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Abstract
The paper presents a voice source waveform modeling tech-
niques based on principal component analysis (PCA) and Gaus-
sian mixture modeling (GMM). The voice source is obtained
by inverse-filteirng speech with the estimated vocal tract fil-
ter. This decomposition is useful in speech analysis, synthesis,
recognition and coding. Existing models of the voice source
signal are based on function-fitting or physically motivated as-
sumptions and although they are well defined, estimation of
their parameters is not well understood and few are capable
of reproducing the large variety of voice source waveforms.
Here, a data-driven approach is presented for signal decomposi-
tion and classification based on the principal components of the
voice source. The principal components are analyzed and the
‘prototype’ voice source signals corresponding to the Gaussian
mixture means are examined. We show how an unknown signal
can be decomposed into its components and/or prototypes and
resynthesized. We show how the techniques are suited for both
low bitrate or high quality analysis/synthesis schemes.
Index Terms: Voice source, inverse-filtering, closed-phase
analysis, PCA, GMM

1. Introduction
This paper proposes a method for modeling the voice source
waveform using Gaussian mixture modeling. The voice source
waveform is used here to denote the glottal volume flow deriva-
tive [1, 2] and is considered to be the input signal in the source-
filter representation of speech. Many existing models involve
a piecewise fit to the voice source using standard mathemat-
ical functions. These include the Rosenberg model [3], the
Liljencrants-Fant model [4], and the Klatt and Klatt model [5].
An extension to this method was provided where the coarse
structure is modeled by function fitting and the fine structure
modeled separately [2]. Other approaches to modeling the voice
source include those motivated by physical modeling and in-
clude models such as Ishizaka and Flanagan [6] and Story and
Titze [7]. The importance of accurately reproducing the voice
source signal in speech synthesis is described in [8], where
experimentation has shown that a parallel formant synthesizer
can generate short speech segments indistinguishable from real
speech provided it is driven by an inverse-filtered typical natu-
ral vowel from the same talker. A related approach is described
in [9] where cepstrum coefficients are used to generate a single
average voice source waveform from which any speech signal
can be synthesized. The concept of voice source codebooks,
derived from synthetic waveforms, has also been proposed for
synthesis [10] and coding [11] with notable benefits over single-
waveform models.

The motivation for modeling the voice source waveform,
ud(n), comes from the source-filter representation of speech
production where an all-pole model of the vocal tract is excited
by a source waveform [1],

s(n) = ud(n) +

pX
k=0

aks(n− k), (1)

where s(n) is the speech signal and ak are the frame-dependent
vocal tract filter coefficients of order p (the frame dependence
on ak is implicit for the remainder of the paper). The subscript
d is used here to denote that ud(n) represents the glottal flow
derivative. This description of the vocal tract is beneficial be-
cause a) linear prediction methods [12] are readily available to
model the vocal tract as an all-pole filter, b) they provide a com-
pact and accurate representation that can be efficiently quan-
tized, and c) inverse-filtering can be achieved by filtering with
an FIR filter whose zeros cancel the poles of the vocal tract. By
contrast, estimation of the parameters of a voice source model to
reproduce an approximation to ud(n) is less straightforward and
is an area of ongoing research [2, 13]. Additionally, some exist-
ing models fail to capture all the degrees of freedom of the voice
source, particularly features like the ripples caused by a nonlin-
ear interaction between the glottis and vocal tract [14, 15].

The proposed approach differs from previously proposed
models in that a set of amplitude- and scale-normalized ‘pro-
totype’ voice source waveforms are generated from the decom-
position of true voice source waveforms from a large database
of real talkers. The approach uses principal component analy-
sis (PCA) to decompose the speech and and Gaussian mixture
modeling (GMM) to identify voice source prototypes. A pre-
vious method [16] used mel-frequency cepstrum for the GMM
so that the prototype waveforms had to be derived explicitly
from the data and the posterior probabilities of each vector un-
der each mixture component. Here, the prototypes are implicit
in the model as the mixture means can by transformed back to
signal space. Re-synthesis depends on the application. For low-
bitrate coding, the test cycle can be represented as mixture mean
cycle of the closest class or for higher quality the voice source
can be reconstructed as an appropriate linear combination of ei-
ther mixture mean vectors or principal components. The result
is a method for accurately and succinctly analysing and resyn-
thesizing voice source waveforms, with potential uses in speech
analysis, synthesis, coding, enhancement and recognition.

This paper is organized as follows. The voice source wave-
form is described in Sec. 2. In Sec. 3 the process of decompos-
ing the voice source signal into principal component analysis
is explained and in Sec. 4 the voice source prototypes are de-
rived using Gaussian mixture models. Two analysis/synthesis
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Figure 1: The gray lines show the voice source signal and the
black lines the re-synthesized voice source. Using K′ = 4
severely under-models the waveform whereas the K′ = 128
captures the finest detail in the waveform.

approaches are demonstrated in Sec. 5 and the paper is con-
cluded in Sec. 6.

2. The Voice Source Signal
The voice source signal ud(n) is obtained from (1) by inverse
filtering the speech signal s(n) using the vocal tract parame-
ters ak. Here the filter parameters model the vocal tract trans-
fer function for every larynx cycle and are obtained by pre-
emphasizing voiced segments of the speech so to correct for
the spectral tilt caused by the glottal pulse [12].

The result of the inverse filtering, ud(n), is first divided into
scale- and amplitude-normalized overlapping two-cycle glottal-
synchronous frames so that classification is based on waveform
shape only,

ui =lβα κud(n), n ∈ {nci , . . . , nci+2 − 1}, (2)

where lβα denotes a resampling operation of factor β
α

, β =
2tmaxfs, α = nci+2 − nci and κ is a gain factor that normalizes
A-weighted energy [17].

The APLAWD database [18] contains ten repetitions of five
short sentences by five male and five female talkers. Sentence 2:
“Why are you early you owl?” contains only voiced speech and
provides all the data (approximately 22,000 glottal cycles) for
model training. The speech is recorded at 20 kHz and contains
contemporaneous EGG recordings. The SIGMA algorithm [19]
was applied to these recordings to obtain the glottal closure in-
stants (GCIs), nci needed for the analysis.

The maximum period of voiced speech is tmax, set to 20
ms and fs is the sampling frequency (20 kHz) resulting in the
length of ui of β = 2tmaxfs = 800 samples. Using two-
cycle frames ensures that high-energy glottal closures occur in
the centre of the window which aids the quality of resynthe-
sis [20] and ensures that the excitation from glottal closure is not
attenuated by windowing in the subsequent feature extraction.
An example of a normalized, resampled voice source waveform
is shown in Fig. 1 and its principal component approximation
described next.
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Figure 2: The variance represented in the first K′ eigenvectors
as a ratio to the total variance. The total number of eigenvalues
is 800.

3. Principal Components Analysis
Principal component analysis (PCA) of the voice source wave-
form is obtained from the linear combination,

xi = (ui − ū) =

KX
k=1

zi,kvk = Vzi (3)

where ū is the empirical mean of u and vk are the eigenvectors
of the covariance matrix Σx = E{xxT } (x is zero mean by
design). The coefficients zi,k are called the PCA spectra and
represent the projection of xi onto components vk. It is also
assumed that the eigenvectors are ordered on the eigenvalues
λ1 > λ2 > · · · > λK . There are two reasons for applying
PCA to the voice source waveform shapes. First, it provides
a method for coding the voice source by representing it as the
linear combination of the first (few) components. The second
reason is to reduce the number of coefficients for the Gaussian
mixture modeling which we describe in next section.

The voice source vectors are approximated such that the
mean square of the error (ûi − ui) is minimized by

ûi =

K′X
k=1

zi,kvk + ū = V′z′i + ū (4)

where K′ < K, V′ is a K ×K′ matrix of the first K′ eigen-
vectors and z′i contains the first K′ elements of zi. The num-
ber of eigenvectors K′ is determined from the variance repre-
sented in the firstK′ eigenvectors as a ratio to the total variancePK′

i=1 λi/
PK
i=1 λi. This is plotted in Fig. 2 where it can be

seen that more than 90% of the variance is represented in the
first 20 eigenvectors and suggests that the intrinsic dimension-
ality of the voice source is quite small (� 800).

The voice source waveform mean vector ū and the first four
principle components vk are shown in Fig. 3. All the compo-
nents model the excitation with abrupt change at the glottal clo-
sure instants. The mean vector captures the average shape of the
waveform whereas the first two components model the flatness
in the closed phase and the steepness of the opening. Higher
components contain higher frequencies for modeling finer de-
tails of the waveform.
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Figure 3: The mean voice source waveform and the first four
principal components. They all model the excitation with the
abrupt pulse. The principal component display increasingly
higher frequency components.

Figure 1 shows how PCA approximates the voice source
waveform for K′ = 4, 16, 32, and 128. The gray lines show
the voice source signal and the black line the approximation.
ChoosingK′ = 4 results in a bad approximation even to coarse
features such as the duration of the return phase is not well cap-
tured. K′ = 16 captures the coarse features but fails to model
the kink apparent in the crest of the pulse. This is captured by
both K′ = 32, 128 but the approximation using K′ = 128 also
starts modeling the fine details in the waveform.

4. Gaussian Mixture Modeling
PCA can also be used to reduce the number of components of
ui to make Gaussian mixture modeling easier. The PCA spectra
zi can be modeled using GMM so that the total likelihood under
the model is,

f(z′i) =

MX
m=1

p(ωm)f(z′i|ωm) (5)

=

MX
m=1

p(ωm)
exp(− 1

2
(z′i − µ

(z)
m )TΣ

(z)−1
m (z′i − µ

(z)
m ))q

(2π)K′ |Σ(z)
m |

where p(ωm), µ(z)
m and Σ

(z)
m are the weight, mean vector and

covariance matrix (diagonal) of the m-th mixture component
ωm. The number of principal components were chosen to be
K′ = 64 capturing more than 95% of the variance. The param-
eters are estimated using the EM-algorithm [21], terminating
the iteration after 50 times or when the increase in log likeli-
hood falls below 0.0001. The Fisher-ratio [22] did not increase
significantly as the number of components were increased be-
yond M = 16 so this was chosen for the model.

The prototype voice source waveforms can be formed by
transforming the mixture means,

ūm = V′µ(z)
m + ū (6)

Three prototype voice source waveforms are shown in Fig. 4.
These prototypes exhibit interesting features captured by the
mixture modeling. The basic shape parameter [4] varies and
is very pronounced in Fig. 4(a) and Fig. 4(b) shows a very flat
closed phase. Fig. 4(c) displays a clear fine-detail ripple. The
remaining prototypes exhibit variation in all these parameters
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Figure 4: Selected mixture means. Components were numbered
from 1 to 16 with weights in descending order. (a) Mixture 3,
weight 0.10, (b) Mixture 9, weight 0.065, and (c) Mixture 12,
weight 0.033.

and, additionally, provide an insight into interdependencies be-
tween them.

5. Analysis/Synthesis
Figure 1 shows how the principal components can be used

in an analysis synthesis scheme. Here the voice source has
been re-synthesized from K′ components. The re-synthesized
speech waveform is shown in Figure 5(a)-(d). The coefficients

(a)  K´ = 4    SNR = 5.68 dB

(b)  K´ = 16    SNR = 6.25 dB

(c)  K´ = 32    SNR = 7.83 dB

(d)  K´ = 128    SNR = 10.2 dB

840 845 850 855 860

(e)  m(i)    SNR = 1.43 dB

Time [ms]

Figure 5: The gray lines show the speech signal and the black
lines the result of the re-synthesis. Figures (a)-(d) show synthe-
sized speech from K′ PCA spectra and Figure (e) shows syn-
thesized speech from prototype voice source waveforms.



needed to encode each pitch period are the K′ PCA spectra
z′i, the pitch period, and the energy and a further p vocal tract
coefficients for a fixed rate of 10 ms. The signal-to-noise ra-

tio 10 log10

P
n
s2(n)P

n
[s(n)−ŝ(n)]2

for the segment shown is 5.68, 6.25,

7.83, and 10.2 dB respectively.
Alternatively the voice source can be re-synthesized from a

single GMM-derived prototype ūm(i) where

m(i) = arg max
m

p(ωm|z′i) = arg max
m

p(ωm)f(z′i|ωm)

f(z′i)
.

(7)
Figure 6 shows a speech signal, the hard classification m(i)
and the posterior probability p(ωm|z′i). The vocal tract pa-
rameters, the pitch cycle energy and the period still need to
be encoded but instead of K′ PCA spectra z′i only an integer
m(i) ∈ {1, 2, . . . 16} represents the voice source waveform.
The resulting signal-to-noise ratio is for the segment shown in
Fig. 5(e) is 1.43 dB.

6. Conclusions
The paper presents a novel approach to modeling the voice
source signal and shows how the proposed techniques can be
used for an analysis/synthesis scheme applicable to coding, syn-
thesis and voice morphing. The technique determines the PCA
spectra of the voice source waveform vector and uses that to
find the closest prototype voice source waveform. These proto-
types display features such as the basic shape parameter and the
closed-phase duration and which have interested researchers in
the past.
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