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ABSTRACT
Linear microphone arrays have been extensively used for

dereverberation. In this paper we look at the dereverberation
performance of two types of spherical microphone array: the
open array (microphones suspended in free space) and the
rigid array (microphones mounted on a rigid baffle). Derever-
beration is performed in the spherical harmonic domain us-
ing a technique similar to the commonly used delay-and-sum
beamformer (DSB). We analyse the theoretical performance
with respect to the direct-to-reverberant ratio (DRR), and we
also present simulation results obtained using a simulation
tool for spherical arrays. The performance of the spherical
DSB is found to increase with the radius of the sphere, and to
be 1-2 dB higher for the rigid array. These results serve as a
baseline for evaluating the performance of future dereverber-
ation algorithms for spherical arrays.

Index Terms— Dereverberation, microphone array

1. INTRODUCTION

When a speech signal is captured in an enclosed environment
such as an office room or an auditorium, its quality is affected
by reverberation and ambient noise [?, ?]. Reverberation can
have detrimental effects on the perceived quality of speech
and in some more severe cases it can cause loss of intelli-
gibility. Reverberation also reduces the performance of ap-
plications such as speech recognition and speaker identifica-
tion [?]. Consequently, dereverberation, the removal of the
effects of room acoustics, has become an important area of
signal processing research [?].

Several metrics have been developed to quantify the ef-
fects of reverberation and those of dereverberation algo-
rithms. Most of these are the result of extensive research on
the topics of intelligibility of music and speech in reverberant
environments in the fields of psychoacoustics and architec-
tural acoustics. Existing objective measures are mainly based
on the room impulse response (RIR) [?,?]. An important class
of RIR-based approaches measures the energy of the direct
path signal relative to other features of the RIR [?]. Here

we employ the direct-to-reverberant ratio (DRR) as a perfor-
mance metric [?]; it is defined as the ratio of the energy of the
direct signal component to the energy of the reflected signal
components.

Beamforming is a fundamental multi-microphone tech-
nique, where all microphone signals are filtered and summed
to achieve spatial selectivity. Here, we focus particularly on
the use of a beamformer for sound acquisition in reverber-
ant environments, where beamformers have shown particular
promise [?].

Previous studies of dereverberation using microphone ar-
rays have focused on linear arrays, e.g. [?]. However spher-
ical arrays, where microphones are arranged in a spherical
configuration either in free space (an open sphere) or on a
rigid baffle (a rigid sphere), have recently become a topic of
interest due to their ability to analyse sound fields in three di-
mensions, using an efficient spherical harmonic framework.

In this paper, we derive an expression for a spherical
microphone array’s expected dereverberation performance in
terms of the DRR (for an analysis in terms of speech intel-
ligibility see [?]). The expression for the scattering due to a
rigid sphere is formulated in the spherical harmonic domain
(SHD). We therefore also develop our DRR expression in this
domain, thus allowing us to analyse both open and rigid ar-
rays. We perform dereverberation using a so-called delay-
and-sum beamformer (DSB) in the SHD, which for the open
sphere case is equivalent to the well-known time/frequency
domain DSB. We use tools from statistical room acoustics
(SRA) in order to find the expected DRR improvement at the
beamformer output compared to a microphone placed at a po-
sition equivalent to the centre of the sphere.

This paper is organised as follows: in Section 2, we intro-
duce some spherical harmonic concepts and give the expres-
sion for a DSB in the SHD; in Section 3, we derive a theo-
retical expression for the DRR improvement achieved with
a spherical DSB; in Section 4, we describe the simulation
method used to determine the room transfer functions which
model our reverberant room; and in Section 5 we present both
theoretical and simulation results for open and rigid arrays.



2. DELAY-AND-SUM BEAMFORMER IN THE
SPHERICAL HARMONIC DOMAIN

We consider the sound pressure field p(k, r) at a position
r = (r,Ω) (in spherical coordinates) on the surface of a
sphere of radius r, where k is the wavenumber. Fig. 1 shows a
diagram of the room layout. The spherical Fourier transform
of this field is given by [?, p. 192]

pnm(k, r) =
∫

Ω∈S2
p(k, r)Y ∗nm(Ω)dΩ, (1)

where n is the order, m is the degree,∫
Ω∈S2 dΩ ,

∫ 2π

0

∫ π
0

sin θ dθ dφ, the basis functions
Ynm are the spherical harmonics, and (·)∗ denotes the
complex conjugate. The spherical harmonics Ynm(Ω) of
order n and degree m, are given by [?, p. 190]

Ynm(Ω) =

√
(2n+ 1)

4π
(n−m)!
(n+m)!

Pnm(cos θ)eimφ, (2)

where Pnm is the associated Legendre function and i =
√
−1.

The spherical harmonics satisfy the following orthogonality
property [?, p. 191]:∫

Ω∈S2
Ynm(Ω)Y ∗pq(Ω)dΩ = δnpδmq, (3)

where δ is defined by

δij =
{

1, if i = j;
0, otherwise. (4)

A sum of spherical harmonics over all degrees m can be sim-
plified using the spherical harmonics addition theorem:

2n+ 1
4π

Pn(cos Θa,b) =
n∑

m=−n
Y ∗nm(Ωa)Ynm(Ωb), (5)

where Θa,b is the angle between Ωa and Ωb.
The inverse spherical Fourier transform of a sound field p

is given by the sum of all spherical Fourier coefficients pnm
multiplied by the appropriate spherical harmonic Ynm:

p(k, r) =
∞∑
n=0

n∑
m=−n

pnm(k, r)Ynm(Ω). (6)

The spherical Fourier transform of the sound field due to
a unit amplitude plane wave impinging on a spherical micro-
phone array with an arrival direction Ωs is given by 1 [?, ?]

pnm(k, r) = 4π(−i)nbn(kr)Y ∗nm(Ωs), (7)

where bn is the mode strength for an order n. For an open
sphere, the mode strength is given by the spherical Bessel

1We adopt the sign convention commonly used in physics, as in [?, ?].
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Fig. 1. Room layout in two dimensions (third dimension is
not shown), showing a source S and a spherical microphone
array A. Two sample microphones are located at rq = (r,Ωq)
and rq′ = (r,Ωq′), and a source is located at rs = (rs,Ωs).

function bn(kr) = jn(kr). For a rigid sphere, we add a term
to account for the scattering [?, p. 228]:

bn(kr) = jn(kr)− j′n(kr)

h
(1)′
n (kr)

h(1)
n (kr), (8)

where h(1) is the spherical Hankel function of the first kind,
and h(1)′ is its first derivative with respect to kr. In the spa-
tial domain, this sound field is given by the inverse Fourier
transform of (7):

p(k, r) =
∞∑
n=0

n∑
m=−n

4π(−i)nbn(kr)Y ∗nm(Ωs)Ynm(Ω). (9)

Computing the spherical Fourier transform of a sound
field using the expression in (1) requires a continuous sensor,
however in practice we use a number of discrete microphones
at positions rq = (r,Ωq), q = 1, . . . , Q (where Q denotes the
number of microphones) and approximate the integral using
a quadrature sum:

pnm(k, r) =
Q∑
q=1

aq(k)p(k, rq)Y ∗nm(Ωq). (10)

With suitable quadrature weights aq , this approximation is ex-
act provided the microphones are sufficient in number and
suitably positioned. Further details regarding the choice of
microphone positions and weights can be found in [?, ?].

The output of an array can be expressed in the spherical
harmonic domain as:

y(k, r) =
∞∑
n=0

n∑
m=−n

pnm(k, r)w∗nm(k), (11)

where wnm are the beamforming weights. For a delay-and-
sum beamformer (DSB) steered in a direction Ωl, assuming
plane-wave incidence, the weights are given by [?]

w∗nm(k) = inb∗n(kr)Ynm(Ωl). (12)



3. DIRECT-TO-REVERBERANT RATIO

The expected DRR improvement at the output of a DSB com-
pared to the DRR at a single microphone located at the same
position as the centre of the spherical array is defined as:

E{γ̂(r)} = 10 log10

(
E{γDSB(r)}
E{γ′}

)
, (13)

where E{·} denotes the spatial expectation, γDSB is the DRR
at the output of the DSB and γ′ is the DRR at a single micro-
phone located at the same position as the centre of the array
(with no array present). We will first look to estimate E{γ′},
followed by E{γDSB(r)}.

As in SRA theory [?], we make the assumption that the
room transfer function (RTF) H(k, rq) from the location of
the source rs to the qth microphone location rq can be ex-
pressed in terms of a direct component Hd and a reverberant
component Hr:

H(k, rq) = Hd(k, rq) +Hr(k, rq), (14)

where the dependence on rs has been omitted for simplicity.
We also assume that the direct and reverberant components
are uncorrelated, and that the power spectral density of the
RTF H is therefore given by

E{|H(k, rq)|2} = |Hd(k, rq)|2 + E{|Hr(k, rq)|2}. (15)

The direct component is given by [?, p. 227]

Hd(k, rq) =
∞∑
n=0

n∑
m=−n

bn(kr)kih(1)
n (krs)Y ∗nm(Ωs)Ynm(Ωq), (16)

where rs is the distance between the centre of the array and
the source. Using the spherical harmonic addition theorem
from (5), this simplifies to

Hd(k, rq) =
∞∑
n=0

bn(kr)kih(1)
n (krs)

(2n+ 1)
4π

Pn(cos Θs,q). (17)

For an open sphere [i.e. bn(kr) = jn(kr)] this is equal to the
familiar free-space Green’s function [?, p. 259]:

Hd(k, rq) =
eik||rq−rs||

4π||rq − rs||
. (18)

The spatial cross-correlation between the pressure due to
a diffuse sound field at two microphones with positions rq and
rq′ is found to be proportional to C(k, rq, rq′) which is given
by (see Appendix for derivation)

C(k, rq, rq′) = <{E {p(k, rq)p∗(k, rq′)}} (19)

=
∞∑
n=0

|bn(kr)|2(2n+ 1)Pn(cos Θq,q′). (20)

In the open sphere case, for any frequency above the
Schroeder frequency [?], the mean square reverberant com-
ponent is given by [?, ?]

E{|Hr(k, rq)|2} =
1− α
πAα

, (21)

where α is the average wall absorption coefficient (which in
real rooms is frequency dependent however for simplicity will
be assumed to be frequency independent here) and A is the
total wall surface area. The equations for the rigid sphere
case, which must account for scattering, will be derived in a
future paper. The cross-correlation between the reverberant
components of the RTF is therefore given by

E{Hr(k, rq)H∗r (k, rq′)} =

1− α
πAα

∞∑
n=0

|bn(kr)|2(2n+ 1)Pn(cos Θq,q′). (22)

Using (18) and (21), the expected DRR for a microphone
placed at the centre of the array (rq = 0) is given by

E{γ′} =
∑
k∈K |Hd(k,0)|2∑

k∈KE{|Hr(k,0)|2}

=
Aα

(1− α) 16π||rs||2
, (23)

where K denotes a set of discrete values of wavenumber k.
Now we develop an expression for E{γDSB(r)}. If we

consider an N th order spherical microphone array, based on
(11) and (12), the transfer function H(k, r) from the source
to the DSB output is given by

H(k, r) =
N∑
n=0

n∑
m=−n

(∫
Ω∈S2

H(k, r)Y ∗nm(Ω)dΩ
)

inb∗n(kr)Ynm(Ωl). (24)

The mean square beamformer output can also be ex-
pressed in terms of a direct component Hd and reverberant
component H r:

E{|H(k, r)|2} = |Hd(k, r)|2 + E{|H r(k, r)|2}. (25)

Using (24) and (17), the direct component is found to be
(see Appendix for derivation):

|Hd(k, r)|2 =

∣∣∣∣∣
N∑
n=0

n∑
m=−n

(∫
Ω∈S2
Hd(k, r)Y ∗nm(Ω)dΩ

)

inb∗n(kr)Ynm(Ωl)

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
n=0

|bn(kr)|2 (2n+ 1)
4π

kin+1h(1)
n (krs)Pn(cos Θs,l)

∣∣∣∣∣
2

.

(26)



If the look direction is the source direction, i.e. Ωs = Ωl,
then this reduces to:

|Hd(k, r)|2 =

∣∣∣∣∣
N∑
n=0

|bn(kr)|2 (2n+ 1)
4π

kin+1h(1)
n (krs)

∣∣∣∣∣
2

.(27)

The reverberant component is given by

E{|H r(k, r)|2}

= E

{∣∣∣∣∣
N∑
n=0

n∑
m=−n

(∫
Ω∈S2
Hr(k, r)Y ∗nm(Ω)dΩ

)

inb∗n(kr)Ynm(Ωl)

∣∣∣∣∣
2}
. (28)

The final expression is derived in the Appendix and given in
(34).

Finally we obtain the DRR of the delay-and-sum beam-
former:

E{γDSB(r)} =
∑
k∈K |Hd(k, r)|2∑

k∈KE{|H r(k, r)|2}
, (29)

where |Hd(k, r)|2 and E{|H r(k, r)|2} are respectively given
in (26) and (34). We can now evaluate the expected DRR
improvement as defined in (13) using (23) and (29).

4. SIMULATION METHOD

We make use of a simulation method first proposed in [?].
This method allows us to simulate RTFs taking into account
both the room reverberation and, in the case of the rigid
sphere, the scattering introduced by the array.

The principle of the method is to model the RTFs as a sum
of the responses from individual image sources, as in Allen &
Berkley’s image method [?]. However, while in the image
method the individual responses are the free-space Green’s
functions, here they are replaced with a spherical harmonic
decomposition, as in (17), which allows us to account for scat-
tering. The distance rs in (17) is then the distance between the
centre of the array and the image source, and the angle Θs,q is
the angle between the qth microphone and the image source.
Further information on the method and its implementation,
SMIRgen [?], is available in [?].

To illustrate the scattering effect, Fig. 2 shows two room
transfer functions obtained using this method: one for a rigid
sphere, and one for an open sphere, both of radius 2 cm. The
transfer functions have been limited to the direct path and a
single first order reflection for clarity. It can be seen that the
effects of scattering become more and more pronounced as
frequency increases.
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Fig. 2. A comparison of RTF magnitudes in the open and
rigid sphere cases, for a microphone positioned on the near
side (close to the source) of an array with radius 2 cm.

5. RESULTS

In order to validate the theoretical expression derived for the
DRR improvement which is achievable with a spherical DSB,
and to gain some insight into the performance of a DSB for
dereverberation, in this section we present simulation results
alongside the theoretical results. Although the theoretical ex-
pression has not been derived for the rigid sphere, simula-
tion results are shown to illustrate the advantage of the rigid
sphere.

For our simulations we generated RTFs using the method
described in Section 4. We modeled a room with dimensions
4 × 5 × 6.4 m, as in [?, ?, ?], in order to best approximate
a diffuse sound field. A second order (N = 2) spherical ar-
ray was used, with equiangular microphone positioning; we
therefore used 4(N + 1)2 = 36 microphones, however other
more complex microphone configurations allow for a reduced
number of microphones. The reverberation time RT60 was
set to 500 ms, thus giving an average wall absorption coeffi-
cient of α = 0.2656, and the sampling frequency was set to
8 kHz. In order to satisfy the conditions for a diffuse sound
field [?], we considered frequencies well above the Schroeder

frequency of 2000
√

0.5
4·5·6.4 = 125 Hz, specifically from 300

to 3400 Hz, and both sources and microphones were kept at
least half a wavelength from the walls of the room.

The spatial expectation was computed using an average
over 50 source-array positions, using the approach in [?]: the
array and source were kept in a fixed configuration (at a dis-
tance of 2 m from each other), which was then randomly ro-
tated and translated. The reverberant component Hr of the
RTFs was computed by subtracting the direct path from the
reverberant RTFs.
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Fig. 3. DRR improvement as a function of the array radius,
for a source-array distance of 2 m.

The simulation results for both the open and rigid spheres,
along with the theoretical results for the open sphere, are
shown in Fig. 3, for arrays with a radius of 5, 10 and 15 cm.
A reasonably good match between the theoretical and simu-
lation results is achieved.

It can be seen that the DRR improvement achieved in-
creases with the array radius: as the sphere grows, the spatial
diversity increases due to the larger separation between mi-
crophones. Our results are broadly similar to those obtained
in [?]. Although more microphones are used here, the arrays
are physically much smaller when compared to a linear array
with a 20 cm separation between microphones, as in [?].

The results also show the improved dereverberation per-
formance of a rigid array. This is consistent with the theoreti-
cal directivity index for a rigid array, which is higher than for
an open array [?]. As we have a diffuse sound field, a higher
directivity index yields a higher DRR.

6. CONCLUSIONS

In this paper we have derived a theoretical expression for the
dereverberation performance of a spherical DSB with respect
to DRR. We have compared the results from this expression
to simulation results for open arrays, as well as presenting
the simulation results for a rigid array which is found to have
better performance. We find the performance is improved
when choosing an array with a larger radius, as is the case
for a linear array with larger spacing between microphones.
The results obtained could serve as a baseline for evaluating
the performance of more sophisticated dereverberation algo-
rithms for spherical microphone arrays.



7. APPENDIX

If we have a diffuse sound field, the spatial cross-correlation between the sound pressure at two positions rq and rq′ is proportional to:

C(k, rq, rq′) =<{E {p(k, rq)p∗(k, rq′)}}

=
1

4π
<
Z

Ω∈S2
p(k, rq)p∗(k, rq′)dΩ

ff

=
1

4π
<

8<:
Z

Ω∈S2

∞X
n=0

nX
m=−n

4π(−i)nbn(kr)Y ∗nm(Ω)Ynm(Ωq)

∞X
n′=0

n′X
m′=−n′

4πin
′
b∗n′(kr)Yn′m′(Ω)Y ∗n′m′(Ωq′)dΩ

9=;
(30)

Using the orthogonality property of the spherical harmonics from (3), we obtain:

C(k, rq, rq′) =
1

4π
<

(
∞X

n=0

nX
m=−n

(4π)2|bn(kr)|2Ynm(Ωq)Y ∗nm(Ωq′)

)

=
1

4π
<

(
∞X

n=0

(4π)2|bn(kr)|2 2n+ 1

4π
Pn(cos Θq,q′)

)

=
∞X

n=0

|bn(kr)|2(2n+ 1)Pn(cos Θq,q′) (31)

The direct component Hd of the beamformer output H is given by:

|Hd(k, r)|2 =

˛̨̨̨
˛

NX
n=0

nX
m=−n

„Z
Ω∈S2

Hd(k, r)Y ∗nm(Ω)dΩ

«
inb∗n(kr)Ynm(Ωl)

˛̨̨̨
˛
2

=

˛̨̨̨
˛

NX
n=0

nX
m=−n

 Z
Ω∈S2

 
∞X

n=0

nX
m=−n

bn(kr)kih(1)
n (krs)Y

∗
nm(Ωs)Ynm(Ω)

!
Y ∗nm(Ω)dΩ

!
inb∗n(kr)Ynm(Ωl)

˛̨̨̨
˛
2

=

˛̨̨̨
˛

NX
n=0

nX
m=−n

bn(kr)kin+1h(1)
n (krs)Y

∗
nm(Ωs)b∗n(kr)Ynm(Ωl)

˛̨̨̨
˛
2

=

˛̨̨̨
˛

NX
n=0

|bn(kr)|2 (2n+ 1)

4π
kin+1h(1)

n (krs)Pn(cos Θs,l)

˛̨̨̨
˛
2

(32)

The reverberant component H r is given by:

E{|H r(k, r)|2} = E

8<:
˛̨̨̨
˛

NX
n=0

nX
m=−n

„Z
Ω∈S2

Hr(k, r)Y ∗nm(Ω)dΩ

«
inb∗n(kr)Ynm(Ωl)

˛̨̨̨
˛
2
9=; (33)

We can replace the integral in this equation with a quadrature sum as in (10):

E{|H r(k, r)|2}

= E

8<:
˛̨̨̨
˛

NX
n=0

nX
m=−n

QX
q=1

aqY
∗

nm(Ω)Hr(k, rq)inb∗n(kr)Ynm(Ωl)

˛̨̨̨
˛
2
9=;

= E

8<:
˛̨̨̨
˛

NX
n=0

inb∗n(kr)
2n+ 1

4π

QX
q=1

aqPn(cos Ωq,l)Hr(k, rq)

˛̨̨̨
˛
2
9=;

= E

8<:
NX

n=0

NX
n′=0

inb∗n(kr)(−i)n′
bn′(kr)

2n+ 1

4π

2n′ + 1

4π

QX
q=1

QX
q′=1

aqa
∗
q′Pn(cos Ωq,l)Pn′(cos Ωq′,l)Hr(k, rq)H∗r (k, rq′)

9=;
=

NX
n=0

NX
n′=0

inb∗n(kr)(−i)n′
bn′(kr)

2n+ 1

4π

2n′ + 1

4π

QX
q=1

QX
q′=1

aqa
∗
q′Pn(cos Ωq,l)Pn′(cos Ωq′,l)E {Hr(k, rq)H∗r (k, rq′)} (34)

where the expression for E {Hr(k, rq)H∗r (k, rq′)} is given in (22).


