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ABSTRACT

A method is proposed for simulating the sound pressure
signals on a spherical microphone array in a reverberant en-
closure. The method employs spherical harmonic decompo-
sition and takes into account scattering from a solid sphere.
An analysis shows that the error in the decomposition can be
made arbitrarily small given a sufficient number of spherical
harmonics.

Index Terms— Image method, reverberation, room
acoustics, spherical microphone arrays

1. INTRODUCTION

Current and previous studies of spherical microphone ar-
rays either do not take into account the scattering caused by
a closed/rigid sphere or else assume free-space conditions.
However, at high frequencies, the scattering effect cannot be
ignored and in small rooms such as offices and meeting rooms
where microphone arrays are expected to become common-
place, there is a non-negligible amount of reverberation. Stud-
ies involving real measurements inevitably include both these
effects. However, the amount of reverberation is difficult to
control and extensive tests with real measurements are expen-
sive (due to the high cost of the arrays) and time-consuming.
There is therefore a strong need for a method to simulate room
impulse responses between an acoustic source and spherical
microphone array in the presence of reverberation.

We propose a method based on spherical harmonic de-
composition (SHD). The room reverberation is modelled in
a computationally efficient way using a variant of Allen &
Berkley’s image method [1]. The image method is a widely
used method for simulating room impulse responses in small
rooms which can in principle be used to simulate responses
for microphones on an open sphere. However, practical spher-
ical arrays usually involve microphones placed on a rigid
sphere and in this case the image method cannot model the
scattering effect of the sphere.
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The image method makes a number of assumptions which
we also adopt here. The rooms are assumed to be perfectly
rectangular which allows for an efficient implementation. The
walls of these rooms are assumed to be perfectly rigid, i.e.
they have infinite acoustic impedance. Furthermore, when
applying the SHD, we assume that the closed sphere is also
perfectly rigid. The new method models the direct sound path,
reflections due to room reverberation, scattering of the direct
path and scattering of the reverberant reflections; we neglect
sound scattered and then reflected by the walls of the room,
as well as multiple interactions between the sphere and the
walls, both of which are considered to be small for a small
scatterer [2].

This paper is organized as follows: in Section 2 we in-
troduce the SHD, in Section 3 we explain the impact of sign
conventions on the SHD, in Section 4 we present a modified
image method which has been adapted to this decomposition,
and in Section 5 we analyze the error involved in the SHD.
An implementation of the method is available online [3].

2. SPHERICAL HARMONIC DECOMPOSITION

Consider a sound pressure field p(k, r) at a point r on a
sphere, where k is the wavenumber and r , (r,Ω) in
spherical polar coordinates (Ω denotes an elevation-azimuth
pair). The sound field due to a unit amplitude point source at
rs , (rs,Ωs) is given by [4, p. 227]

p(k, r, rs) =4πik
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where (·)∗ denotes the complex conjugate, i =
√
−1, Ylm is

the spherical harmonic of order l and degree m, bl is the far-
field mode strength, and h(1)

l is the spherical Hankel function
of the first kind and of order l. Note that as we have chosen
a unit amplitude point source, p(k, r, rs) is effectively a room
transfer function (RTF).

According to the spherical harmonic addition theorem,
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Y ∗lm(Ωs)Ylm(Ω), (2)
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Fig. 1. A comparison of RTF magnitudes in the open and rigid
sphere cases, for two microphones positioned on a sphere of
radius 2 cm: one which is close to the source (near side) and
one which is far from the source (far side).

where Pl is the associated Legendre function and Θ is the
angle between Ωs and Ω. As in [5], (1) therefore reduces to:

p(k, r, rs)= ik

∞∑
l=0

bl(kr)h
(1)
l (krs)(2l + 1)Pl(cos Θ). (3)

The far-field mode strength for an open sphere is given by
bl(kr) = jl(kr), where jl is the spherical Bessel function of
order l. For the sound field on the surface of a rigid sphere
(such as the em32 Eigenmike by mh acoustics), the far-field
mode strength includes a scattering term which is derived by
assuming that the radial velocity is zero on the surface of the
sphere [4, p. 228]:

bl(kr) = jl(kr)−
j′l(kr)

h
(1)′

l (kr)
h

(1)
l (kr), (4)

where (·)′ denotes the first derivative. This model of scatter-
ing is used in all theoretical analyses for spherical microphone
arrays (e.g. [6, 7]), as well as for the design of beamformers
which have been experimentally tested [8].

To demonstrate the scattering effect, the magnitude of the
RTFs obtained for two microphones positioned on the near
side and far side of an array, with open and rigid spheres of
radius 2 cm, is shown in Fig. 1, for a source-array distance
of 1 m. These RTFs were computed using an implementa-
tion [3] of the method in Section 4. While in the case of
the open sphere the magnitude response is flat, we see that
in the rigid sphere case the magnitude response is frequency-
dependent: for the near side microphone there is a construc-
tive effect which increases with frequency, whereas for the
far side microphone there is a small constructive effect at low
frequencies and an increasingly destructive effect thereafter.

In the case of an open sphere (no scattering), the SHD in
(3) is equal to the free space Green’s function [4, p. 259]:

p(k, r, rs) =
e+ik||r−rs||

||r− rs||
. (5)

3. SIGN CONVENTIONS IN THE WAVE EQUATION

It should be noted that thus far we have considered only RTFs;
the sound pressure is in the frequency domain. If we wish to
obtain a room impulse response (RIR), we must be careful
to use the correct sign convention for the Fourier transform
pair. The above expressions all assume the convention for
describing waves used in physics where the Fourier transform
is defined as

F (ω) =
∫ ∞
−∞

f(t)e+iωtdt, (6)

in order to eliminate the e−iωt term in the time-harmonic so-
lution to the wave equation. The exponential term in this
transform definition has opposite sign to the one habitually
used in signal processing, however in the field of acoustics
and spherical harmonics it is the more common choice, as in
[1, 4]. In this convention, outgoing and incoming waves are
respectively described by Hankel functions of the first and
second kind.

Alternatively we can use the electromagnet-
ics/engineering convention where the exponential in the
Fourier transform definition has opposite sign. The exponen-
tial in the Green’s function then also has opposite sign, and
we must take the complex conjugate of the right-hand side of
(3), as in [6].

Using the inverse Fourier transform associated with the
forward transform defined in (6), in the open sphere case the
inverse transform of (3) is

p(t, r, rs) =
δ(t− ||r−rs||

c )
||r− rs||

, (7)

where δ is the Dirac delta function and c is the speed of sound.

4. SIMULATION OF IMPULSE RESPONSES WITH
THE IMAGE METHOD

4.1. Method

The image method [1] provides a way of simulating the im-
pulse response between two points in a rectangular room, tak-
ing into account reverberation. This method could be used
for simulating spherical microphone arrays by considering
each of the array’s microphones as separate receivers but this
would not account for scattering off the rigid sphere, which
is the main aim of our work. Our approach models the re-
flections from the walls of the room similarly to the image
method, but uses the image positions in a SHD of the sound
field instead of the exponential in (5).

We consider a rectangular room with length Lx, width
Ly and height Lz . The reflection coefficients of the four
walls, floor and ceiling are βx1 , βx2 , βy1 , βy2 , βz1 and βz2 ,
where the v1 coefficients (v ∈ {x, y, z}) correspond to the
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Fig. 2. A slice through the image space showing the positions of the images, with a source S and array A. The full image space
has three dimensions (x, y and z). An example of a reflected path is shown for the image with px = 1 and mx = 0.

boundaries at v = 0 and the v2 coefficients correspond to the
boundaries at v = Lv .

If the sound source is located at rs = (xs, ys, zs) and the
centre of the sphere is located at ra = (xa, ya, za), the images
obtained using the walls at x = 0, y = 0 and z = 0 can be
expressed as a vector Rp:

Rp = [xs−2pxxs−xa, ys−2pyys−ya, zs−2pzzs−za], (8)

where each of the elements in p = (px, py, pz) can take val-
ues 0 or 1, thus resulting in eight combinations which form a
set P . To consider all reflections we also define a vector Rm:

Rm = [2mxLx, 2myLy, 2mzLz], (9)

where each of the elements in m = (mx,my,mz) can take
values between −N and N , thus resulting in a set M of
(2N + 1)3 combinations. The image positions in the x di-
mension are illustrated in Fig. 2.

We define Rp,m , Rp + Rm. The distance between an
image and the centre of the sphere is then given by ||Rp,m||
and the angle of the image taken with respect to the centre of
the sphere is given by ∠Rp,m.

In the conventional image method, the direction of the
vector Rp,m is not always the same: in some cases it points
from the receiver to the image and in others it points from
the image to the receiver. This is not an issue for the conven-
tional image method as only the norm of this vector is used.
However, for the SHD we also need the angle of the images.
Our definition of Rp in (8) is therefore intentionally differ-
ent from the corresponding definition in the original image
method ([1], equation 6). We define Rp such that the vector
Rp,m always points from the receiver to the image and not in
the opposite direction.

If we denote the sound field (including reflections) due to
a unit amplitude point source as pr then, from (3):

pr(k, r, rs) = ik

·
∑
p∈P

∑
m∈M

β|mx+px|
x1

β|mx|
x2

β|my+py|
y1

β|my|
y2

β|mz+pz|
z1

β|mz|
z2

·
∞∑

l=0

bl(kr)h
(1)
l (k ||Rp,m||)(2l + 1)Pl(cos Θp,m), (10)

where Θp,m is the angle between Rp,m and r. As we are not
interested in ∠Θp,m, but only cos Θp,m, we simply take the
dot product of the two normalized vectors:

cos Θp,m = R̂p,m · r̂, (11)

where R̂p,m = Rp,m

||Rp,m|| and r̂ = r
||r|| .

4.2. Implementation

Implementing the proposed method involves evaluating (10)
for K discrete values of wavenumber k. We first compute the
vector Rp,m and its norm ||Rp,m|| for all possible (p,m)
values, where the limit N for values (mx,my,mz) is related
to the room dimensions and desired RIR length. We discard
images for which (||Rp,m|| + r)/c is larger than the desired
RIR length so that when we take the inverse discrete Fourier
transform (DFT) of the RTF, the wrap-around effect of the
DFT is reduced.

For each microphone position r we then sum up the SHDs
in (3) over all the computed image positions. This requires
us to determine the angle between Rp,m and r as in (11).
We can then compute the RTF, and take the inverse DFT to
obtain the RIR. Further details are available in our MATLAB
implementation [3].

5. FINITE ORDER ERROR

In a computer-based simulation, it is not possible to evaluate
the expression for p in (10); the sum over an infinite number
of orders l must be replaced with a truncated sum p̂ up to a
finite order L, i.e., a sum of L+ 1 terms. We seek to estimate
the error involved in this truncation. As (10) is a sum of SHDs
with different source positions, the error in the reverberant
case is the sum of the errors in the anechoic case. Therefore
we restrict our error analysis to the error in (3).

For an open sphere, the error can be straightforwardly de-
termined as the SHD is a decomposition of the closed-form
expression in (5). For a rigid sphere, however, no closed-
form expression exists since the scattering term can only be
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Fig. 3. Finite order errors (magnitude and phase) in the SHD,
for rigid and open spheres.

expressed in the spherical harmonic domain. We will there-
fore estimate the error by comparing the truncated SHD p̂ to
a high-order (high L) SHD (our reference). Based on simula-
tions performed with an open sphere, where a true reference is
available, we can safely assume that the error involved in us-
ing a high-order SHD as a reference as opposed to the untrun-
cated SHD is small. There are unfortunately numerical dif-
ficulties involved in multiplying high order spherical Bessel
and Hankel functions, therefore we cannot choose extremely
large values of L; L will be chosen to be as large as possi-
ble without numerical overflow. For typical sphere radii and
source-array distances, this allows us to reach L values of up
to about 100 using MATLAB.

We evaluate the SHD at 1024 discrete values of k (denoted
by k̃) corresponding to frequencies up to 8 kHz, and then cal-
culate the normalized RMSE (NRMSE) over K values of k̃
in the range 100 Hz - 8 kHz1 and form a set K, i.e.,

NRMSEg(r, rs) =

1
K

√√√√√√∑
k̃∈K

(
g
[
p(k̃, r, rs)

]
− g
[
p̂(k̃, r, rs)

])2

g
[
p(k̃, r, rs)

]2 , (12)

where g(x) = abs(x) for magnitude error and g(x) =
angle(x) for phase error. We average this NRMSE over 32
quasi-equidistant microphones and 50 random source posi-
tions at a fixed distance from the centre of the array.

The resulting average errors are given in Fig. 3, for both
the open and rigid sphere cases. Three different sphere

1Very low frequencies are omitted due to the fact that the spherical Hankel
function hl(x) has a singularity around x = 0.

radii are used: r = 4.2 cm (the radius of the Eigenmike),
r = 10 cm and r = 15 cm. A source-array distance of 1 m
was used; results for 1-5 m are omitted as they are essentially
identical. It can be seen that beyond a certain threshold, in-
creases in L yield only a very small reduction in error. A rule
of thumb for choosing L is L > d1.1 kmaxre where kmax is the
highest wavenumber of interest.

6. CONCLUSIONS

A method has been presented for simulating RIRs for a rigid
spherical microphone array in a reverberant environment, en-
abling algorithms to be rigorously tested by taking into ac-
count the combined effects of room reverberation and scatter-
ing from the sphere. There is a small error involved in the
spherical harmonic decomposition, however this can be con-
trolled at the expense of increased computational complexity.
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