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ABSTRACT 

In this paper we discuss a method for localizing acoustic reflectors 
in space based on acoustic measurements on source-to-microphone 
reflective paths. The method converts Time of Arrival (TOA) 
and Time Difference of Arrival (TDOA) into quadratic constraints 
on the line corresponding to the reflector. In order to be robust 
against measurement errors we derive an exact solution for the min
imization of a cost function that combines an arbitrary number of 
quadratic constraints. Moreover we propose a new method for the 
analytic prediction of reflector localization accuracy. This method 
is sufficiently general to be applicable to a wide range of estimation 
problems. 

Index Terms- Microphone arrays. space-time audio process
ing. environment reconstruction. acoustic reflector localization 

L INTRODUCTION 

Knowing the geometry of the acoustic environment can be very use
ful for numerous space-time processing applications. For example. 
in [1] source localization is approached using a maximum likeli
hood estimator whose data model incorporates the prediction of the 
early reflections. In [2] an environment-aware acoustic rendering 
system is proposed. in which early reflections are included in the 
propagation model from the loudspeakers to the listening area. This 
has the result of making their rendering system robust to mild re
verberation. Consequently. the problem of estimating the geometry 
of the environment through acoustic acquisitions is an area of in
creasing interest. In [3] a method is proposed for estimating the 
reflectors based on the inverse mapping of the acoustic multi-path 
propagation problem. In [4] the parameters of a constrained room 
model are estimated through f\ -regularized least-squares. In [5] 
the problem of the estimation of the room geometry is approached 
through the measurement of the Times of Arrival (TOAs) of the re
flective path from the source to the microphone. Here TOAs are 
converted into geometric constraints that locate the line that the re
flector lies upon. For a single source-microphone pair such con
straints express that this line should be tangential to an ellipse that 
is parameterized by the locations of the source and the microphone 
and by the TOA. Using multiple observations with a microphone 
array. the reflector is found as the common tangent to all such el
lipses. which is estimated through the iterative minimization of a 
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fourth-order polynomial cost function. In [6] the authors generalize 
this approach with a two-step process based on a single source and 
multiple microphones. The source is first localized through the esti
mation of the Time Differences Of Arrival (TDOAs) on microphone 
pairs. The source location is then used for converting TDOAs of re
flective paths into TOAs. The localization of the reflector is then 
approached in a similar fashion as in [5]. 

The cost functions defined in [5. 6] are inherently nonlinear. 
therefore they exhibit numerous local minima in which adaptive 
optimization algorithms could easily become trapped. particularly 
in the presence of relevant measurement errors. In this paper we 
propose an exact minimization procedure that determines the cor
rect global minimum of the cost function while circumventing the 
problem of local minima. The problem is reformulated as the con
strained minimization of a second-order polynomial. which admits 
an exact solution. This reformulation is inspired by [7]. where a 
source localization problem is approached with an exact minimiza
tion of a constrained least-squares cost function. This algorithm is 
particularly useful when TOAs are estimated from TDOAs using 
information on the source location. as TOAs could be affected by 
a relevant error. In this paper we also propose a methodology for 
error propagation analysis. which aims to characterize the error that 
the reflector localization is affected by using some prior information 
on the error on TOA measurements. The ideas behind this analy
sis are partially borrowed from catastrophe theory [8]. which allows 
us to derive an approximate linear relationship between the error in 
the distance of the acoustic path and the error on the localization 
of reflectors. This technique turns out to be general enough to be 
applicable whenever the estimation of the variable of interest is ac
complished through the minimization of a cost function. under the 
hypothesis of a small bias in the estimated variable. Moreover. this 
method is more general than the well-known Cramer-Rao Lower 
Bound (CRLB) . In fact. while CRLB provides a bound for an esti
mation problem. the proposed approach gives the theoretical limit 
for a specific cost function applied to that problem. Moreover. it 
can be shown that CRLB corresponds to the error propagation anal
ysis applied to a maximum-likelihood cost function. and therefore it 
can be seen as a particular case of the method based on catastrophe 
theory. A Matlab toolbox is available [9]. which can be used for 
assessing the accuracy of this class of estimation procedures. 

The paper is organized as follows: in Section 2 we introduce 
the relevant notation and summarize the procedure used in [5. 6] to 
derive the cost function. In Section 3 we reformulate the cost func
tion in order to be able to find an exact solution. Section 4 concerns 
the error propagation analysis. In Section 5 we show some simula
tion results that prove the validity of the error propagation analysis 
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as well as the improvement brought by the exact formulation over 
the iterative one. Conclusions are drawn in Section 6. 

2. REFLECTOR LOCALIZATION 

2.1. Notation 

In this Section we describe the data model and the notation used 
throughout the paper. The microphones of the array are assumed to 
be placed in Xl, ... X N. The acoustic source is in s and, with no 
loss of generality, we can assume the origin of the reference frame 
to be placed in that location. Let us consider a single planar reflector 
lying on the line of equation llx+12y+13 = 0, described by the pa
rameters 1= [11 12 13f. With reference to Fig.I, the image source 
s' is obtained by mirroring s over 1. The vector T = [TI, ... TN]T 

X2 •... ·:tJ�r2 Xl .
.

.... ..... 1'1 . 

---- - ---

- x 
s s' 

Figure I: An acoustic source located at s is reflected over the line I to its 
image position s'. The microphones at XI, ... X N estimates their distances 
1'1, ... TN from the image source in Sl 

contains the TOAs of the reflective paths between the image source 
and the sensors, which are either measured [5] or estimated from 
the TDOAs [6]. The length of the reflective paths can be estimated 
as Ti = TiC and arranged in the vector r = TC = [1'1, ... TN]T, 
where C is the speed of sound. 

2.2. Cost function 

As shown in [5, 6], the TOA measures corresponding to the reflec
tive paths can be converted into quadratic constraints (in the homo
geneous space) describing an ellipse. More specifically, as shown 
in Fig. 2, the ellipse has foci in Xi = [Xi YilT and s, and its ma
jor axis is Ti. This ellipse is tangential to the reflector line I at the 
reflection point Pi. In order to find the equation of this ellipse we 

.......... 

Figure 2: The length of the reflected path ri from the image source in s' to 
the microphone at Xi constrains the reflector line I to be tangent to an ellipse 
whose major axis is ri and whose foci are s and Xi. Pi is the reflection point 
on I. 

start from constraint Ilx - xiii + Ilxll = Ti, which can be written 
as 

(1) 
After taking the square power of both sides of eq. (1) we derive 

V X2 + y2 - 2XXi - 2YYi = 1'; - x; - Y; . (2) 
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Squaring again both the sides of eq. (2), we derive the implicit 
form of the ellipse described by the homogeneous parameter vector 
[ai bi Ci di ei fif, which is given by 

where 

a, -4(r;-xT) , 

bi 8XiYi , 
-4(rr-YI) , 

d; 
ei 

4[x,rT-x,(xT+Y;)] , 
4[Yir;-Yi(X;+Y;)] , 
r;-2r;(x;+yI)+(xI+yr)2. 

Eq. (3) can be expressed in matrix form as 

b;j2 di

.

/2] 
e;j2 

Ii e;/2 

(3) 

(4) 

where x = [x If is the homogeneous representation of a point 
X lying on the ellipse; and Ci is the point-conic matrix. The dual 
form of the conic expresses the conic as the set of lines I tangent to 
it, Le. ITC;! = 0, where 1= [h 12 13]T is the homogeneous rep
resentation of a line tangent to the ellipse; and C; = det(Ci)Ci 1 

represents the line-conic matrix. Considering the set of N TOA 
measurements, a cost function collecting the corresponding N con
straints can be defined as 

(5) 

The reflector line is then estimated as the common tangent to all the 
ellipses by minimizing J(I, r) . As all the vectors kl, k =1= 0, form 
a class of equivalence, an infinite number of solutions turns out to 
minimize the cost function. In order to find an unique solution and 
avoid the trivial solution I = [0 ° O]T, some additional constraint 
needs to be used. For example, in [5], the minimization problem is 
formulated on the sub-space I", = [11 = cos ex, 12 = sin ex, 13]T, 
and the reflector is estimated as 

L = argmin (6) 
I" 

3. EXACT SOLUTION 

We now need to reformulate the cost function of Section 2.2 in order 
to turn the optimization problem into a linear Least-Squares (LS) 
one. As noted in [7], these problems are referred to as generalized 
trust region subproblems (GTRS), whose exact solution can be de
rived quite efficiently. 
We first analyze the structure of the dual-conic, whose matrix 

bi /2 
c; 

ei/2 

is symmetric, and its parameters can be written as 

a, 4r'f(r'f-x'f-y'f)2 di 16rI Xi CrT -x; -YI) 

bi 0, ei 16r'fYdr'f-x'f-y'f) 
* c, * a�i I., 16T'f(r'f-x'f-y'f) 

(7) 

(8) 

By replacing eq. (8) into the cost function (6), after some manipu
lation we obtain 

N 
J(I, r) = L [a; (li + l�) + dild3 + eil2l3 + j;*ln

2 
(9) 

i=l 
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In order to find a unique minimum for J(l, r), we focus on the 
subspace defined by I' = [11 12 1 f, and look for minima of the 
cost function lying on 13 = 1. This leads to 

N 

I' = argmin L [a;(li + l�) + d;11 + e;l2 + I;*]2 
If i=l 

(10) 

Notice that the condition 13 = 1 rules out the potential reflectors 
passing through the origin. As the origin is the location of the 
source, this does not constitute a serious limitation. The simple 
substitution w = Ii + l� allows us to rewrite the vector of the un
knowns as w = [w Ii 1�]T, therefore the optimization problem can 
be written as 

W = argmin {IIAw - bl1 2 : wTDw + 2fT w = o} (11) 
w 

where 

d"N 
and 

D =diag(O,l,l) , f= [-0.5 0 O]T . 

Assuming that A has full column rank, the problem can be solved 
quite efficiently, and the exact solution is readily found using the 
approach described in [7]. In particular, the minimum is found as 

where A is the unique solution ofw(A)TDw(A) + 2fT weAl = 0 
on the interval for which AT A + AD is positive definite [7]. From 
the solution W = [w [1 [2f, the estimated reflector line is finally 
given by I' = [[1 [2 l]T. 

4. ERROR PROPAGATION ANALYSIS 

In this Section we propose a method for predicting the impact of the 
error on TOAs on the localization of reflectors using a formulation 
based on Catastrophe Theory [8]. 
Let 10 be the true reflector and ro be the theoretical propagation 
distances of the reflective paths. In a real scenario the measurement 
of ro is affected by noise Or, and noisy measurements are denoted 
by r = ro + Or. Consequently, the new position of the minimum of 
J(I; r) becomes 1= 10+0l. Assuming the error Or to be sufficiently 
small, we want to find a relationship between Or and 01. We do so 
by computing the second-order Taylor expansion of J(I; r) centered 
about (10; ro). The term (\i'IJ)Tllo,ro is zero, as the function with 
the true TOAs ro has a minimum in 10. We can thus take the first
order derivative of the Taylor expansion and set it to zero to obtain 

where 

and 
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From (12) we finally obtain 

01 = Gor, (13) 

where G = -HI,I(J)I;;;�ro . HI,r(J)llo,ro In a real scenario we 
cannot assume Or to be known. However, some statistical informa
tion could be available in advance or could be estimated from the 
data. It is therefore important to find a relation between statistical 
descriptors of the noise Or and of 01. The relationship between the 
covariance matrix MI of the estimation, and the covariance matrix 
Mr of Or is 

MI = GMrGT, (14) 

where 

[ O"f, O"l, 0"12 a',a" 1 
MI= 0"1,0"12 0"[2 0"120"13 

0"1,0"13 0"120"13 0"[3 
and 

r af' 
0 0 

1 
0;2 0 

Mr = 

0 O";'N 

under the assumption of statistical independence of the measure
ment errors. 

5. EVALUATION AND DISCUSSION 

In order to test the solutions proposed in this paper, we first com
pared the accuracies of the exact and iterative techniques; and 
then we validated the error propagation analysis by comparing the 
RMSE of the exact solution and that predicted by eq. (14). 

5.1. Setup 

All the simulations were conducted with reference to the setup of 
Fig. 3. The microphone array was made of 5 sensors uniformly 

y 

"'2 ...•... 
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X4 

.
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I Xs 
,----------, 
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Figure 3: Simulation setup. 

spaced on a circle of radius 30 em centered in the origin of the ref
erence frame (corresponding to the acoustic source). TOAs between 
microphones and source were calculated. The simulations were per
formed on a set of 9000 test reflector lines 1 = [cos a, sin a, -pf 
defined by their distance p and angle a with respect to the origin, as 
shown in Figure 3. The test reflectors were defined by distances in 
the range [1 m rv 4 m] and angles in the range [0 rv 271"]. 
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5.2. Comparison between exact and iterative methods 

Using the above setup we compared the performance of the exact 
and iterative methods for minimizing the cost function of Section 
2.2. The iterative method considered for the comparison is that pro
posed in [5], with a cost function of the form (6). For each reflector 
position, the distance measurements r were corrupted by 1000 real
izations of independent identically distributed zero-mean Gaussian 
noise with standard deviation (J'. The performance was evaluated 
by considering the distance error Ep = P - P and the angular er
ror Eo: = ex - & of the estimated reflector represented by the pair 
(p, &) with respect to the true reflector position (p, ex) . Figs. 4-(a) 
and 4-(b) show the standard deviation of the distance error and of 
the angular error as a function of (J', respectively, averaged over all 
the tested locations and repetitions. As far as the distance error is 
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Figure 4: Comparison between the iterative and the exact solutions. 

concerned, the iterative and the exact solutions turned out to exhibit 
almost identical errors, which were proportional to the standard de
viation (J' of the measurement error. As for the angular error, for 
values of (J' below 0.05 m, the two approaches had the same re
sults, but for higher values of (J', the iterative method was affected 
by larger errors. This was due to the presence of multiple local min
ima in the cost function. For large measurement errors, the risk of 
encountering local minima increases as the cost function becomes 
less smooth. Although this phenomenon occurs occasionally, its 
impact on the standard deviation of the angular error is quite no
ticeable. The exact solution is therefore preferable over the iterative 
one, especially for large measurement errors. 

5.3. Validation of the error propagation analysis 

We now validate the method for the error propagation analysis pro
posed in Section 4. In this case the standard deviation of the mea
surement noise is kept to (J' = 0.01 m. The standard deviation of 
the error predicted with the analytic method is compared with the 
results of the simulations conducted on the same testing reflector 
positions. The results shown in Fig. 5 show the distance error for 
theoretical (a) and simulated (b) analysis, respectively. Similarly, 
Fig. 5 shows the theoretical (c) and simulated (d) results relative to 
the angular error. The results of the simulations accurately match 
the theoretical ones: they present the same mean error of the ex
pected values (2.5 mm for the distance and 1.3° for the angle). The 
patterns of local maxima (Le. diagonal white lines) correspond to 
configurations where two or more reflective paths are collinear, thus 
producing similar ellipses. In this situation, therefore, two measure
ments yield the same information, thus reducing the robustness of 
the estimation. 
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Figure 5: Comparison between the theoretical standard deviation of the 
error (predicted with the error propagation analysis) and the simulation re
sults. 

6. CONCLUSIONS 

In this paper we proposed an exact technique for the localization of 
acoustic reflectors and a new method for the prediction of the re
lated accuracy, which is valid also for other estimation problems. 
Simulations showed that the exact solution brings performance im
provements over the iterative one, especially in the presence of large 
error on TOA measures. We also proved the accuracy and the effec
tiveness of the error propagation analysis. 
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