm Differentiate sample. If rate of change exceeds 0.02, index is returned. 

Reference Chapter 3 

 

Name  AnalyseMLS 

Purpose Returns impulse response from a given MLS signal 

Syntax  [impulse] = AnalyseMLS(signal,mls,tagS,tagL,N,DCCoupling) 

Description signal:   Time-aligned received MLS signal (excluding 1st repetition). 

 mls:   The original MLS signal. 

 tagS:  Array for reordering of input samples (from GeneratetagS). 

 tagL:  Array for reordering of output samples (from GeneratetagL). 

 N:  Order of MLS, where P=2N-1. 

 DCCoupling: Set to true for DC recovery method. Set to false for loudspeaker  

  measurements. 

  impulse: Recovered impulse response 

Algorithm Rearrange according to tagS; 

  Apply Fast Hadamard Transform; 

  Rearrange according to tagL; 

Reference Chapter 3 

 

Name  GeneratetagL 

Purpose Generates array for the rearrangement of samples after a Hadamard Transform 

Syntax  tagL = GeneratetagL(mls, P, N); 

Description mls:  The MLS signal for which tagL is valid. 

  P:  Length of the MLS signal 

  N:  Order of the MLS signal 

tagL:  1x(P+1) vector of indices. 

Algorithm Find which values of the tagS vector are a power of 2; 

  Generate L matrix by shifting MLS sequence right by amounts above (is Nx(P+1)) 

  Sum columns as increasing powers of 2; 

Reference Chapter 3 
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Name  GeneratetagS 

Purpose Generates array for the rearrangement of samples before a Hadamard Transform 

Syntax  tagS = GeneratetagS(mls, P, N); 

Description mls:  The MLS signal for which tagS is valid. 

  P:  Length of the MLS signal 

  N:  Order of the MLS signal 

tagS:  1x(P+1) vector of indices. 

Algorithm Generate S matrix by shifting MLS right successively N times. 

Reference Chapter 3 

 

Name  GenerateMLS 

Purpose Generates an MLS sequence 

Syntax  y = mls(n, flag) 

Description n: order of MLS 

  flag: true for registers initialised to 1, false for random 

  y: P-length MLS sequence, where P=2N-1 

Algorithm )2()()3( +⊕=+ knknkn  

Reference Chapter x 

 

Name  PermuteSignal 

Purpose Rearranges input signal according to tagS. 

Syntax  perm = PermuteSignal(signal, tagS, P, dcCoupled); 

Description signal:  Signal to be arranged 

  tagS:  1xP vector of indces from GeneratetagS 

  P:  Length of MLS, where P=2N-1 

 DCCoupled: Set to true for DC recovery method. Set to false for loudspeaker  

  measurements. 

 perm:  The rearranged signal 

Algorithm If DC coupled = true 

   Set first element to sum of all other elements 

  else 

   Set first element to zero 

  Rearrange signal according to tagS. 

Reference Chapter 3 
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Name  PermuteResponse 

Purpose Rearranges output of Hadamard Transform according to tagL. 

Syntax  resp = PermuteResponse(perm, tagL, P) 

Description perm: Output of Hadamard Transform 

 tagL: 1xP vector of indices from GeneratetagL. 

 P: Length of MLS, where P=2N-1 

 Resp: Rearranged signal 

Algorithm Rearrange signal according to tagL. 

Reference Chapter 3 

 

Name  FastHadamard 

Purpose Applies a Fast Hadamard transform to a 1-D signal 

Syntax  y = FastHadamard(x, P, N) 
Description x: Signal to be transformed 

 P: Length of MLS, where P=2N-1 

 N: Order of MLS 

 y:  Transformed signal 

Algorithm Construct N+1 columns, each with 2N rows. 

Place the input vector x[n] in the 1st column. 

Moving left to right, fill in the next column as follows:  

In the top half of this column, place the pairwise, mutually exclusive sums of the 

previous column.  

In the bottom half, place the pairwise differences. 

Repeat (Step 3) for each of the remaining columns. 

Reference Chapter 3 

 

Name  GenerateSignal 

Purpose Generates a signal by circularly convolving a filter with coefficients b with an MLS 

signal. Used for test purposes. 

Syntax  signal = GenerateSignal(mls, b, P); 

Description mls: MLS signal 

 b: FIR coefficients of filter 

 P:  Length of MLS, where P=2N-1 

Algorithm bmlssignal ⊗=  

Reference Chapter 3 
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Name  circonv 

Purpose Circular convolution 

Syntax  [C] = circonv(A,B,N) 

Description A: First signal to circularly convolve 

 B:  Second signal to circularly convolve 

 N: Length of convolution 

 C:  Circularly convolved output 

Algorithm BAC ⊗=  

Reference Chapter 3 

A1.2 Equaliser Toolkit 
Name  CreateLinearEqualiser 

Purpose Creates a linear equaliser from a level-dependent equaliser 

Syntax  [linearEqualiser] = CreateLinearEqualiser(equaliser) 

Description equaliser: A level-dependent equaliser from CreateFIREqualiser 

 linearEqualiser: A mean-average equaliser dependent on frequency only 

Algorithm linearEqualiser = mean(equaliser); 

Reference Chapter 5 

 

Name  CreateFIREqualiser 

Purpose Creates a best-fit FIR level-dependent equaliser 

Syntax equaliser = CreateFIREqualiser(burstlevels, impulses, leveltype, lowerfbound, 

upperfbound, attenuate, fs); 

Description burstlevels: Array of burst amplitudes (dBFS or normalised linear) 

 impulses: MLS-derived impulse responses (MxN) 

 leveltype: ‘dbfs’ or ‘lin’ 

 lowerfbound: Lower frequency boundary 

 upperfbound: Upper frequency boundary 

 attenuate: True to create attenuate-only equalisers, false otherwise 

 fs:  Sampling frequency (usually 44100Hz) 

Algorithm freqresps = fft(impulses) 

for i=1:1:M 

   freqresps(i,:) = freqresps(i,:)-burstlevelsdBFS(i); 

   equaliser(i,1:n) = -mean(freqresps(i,lowerboundind:upperboundind)); 

equaliser(i,lowerboundind:upperboundind) = -

freqresps(i,lowerboundind:upperboundind); 

Find FIR filter to best fit equaliser; 



EE4(T) Project Report 

51 

end 

Reduce gain to attenuate if necessary 

Export FIR equalisers (MxN) 
Reference Chapter 5 

 

Name  NonlinearFFTFilt 

Purpose Like Matlab FFTFILT, but applies level-dependent FFT multiplication 

Syntax  y = NonlinearFFTFilt(burstlevels,leveltype,equaliser,x) 

Description burstlevels: Array of burst amplitudes (dBFS or normalised linear) 

  leveltype: ‘dbfs’ or ‘lin’ 

  equaliser: MxN array of equaliser impulse responses 

  x:  Signal to be equalised 

y:  Equalised signal 

Algorithm Take FFT of input signal; 

  Take FFT of equalisers; 

  Overlap-add: 

For each FFT bin, determine the level and frequency and apply correction 

factor from the closest equaliser; 

  end; 

Reference Chapter 5 

A1.3 Volterra Series Toolkit 
Name  NonlinearTick 

Purpose Implements Tick’s algorithm to determine 2nd Order Volterra Kernels 

Syntax  [h,q] = nltick(x,y,nfft,wind,segsamp,overlap) 

Description x:  Input signal to system 

  y:  Output signal from system 

  nfft:  Length of FFT to use in analysis of spectra / bispectra 

  wind:  Window specification for frequency-domain smoothing 
If 'wind' is a scalar, it specifies the length of the side of the square for 

the Rao-Gabr optimal window  [default=5] 
If 'wind' is a vector, a 2D window will be calculated via w2(i,j) = 

wind(i) * wind(j) * wind(i+j) 
If 'wind' is a matrix, it specifies the 2-D filter direct 

  segsamp: Samples per segment (default: so as to have 8 records) 

  overlap: Percentage overlap, allowed range [0,99]. (Default = 5) 

  h:  Linear Volterra Kernel 
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  q:  2nd order Volterra Kernel 

Algorithm See chapter x 

Reference Chapter 4 

 

Name  NonlinearPowers 

Purpose Implements Powers’s algorithm for determining 2nd order Volterra Kernels 

Syntax  [h,q] = nlpow(x,y,nfft) 

Description x: Input signal to system 

  y: Output signal from system 

  nfft: Length of FFT to use in analysis 

  h: Linear Volterra Kernel 

  q: 2nd order Volterra Kernel 

Algorithm See chapter 4 

Reference Chapter 4 

 

Name  NonlinearConv2ndOrder 

Purpose Implements 2nd order Volterra Convolution 

Syntax  y = NonlinearConv2ndOrder(x, h, q) 
Description x: Input signal to system 

  h: Linear Volterra Kernel 

  q: 2nd order Volterra Kernel 

  y: Convolved sequence 

Algorithm See chapter 4 

Reference Chapter 4 
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A1.4 Stepped Sine Toolkit 
 

Name  GenerateSteppedSequence 

Purpose Generates a sequence of stepped sines at multiple amplitudes, impulse-aligned 

Syntax sequence = GenerateSteppedSequence(burstlevels, leveltype, lowerFreq, n, 

steptime,fs) 

Description burstlevels: Array of burst amplitudes (dBFS or normalised linear) 

  leveltype: ‘dbfs’ or ‘lin’ 

  lowerFreq: Starting frequency (Hz) 

  n:  Number of levels 

  steptime: Time for each step (ms) 

  fs:  Sampling frequency (usually 44100Hz) 

  sequence: The generated sequence  

Algorithm r = 10^(log10((fs/2)/lowerFreq)/n); 

Generate impulse; 

  Pause of steptime; 

  for i=1:1:n 

   Generate frequency at (lowerFreq*ri-1) 

end 

Reference Chapter 2 

 

 

Name  AnalyseSteppedSequence 

Purpose Analyses stepped sequence from GenerateSteppedSequence 

Syntax [freqs levels thd] = AnalyseSteppedSequence(signal, offset, burstlevels, lowerFreq, n, 

steptime,fs) 
Description signal:  Signal from system under test 

offset: The impulse detection finds the point where the signal exceeds a 

certain rate of change. Pulse spreading may cause the detection to be 

erroneous by a few samples (rarely more than 10) and this may be 

corrected with the offset parameter. Positive offset causes negative 

time shift. 

burstlevels: Array of burst amplitudes (dBFS or normalised linear) 

  lowerFreq: Starting frequency 

  n:  Number of steps 

  steptime: Time for each step (ms) 
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  fs:  Sampling frequency (usually 44100Hz) 

  freqs:  Array of frequencies for each step 

  levels:  Normalised received levels for each step 

  thd:  Total harmonic distortion (normalised) 

Algorithm Detect impulse; 

  for i=1:1:n 

   Take ¼ to ¾ of the step extent and determine RMS level; 

Take Hamming window and FFT; 

Find RMS energy; 

Notch out fundamental and find remaining energy; 

Find ratio of harmonic and fundamental energy for THD 

  end   

Reference Chapter 2 
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Appendix 2 - User Guide: GUI 

The GUI is designed to incorporate all the functionality of the command-line toolkits into a convenient 

graphical interface. Within minutes it is possible to generate MLS sequences, analyse them and 

generate and test equalisers. Although stepped sine sequences are not used in the generation of 

equalisers, they can provide information about the system’s THD. 

A2.1 MLS Parameters 
Enable box:  Tick this to enable MLS anaylsis. 

DC Coupling:  Enable if DC recovery is to be used in analysis. 

 

 

MLS 
Parameters 

Sine 
Parameters

Signal 
Generator

Line-up 
Generator 

Results Equaliser 
Parameters 

Figure A2.1: GUI 
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Order:   The order N of the MLS, where length P=2N-1 

Reps/Burst: The number of repetitions of the MLS signal for each amplitude. A doubling 

in the number of repetitions increases the SNR by 3dB. 

Peak Amplitudes: The amplitude levels for which the system will be tested. -96dBFS to 0dBFS 

in 12dB and 6dB steps are provided for convenience, but the user may give 

their own levels by hitting the ‘other’ radio button and writing an array of the 

form [x1 x2 x3] (Matlab syntax). The values can be in dBFS or normalised 

units (in the range [0,1]) by clicking the appropriate radio button. 

-3dB Pad: If excitation energy is of importance and comparisons are to be made between 

MLS and sine sequences, a 3dB pad may be added to reduce the RMS power 

of the excitation to that of a sine of equal peak amplitude. 

Export: The generated sequence may be exported to the Matlab workspace to 

implement external filters. A dialogue box appears when clicked for the user 

to specify a variable name. 

Impulse Offset: The impulse detection finds the point where the signal exceeds a certain rate 

of change. Pulse spreading may cause the detection to be erroneous by a few 

samples (rarely more than 10) and this may be corrected with the offset 

parameter. Positive offset causes negative time shift. 

A2.2 Sine Parameters 
Enable box:  Tick this to enable stepped sine anaylsis. 

Frequency points: The number of different frequencies with which to stimulate the system.  

Peak Amplitudes: The amplitude levels for which the system will be tested. -96dBFS to 0dBFS 

in 12dB and 6dB steps are provided for convenience, but the user may give 

their own levels by hitting the ‘other’ radio button and writing an array of the 

form [x1 x2 x3] (Matlab syntax). The values can be in dBFS or normalised 

units (in the range [0,1]) by clicking the appropriate radio button. 

Start Freq: The lowest frequency to generate. The program increases the frequency at 

logarithmic spacing up to the half the sampling frequency, the number of 

which is defined by ‘Frequency Points’. 

Step Time: The number of milliseconds for each step in frequency. 

Export: The generated sequence may be exported to the Matlab workspace to 

implement external filters. A dialogue box appears when clicked for the user 

to specify a variable name. 

Impulse Offset: The impulse detection finds the point where the signal exceeds a certain rate 

of change. Pulse spreading may cause the detection to be erroneous by a few 

samples (rarely more than 10) and this may be corrected with the offset 
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parameter. Positive offset causes negative time shift. 

 

A2.3 Signal Generator 
Sampling Freq: The system sampling frequency (default 44100Hz). 

Bits/sample:  Sample resolution (default 24 bits). 

Internal Generator & Loopback: Test sequences are generated real-time and the output of the 

system under test is simultaneously recorded. 

From Workspace (MLS ONLY): Test sequences which have been exported using the export 

button in the MLS parameter box can be imported using this 

radio button. Select the Matlab workspace variable to be 

analysed from the list. 

Begin analysis: Starts analysing the system under test according to the setup parameters 

defined above. 

A2.4 Line-up Generator 
It is important that a 0dBFS input gives a 0dBFS output in order for the equalisers to be calculated 

correctly. Use the line-up generator to play a burst of noise and to display the level of received audio. 

Gains elsewhere in the system, such as the PC mixer output gain, power amplifier gain, microphone 

preamp gain and PC mixer input gain may need adjusting to get correspondence between these two 

values. 

A2.5 Signal Analysis 

A2.5.1 MLS Analysis 
MLS Amplitude: Displays a graph of the system amplitude as determined by the MLS analysis. 

Multiple levels are superimposed onto the same graph. 

MLS Phase:  The phase of the highest-amplitude test sequence is displayed. 

Export MLS-Derived Impulses: Exports an MxN matrix of impulse responses (where M is the 

number of burst levels and N is the length of the MLS). A dialogue box is 

given for the user to specify the variable name to export to the Matlab 

workspace. 

A2.5.2 Sine Analysis 
Sine Amplitude: Displays a graph of the system amplitude as determined by the MLS analysis. 

Multiple levels are superimposed onto the same graph. 

THD: Displays a graph of the system %THD determined by the sine analysis. 

Multiple levels are superimposed onto the same graph. 
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Export Sine Amplitudes: Exports an MxN matrix of amplitude responses (where M is the 

number of burst levels and N is the number of frequency points). A dialogue 

box is given for the user to specify the variable name to export to the Matlab 

workspace. A variable ‘freqs’ is automatically exported and contains an array 

of measurement frequencies. 

Export THD: Exports an MxN matrix of normalised THD values (where M is the number of 

burst levels and N is the number of frequency points). A dialogue box is given 

for the user to specify the variable name to export to the Matlab workspace. A 

variable ‘freqs’ is automatically exported and contains an array of 

measurement frequencies. 

A2.6 Equaliser Parameters 
Low Freq:  The lower frequency boundary for which the equaliser will be defined. 

High Freq:  The upper frequency boundary for which the equaliser will be defined. 

Low Level: The lower amplitude for which the equaliser will be defined. This is useful 

when high noise floors have corrupted the analysis. 

Upper Level:  The lower amplitude for which the equaliser will be defined. 

Order: By default the order of the equaliser is the same as the order of the MLS, but 

this may be reduced if desired by clicking the ‘Other’ radio button and 

specifying an order. 

Attenuate only: In cases when a loudspeaker has been tested to extreme voice coil excursions, 

an equaliser should not introduce gain into the system. The gain of the 

equalisers derived in x.x should therefore be reduced so that the maximum 

gain is 0dBFS. 

Enable Level-Dependent Equaliser: Enables level-dependent equaliser. 

Calculate equalisers: Determines an equaliser according to given parameters and displays the 

predicted response after equalisation. 

Run pre-equalised MLS: As above, but re-runs the pre-equalised MLS analysis to give 

definitive results. Displays response and calculate pre- and post- equalisation 

variance. 

Export Equaliser: Exports an MxN matrix of equaliser impulse responses, where M is the 

amplitude levels for which the equaliser is defined and N is the length of the 

equaliser. 

Sample from workspace: Displays a list of variables in the Matlab workspace. 

Play Original: Plays variable selected in the variable list at sampling frequency defined in 

the generator box. 
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Play Equalised: Plays variable selected in the variable list after equalisation at sampling 

frequency defined in the generator box. 

A2.7 A Typical Session 
Objectives: Measure the response of a loudspeaker at levels [-96 -84 -72 -60 -48 -36 -24 -12 0] 

dBFS, where 0dBFS corresponds to 110dBA at 1m. Use an 11-th order MLS burst 

with 32 repetitions. Use a sampling frequency of 44100 and resolution of 24 bits. 

Determine the THD at the same amplitudes and 20 frequency points beginning at 

50Hz, with 250ms step times. 

Create and test an attenuate-only linear equaliser with a lower frequency boundary of 

100Hz and an upper frequency boundary of 18kHz, using levels -60dBFS to 0dBFS. 

Method: 

1. Set the PC mixer so that the record channel is routed to the input to which the microphone 

preamplifier is connected (see Chapter 6 for hardware setup guidelines).  

2. Place the loudspeaker in the centre of an anechoic environment with a microphone on-axis at 

1m. Place a SPL meter next to the microphone. Use the line-up generator to generate a noise 

burst at 0dBFS and adjust the power amplifier gain until an SPL of 110dBA is measured. 

3. Adjust the preamplifier and PC mixer gain so that a -24dBFS line-up burst gives a -24dBFS 

measured peak amplitude. We use -24dBFS instead of 0dBFS to avoid the nonlinear region, 

which would cause over-estimated results if used as the line-up level. 

4. Tick the Enable MLS box. Type 11 in the MLS order box and 32 in the repetitions box. Click 

the radio button corresponding to the required amplitudes. Leave the -3dB pad unchecked and 

the detect offset at the default value. 

5. Tick the Enable swept sine box. Type 20 in the frequency points box, 100 in the start freq box 

and 250 in the step time box. Click the radio button corresponding to the required amplitudes 

and leave the detect offset at the default value. 

6. Set the sampling freq box in the generator section to 44100 and the bits/sample to 24. Press 

the Begin Analysis button. 

7. Listen to the test tones. The Generated sequence box will depict the sequence you hear. Wait 

for the test tones to finish. The analysis should take a few seconds and will display the results 

in the signal analysis section. 

8. In the equaliser section, set low freq to 100 and high freq to 18000. Use the drop down lists to 

set the low level to -60 and high level to 0. Set order to ‘As MLS’ and click the attenuate only 

box. Click the ‘Run pre-equalised MLS’. This will calculate the best-fit linear equaliser and 

run a pre-equalised MLS sequence. The results figure should be relatively flat in the figure. 

The variance of the frequency response in the range of interest is displayed in the pre- and 

post- equalisation variance boxes. 
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9. To test with real audio sequences, use the Matlab function wavread to load a mono, 

44100Hz wav file into the workspace. Hit the ‘Sample from workspace’ button to display a 

list of variables. Click the correct variable and press the ‘Play original’ button to hear the 

unequalised version. Click ‘Play equalised’ for an equalised version.
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Appendix 3 - Command-line tool program listings 
function impulses = 
AnalyseFullSequence(signal,offset,burstlevels,repetitions,N,DCCoupling) 
  
% AnalyseFullSequence 
% 
% Detects alignment impulse and analyses multi-level MLS bursts 
% 
% [impulses] = AnalyseFullSequence(signal, offset, burstlevels,  
% repetitions, N, DCCoupling) 
% 
% signal:       Recorded sequence from system under test 
% offset:       The impulse detection finds the point where the signal 
%               exceeds a certain rate of change. Pulse spreading may cause 
%               the detection to be erroneous by a few samples (rarely more  
%               than 10) and this may be corrected with the offset  
%               parameter. Positive offset causes negative time shift. 
% burstlevels:  1xM vector of burst amplitudes (can be linear or dBFS). 
% repetitions:  The number of repetitions of each amplitude (cannot be less  
%               than 2). 
% N:            Order of the MLS, where P=2N-1 
% DCCoupling:   Set to true for DC recovery method. Set to false for  
%               loudspeaker measurements. 
% impulses:     An MxN vector of impulse responses, where M is the number  
%               of amplitudes and N is the order of the MLS. 
  
impulsetoburst = 2^N; 
bursttoburst = 2^N; 
P=2^N-1; 
mls = GenerateMLS(N,1); 
tagS = GeneratetagS(mls,P,N); 
tagL = GeneratetagL(mls,P,N); 
  
impulseindex = FindImpulse(signal) 
startindex = impulseindex + impulsetoburst - offset + length(mls); 
  
% Go through all levels 
for i=1:1:length(burstlevels) 
    % Average all repetitions, excluding first 
    acc = 0; 
    for j=1:1:repetitions-1; 
        startindex; 
        acc = acc + signal(startindex:startindex+length(mls)-1); 
        startindex = startindex + length(mls); 
    end 
    mean(i,:) = acc/(repetitions-1); %-1 because we are ignoring the first 
burst 
     
    impulses(i,:) = AnalyseMLS(mean(i,:),mls,tagS,tagL,N,DCCoupling); 
     
    startindex = startindex + length(mls) + bursttoburst; % Extra 
length(mls) because we want to skip first burst 
end 
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function impulseresp = AnalyseMLS(signal,mls,tagS,tagL,N,DCCoupling); 
  
% Analyses an MLS sequence.  
% 
% signal: Must be the same length as the MLS sequence and be taken from the 
% beginning of a SECOND MLS sequence to approximate circular convolution. 
% 
% mls: a P-length MLS sequence (Where P=2^N-1) 
% 
% fs: sampling frequency in Hz 
% 
% DCCoupling: True if device under test is DC coupled, false otherwise. 
  
P = 2^N-1; 
perm = PermuteSignal(signal, tagS, P, DCCoupling); 
had = FastHadamard(perm, P+1, N); 
resp = PermuteResponse(had, tagL, P); 
impulseresp = resp; 
 
function [freqs levels thd] = AnalyseSteppedSequence(signal, offset, 
burstlevels, lowerFreq, n, steptime,fs) 
  
% AnalyseSteppedSequence 
% 
% Analyses stepped sequence from GenerateSteppedSequence 
% 
% [freqs levels thd] = AnalyseSteppedSequence(signal, offset, burstlevels, 
lowerFreq, n, steptime,fs) 
% signal:       Signal from system under test 
% offset:       The impulse detection finds the point where the signal  
%               exceeds a certain rate of change. Pulse spreading may cause  
%               the detection to be erroneous by a few samples (rarely more  
%               than 10) and this may be corrected with the offset  
%               parameter. Positive offset causes negative time shift. 
% burstlevels:  Array of burst amplitudes (dBFS or normalised linear) 
% lowerFreq:    Starting frequency 
% n:            Number of steps 
% steptime:     Time for each step (ms) 
% fs:           Sampling frequency (usually 44100Hz) 
% freqs:        Array of frequencies for each step 
% levels:       Normalised received levels for each step 
% thd:          Total harmonic distortion (normalised) 
  
  
s = size(signal); 
if (s(1) > 1) 
    signal = signal'; 
end 
  
upperFreq = fs/2; 
r = 10^(log10(upperFreq/lowerFreq)/n); 
  
starttoimpulse = 10000; 
frametime = steptime/1000*fs; 
  
impulseindex = FindImpulse(signal) 
startindex = impulseindex + frametime - offset; 
  
freqs = lowerFreq*r.^(0:1:n-1); 
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% Go through all levels 
for i=1:1:length(burstlevels) 
    for j=1:1:n; 
        frame = signal( startindex:startindex+frametime-1 ); % Grab the 
entire frame 
         
        % Calculate levels 
        levels(i,j) = sqrt(2)*sqrt(mean(frame.^2));         % Is this the 
right thing to do? Turns RMS into peak 
         
        % Calculate THD 
        frame = frame.*hamming(frametime)';                 % Window frame 
with Hamming window 
         
        framefft = fft(frame);                              % Take FFT of 
windowed frame 
         
        framefft = framefft(1:floor(length(framefft)/2));   % Get rid of 
aliasing components 
         
        totalWindowedEnergy = sqrt(mean(abs(framefft).^2)); % Calculate 
total energy 
        fundamentalBin = round(freqs(j)/fs*length(frame))+1; % Find fft bin 
of fundamental 
         
        lowNotch = round(0.7*freqs(j)/fs*length(frame))+1; 
        highNotch = round(1.5*freqs(j)/fs*length(frame))+1; 
        if (highNotch > length(framefft)) 
            highNotch = floor(length(framefft)); 
        end 
         
        framefft(lowNotch:highNotch) = 0;                   % Implement 
notch 
        
        harmonicEnergy = sqrt(mean(abs(framefft).^2));      % Find the 
remaining energy 
        thd(i,j) = harmonicEnergy/totalWindowedEnergy;      % Calculate 
normalized THD. 
         
        startindex = startindex + frametime;                % Move onto 
next frame 
    end 
         
    startindex = startindex + frametime; 
end 
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%CIRCONVN-point circular convolution 
% 
%C = CIRCONV(A,B,N) performs the N-point circular convolution 
%of vectors A and B.  C is returned as a row vector.  A and B 
% must be vectors, but may be of different lengths.  N must be 
% a positive, non-zero integer.  The results of CIRCONV will 
%match that of CONV if N>=( length(A) + length(B) - 1).  This 
%is also the alias-free criterion for the circular convolution. 
% 
%See also CONV 
  
function[C] = circonv(A,B,N) 
  
% TEST NUMBER OF ARGUMENTS 
if nargin~=3, 
  error('CIRCONV uses exactly 3 input arguments'); 
end 
  
% TEST N 
if N<=0, 
  error('N must be great than zero.'); 
end 
  
% TEST TO SEE IF EITHER A OR B ARE MATRICES 
if ndims(A)>2 | ndims(B)>2 | min( size(A) )>1 | min( size(B) )>1, 
  error('circonv works only on vectors'); 
end 
  
% MAKE SURE VECTORS ARE COLUMN VECTORS SO  
% THAT MATRIX OPERATIONS WORK 
if size(A,2)>1, 
  A=A'; 
end 
  
if size(B,2)>1, 
  B=B'; 
end 
  
% APPEND ZEROS IF NECESSARY 
if N>length(A), 
  A=[A ; zeros(N-length(A),1)]; 
end 
  
if N>length(B), 
  B=[B ; zeros(N-length(B),1)]; 
end 
  
% TAKE ONLY THE FIRST N POINTS 
A = A(1:N); 
B = B(1:N); 
  
% PRODUCE FOLD ADD TABLE.  IT IS AN NxN SQUARE MATRIX 
% AS IS IT IS IN THE FORM NORMALLY USED, BUT THE DIAG 
% COMMAND SUMS DIAGONALS TOP LEFT TO BOTTOM RIGHT 
% SO WE MUST FLIP IT LEFT-RIGHT 
FoldAddTable = A*B'; 
FoldAddTable = fliplr(FoldAddTable); 
  
% SUM DIAGONALS OF FOLDADDTABLE TO FIND COMPONENTS OF C 
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C=zeros(1,N); 
  
% MAIN DIAGONAL ELEMENT 
C(N) = sum( diag(FoldAddTable,0) ); 
  
% OTHER ELEMENTS ARE THE SUM OF TWO DIAGONALS ONE ABOVE 
% THE MAIN AND THE OTHER IN THE COMPLEMENTARY POSITION 
% BELOW THE DIAGONAL.  HERE COMPLEMENTARY MEANS THAT  
% THE DIFFERENCE IN DIAGONAL LOCATION IS N: (N-x)-(-x)=N 
% THE DIAGONALS ARE NUMBERED SUCH THAT 0 IS THE MAIN  
% DIAGONAL, +1 IS THE DIAGONAL IMMEDIATELY ABOVE THE MAIN 
% DIAGONAL AND -1 IS THE DIAGONAL IMMEDIATELY BELOW 
% THE MAIN DIAGONAL.  THIS IS THE CONVENTION OF THE 
% DIAG() FUNCTION 
for x=1:(N-1), 
  C(x)= sum( diag(FoldAddTable, N-x) ) + sum( diag(FoldAddTable, -x) ); 
end 
function equaliser = 
CreateFIREqualiser(burstlevels,impulses,leveltype,lowerfbound,upperfbound,a
ttenuate,fs); 
  
% CreateFIREqualiser 
% 
% Creates a best-fit FIR level-dependent equaliser 
% 
% equaliser = CreateFIREqualiser(burstlevels, impulses, leveltype,  
% lowerfbound, upperfbound, attenuate, fs); 
% 
% burstlevels:  Array of burst amplitudes (dBFS or normalised linear) 
% impulses:     MLS-derived impulse responses (MxN) 
% leveltype:    ‘dbfs’ or ‘lin’ 
% lowerfbound:  Lower frequency boundary 
% upperfbound:  Upper frequency boundary 
% attenuate:    True to create attenuate-only equalisers, false otherwise 
% fs:           Sampling frequency (usually 44100Hz) 
 
freqresps = []; 
[m,n] = size(impulses); 
for i=1:1:m 
    freqresps(i,:) = 20*log10(abs(fft(impulses(i,:)))); 
end 
  
% Convert burst levels to dBFS 
if (strcmp(leveltype,'lin')) 
    burstlevelsdBFS = 20*log10(burstlevels); 
elseif (strcmp(leveltype,'dbfs')) 
    burstlevelsdBFS = burstlevels; 
else 
   error('Unrecognised leveltype') 
end 
     
  
% Find indices of frequency boundaries 
lowerboundind = floor(n*lowerfbound/fs+1); 
if (upperfbound > fs/2) 
   upperboundind = n/2+1; 
else 
   upperboundind = ceil(n*upperfbound/fs+1); 
end 
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% Calculate equaliser 
for i=1:1:m 
   % Bring all up to 0dBFS 
   freqresps(i,:) = freqresps(i,:)-burstlevelsdBFS(i); 
   % Equalise... 
   equaliser(i,1:n) = -mean(freqresps(i,lowerboundind:upperboundind)); % 
Fill in unequalised parts with average equalised level for now 
   equaliser(i,lowerboundind:upperboundind) = -
freqresps(i,lowerboundind:upperboundind); % Equalise below Nyquist rate 
   equaliser(i,:) = abs(10.^(equaliser(i,:)/20)); %Make linear again 
    
   x = fir2(n, 0:2/n:1, equaliser(i,1:n/2+1)); % Calculate linear-phase FIR 
   equaliser(i,:) = x(1:n); 
end 
  
if (attenuate == true) 
  %Normalise to have max gain of 0dBFS 
  equaliser = equaliser/abs(max(max(equaliser))); 
end 
  
 function y = FastHadamard(x, P1, N) 
  
% FastHadamard 
% 
% Applies a Fast Hadamard transform to a 1-D signal 
% 
% y = FastHadamard(x, P, N) 
% 
% x:    Signal to be transformed 
% P:    Length of MLS, where P=2N-1 
% N:    Order of MLS 
% y:    Transformed signal 
 
k1 = P1; 
for k=1:1:N 
    k2 = k1/2; 
    for j=1:1:k2 
        for i=j:k1:P1 
            i1 = i + k2; 
            temp = x(i) + x(i1); 
            x(i1) = x(i) - x(i1); 
            x(i) = temp; 
        end 
    end 
    k1 = k1/2; 
end 
  
y = x; 
  
% -- This is a Hadamard transform, but it is very slow -- 
% Is x a column vector? 
%if (size(x,1) == 1) 
%    x = x'; 
%end 
  
%y = Hadamard(P1)*x; 
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function peakindex = FindImpulse(sample) 
  
% FindImpulse 
% 
% Detects a positive impulse 
% 
% [impulseIndex] = FindImpulse(sample) 
% 
% sample:   The sample to be analysed. 
% impulseIndex:     The index of the detected impulse 
  
  
diffsample = diff(sample); % Differentiate input samples 
for i=1:1:length(sample) 
    if (diffsample(i) > 0.02) 
        peakindex = i+1;    %+1 because Matlab's diff function compares 
with previous sample 
        break; 
    end 
end 
 
function sequence = GenerateFullSequence(burstlevels, leveltype, 
repetitions, N) 
  
% GenerateFullSequence 
% 
% Generates an impulse followed by bursts of MLS at different levels. 
% 
% [sequence] = GenerateFullSequence(burstlevels, leveltype, repetitions, N) 
% 
% burstlevels:  A 1xM array of amplitudes in dBFS or normalised linear. 
% leveltype:    Can be ‘dbfs’ or ‘lin’. 
% repetitions:  Number of repetitions of each amplitude. 
% N:            MLS order, where P=2N-1. 
% sequence:     The generated sequence. 
  
  
starttoimpulse = 10000; 
impulsetoburst = 2^N; 
bursttoburst = 2^N; 
  
impulse = [1 zeros(1,impulsetoburst-1)]; 
sequence = [zeros(1,starttoimpulse) impulse]; 
mlsfull = GenerateMLS(N,1); 
  
for i=1:1:length(burstlevels)-1 
   if (burstlevels(i+1) - burstlevels(i) < 0) 
       % Burst levels must be monotonic increasing for later analysis in 
       % generation of equalisers. 
       error('burstlevels must be monotonic increasing') 
   end 
end 
  
if (strcmp(leveltype,'dbfs')) 
    burstlevels = 10.^(burstlevels./20); 
end 
  
for i=1:1:length(burstlevels) 
    mls = burstlevels(i).*mlsfull; 
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    for j=1:1:repetitions 
        sequence = [sequence mls]; 
    end 
    sequence = [sequence zeros(1,bursttoburst)]; 
end 
 
function  y = mls(n,flag) 
  
% GenerateMLS 
% 
% Generates an MLS sequence 
% 
% y = mls(n, flag) 
% 
% n:        order of MLS 
% flag:     true for registers initialised to 1, false for random 
% y:        P-length MLS sequence, where P=2N-1 
  
  
switch n                                %assign taps which will yeild a 
maximum 
case 2                              %length sequence for a given bit length 
   taps=2;                          %I forget the reference I used, but 
theres 
   tap1=1;                          %a list of appropriate tap values in 
   tap2=2;                          %Vanderkooy, JAES, 42(4), 1994. 
case 3 
   taps=2; 
   tap1=1; 
   tap2=3; 
case 4 
   taps=2; 
   tap1=1; 
   tap2=4; 
case 5 
   taps=2; 
   tap1=2; 
   tap2=5; 
case 6 
   taps=2; 
   tap1=1; 
   tap2=6; 
case 7 
   taps=2; 
   tap1=1; 
   tap2=7; 
case 8 
   taps=4; 
   tap1=2; 
   tap2=3; 
   tap3=4; 
   tap4=8; 
case 9 
   taps=2; 
   tap1=4; 
   tap2=9; 
case 10 
   taps=2; 
   tap1=3; 
   tap2=10; 
case 11 
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   taps=2; 
   tap1=2; 
   tap2=11; 
case 12 
   taps=4; 
   tap1=1; 
   tap2=4; 
   tap3=6; 
   tap4=12; 
case 13 
   taps=4; 
   tap1=1; 
   tap2=3; 
   tap3=4; 
   tap4=13; 
case 14 
   taps=4; 
   tap1=1; 
   tap2=3; 
   tap3=5; 
   tap4=14; 
case 15 
   taps=2; 
   tap1=1; 
   tap2=15; 
case 16 
   taps=4; 
   tap1=2; 
   tap2=3; 
   tap3=5; 
   tap4=16; 
case 17 
   taps=2; 
   tap1=3; 
   tap2=17; 
case 18 
   taps=2; 
   tap1=7; 
   tap2=18; 
case 19 
   taps=4; 
   tap1=1; 
   tap2=2; 
   tap3=5; 
   tap4=19; 
case 20 
   taps=2; 
   tap1=3; 
   tap2=20; 
case 21 
   taps=2; 
   tap1=2; 
   tap2=21; 
case 22 
   taps=2; 
   tap1=1; 
   tap2=22; 
case 23 
   taps=2; 
   tap1=5; 
   tap2=23; 



EE4(T) Project Report 

70 

case 24 
   taps=4; 
   tap1=1; 
   tap2=3; 
   tap3=4; 
   tap4=24; 
%case 25 
%   taps=2; 
%   tap1=3; 
%   tap2=25; 
%case 26 
%   taps=4; 
%   tap1=1; 
%   tap2=7; 
%   tap3=8; 
%   tap4=26; 
%case 27 
%   taps=4; 
%   tap1=1; 
%   tap2=7; 
%   tap3=8; 
%   tap4=27; 
%case 28 
%   taps=2; 
%   tap1=3; 
%   tap2=28; 
%case 29 
%   taps=2; 
%   tap1=2; 
%   tap2=29; 
%case 30 
%   taps=4; 
%   tap1=1; 
%   tap2=15; 
%   tap3=16; 
%   tap4=30; 
%case 31 
%   taps=2; 
%   tap1=3; 
%   tap2=31; 
%case 32 
%   taps=4; 
%   tap1=1; 
%   tap2=27; 
%   tap3=28; 
%   tap4=32; 
otherwise 
   disp(' '); 
   disp('input bits must be between 2 and 24'); 
   return 
end 
  
if (nargin == 1)  
    flag = 0; 
end 
  
if flag == 1 
    abuff = ones(1,n); 
else 
    rand('state',sum(100*clock)) 
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    while 1 
        abuff = round(rand(1,n)); 
        %make sure not all bits are zero 
        if find(abuff==1) 
            break 
        end 
    end 
end 
  
for i = (2^n)-1:-1:1 
       
   xorbit = xor(abuff(tap1),abuff(tap2));       %feedback bit 
    
   if taps==4 
      xorbit2 = xor(abuff(tap3),abuff(tap4));%4 taps = 3 xor gates & 2 
levels of logic 
      xorbit = xor(xorbit,xorbit2);             %second logic level 
   end 
    
    abuff = [xorbit abuff(1:n-1)]; 
    y(i) = (-2 .* xorbit) + 1;      %yields one's and negative one's (0 -> 
1; 1 -> -1) 
end 
  
function signal = GenerateSignal(mls, b, P); 
  
% GenerateSignal 
% 
% Generates a signal by circularly convolving a filter with coefficients b  
% with an MLS signal. Used for test purposes. 
% 
% signal = GenerateSignal(mls, b, P); 
% mls:  MLS signal 
% b:    FIR coefficients of filter 
% P:    Length of MLS, where P=2N-1 
  
  
% Convolve input with MLS 
plot(abs(fft(b))); 
title('Actual filter'); 
  
%signal = circonv(b,mls,P);         %Circular convolution 
signal = filter(b,1,[mls mls]);         %Discrete-time convolution 
signal = signal(end-P+1:end); 
 
function sequence = GenerateSteppedSequence(burstlevels, leveltype, 
lowerFreq, n, steptime,fs) 
  
% GenerateSteppedSequence 
% 
% Generates a sequence of stepped sines at multiple amplitudes, impulse-
aligned 
% 
% sequence = GenerateSteppedSequence(burstlevels, leveltype, lowerFreq, n, 
steptime,fs) 
% 
% burstlevels:  Array of burst amplitudes (dBFS or normalised linear) 
% leveltype:    ‘dbfs’ or ‘lin’ 
% lowerFreq:    Starting frequency (Hz) 
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% n:            Number of levels 
% steptime:     Time for each step (ms) 
% fs:           Sampling frequency (usually 44100Hz) 
% sequence:     The generated sequence   
  
  
upperFreq = fs/2; 
  
r = 10^(log10(upperFreq/lowerFreq)/n); 
  
% Make frequencies 
  
starttoimpulse = 10000; 
frametime = steptime/1000*fs; 
  
impulse = [1 zeros(1,frametime-1)]; 
sequence = [zeros(1,starttoimpulse) impulse]; 
  
t = 0:1:frametime-1; 
  
sines = []; 
for j=1:1:n 
    f = lowerFreq*r^(j-1); 
    sines = [sines sin(2*pi/fs*t*f)]; 
end 
sines = [sines zeros(1,frametime)]; 
  
for i=1:1:length(burstlevels)-1 
   if (burstlevels(i+1) - burstlevels(i) < 0) 
       % Burst levels must be monotonic increasing for later analysis in 
       % generation of equalisers. 
       error('burstlevels must be monotonic increasing') 
   end 
end 
  
if (strcmp(leveltype,'dbfs')) 
    burstlevels = 10.^(burstlevels./20); 
end 
  
for i=1:1:length(burstlevels) 
    sequence = [sequence sines.*burstlevels(i)];   
end 
 
function tagL = GeneratetagL(mls, P, N); 
  
% GeneratetagL 
% 
% Generates array for the rearrangement of samples after a Hadamard 
Transform 
% 
% tagL = GeneratetagL(mls, P, N); 
% 
% mls:      The MLS signal for which tagL is valid. 
% P:        Length of the MLS signal 
% N:        Order of the MLS signal 
% tagL:     1x(P+1) vector of indices. 
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% Convert {-1,1} to binary 
binmls = (mls-1)./-2;  
  
S = GeneratetagS(mls,P,N); 
  
% Find which values of the tagS vector are powers of 2 
for i=1:1:P 
    for j=1:1:N 
        if (S(i) == 2^(j-1)) 
            index(j) = i; 
        end 
    end 
end 
  
index = index; 
  
powerindices = 0:1:N-1; 
powers = 2.^powerindices; 
  
for i=1:1:N 
  L(i,1:mod(index(i),P)) = binmls(mod(index(i),P):-1:1); 
  L(i,mod(index(i),P)+1:P) = binmls(P:-1:mod(index(i),P)+1); 
end 
  
tagL = powers*L; 
 
function tagS = GeneratetagS(mls, P, N) 
  
% GeneratetagS 
% 
% Generates array for the rearrangement of samples before a Hadamard 
Transform 
% 
% tagS = GeneratetagS(mls, P, N); 
% 
% mls:      The MLS signal for which tagS is valid. 
% P:        Length of the MLS signal 
% N:        Order of the MLS signal 
% tagS:     1x(P+1) vector of indices. 
  
  
% Convert {-1,1} to binary 
binmls = (mls-1)./-2;  
  
% Make S matrix by making first line mls and shifting every subsequent row 
% RIGHT up to N then multiply each row by the correct power of 2. 
powerindices = N-1:-1:0; 
powers = 2.^powerindices; 
  
for i=1:1:N 
   S(i, 1:i-1) = binmls(P-i+2:P); 
   S(i, i:P) = binmls(1:P-i+1); 
end 
  
tagS = powers*S; 
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function [y] = NonlinearFFTFilt(burstLevels, levelType, equaliser, x) 
  
% NonlinearFFTFilt 
% 
% Like Matlab FFTFILT, but applies level-dependent FFT multiplication 
% 
% y = NonlinearFFTFilt(burstlevels,leveltype,equaliser,x) 
% 
% burstlevels:  Array of burst amplitudes (dBFS or normalised linear) 
% leveltype:    ‘dbfs’ or ‘lin’ 
% equaliser:    MxN array of equaliser impulse responses 
% x:            Signal to be equalised 
% y:            Equalised signal 
  
  
s = size(equaliser); 
  
% Convert to linear bursts 
if (strcmp(leveltype,'dbfs')) 
    burstlevels = 10.^(burstlevels./20); 
end 
  
% Get equaliser into frequency domain of length(x) 
for i=1:1:s(1) 
   equaliser(i,:) = fft(equaliser(i,:),length(x));  
end 
  
% Get input signal into frequency domain 
fftX = fft(x); 
  
y = zeros(1,length(x)); 
for i=1:1:length(fftX) 
   level = abs(fftX(i)); 
   %Go through each bin 
   for j=1:1:length(burstlevels) % Find correct level 
      if( burstlevels(j) > level) 
         y(i) = fftX(i).*equaliser(j-1,i); 
         break; 
      end 
   end 
end 
  
y = ifft(y); 
 
function resp = PermuteResponse(perm, tagL, P) 
  
% PermuteResponse 
% 
% Rearranges output of Hadamard Transform according to tagL. 
% 
% resp = PermuteResponse(perm, tagL, P) 
% 
% perm:     Output of Hadamard Transform 
% tagL:     1xP vector of indices from GeneratetagL. 
% P:        Length of MLS, where P=2N-1 
% Resp:     Rearranged signal 
  
  
fact = 1/(P+1); 
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%Ignore first element 
perm = perm(2:end); 
  
%for i=1:1:P 
%    resp(i) = perm(tagL(i))*fact; 
%end 
  
resp = perm(tagL).*fact; 
  
resp(P+1) = 0; 
 
function perm = PermuteSignal(signal, tagS, P, dcCoupled); 
  
% PermuteSignal 
% 
% Rearranges input signal according to tagS. 
% 
% perm = PermuteSignal(signal, tagS, P, dcCoupled); 
% 
% signal:       Signal to be arranged 
% tagS:         1xP vector of indces from GeneratetagS 
% P:            Length of MLS, where P=2N-1 
% DCCoupled:    Set to true for DC recovery method. Set to false for  
%               loudspeaker measurements. 
% perm:         The rearranged signal 
  
  
%DC coupling: 
if (dcCoupled == 1) 
    dc = 0; 
    for i=1:1:P 
        dc = dc + signal(i); 
    end 
    perm(1) = -dc; 
else 
    perm(1) = 0;    % Not sure if this is the right thing to do yet... 
end 
  
for i=1:1:P 
    perm(tagS(i)+1) = signal(i); 
end 
 
 
 
 
 
 
 


