
Efficient Data Aggregation and Transport in Wireless Sensor Networks ∗

Mario O. Dı́az and Kin K. Leung
Electrical & Electronic Engineering Department,

Imperial College, London, UK
ornediaz@gmail.com, kin.leung@imperial.ac.uk

2009
This is an early version. The final version is published in:

Wireless Communications and Mobile Computing
Wiley InterScience (www.interscience.wiley.com)

DOI: 10.1002/wcm.806
http://onlinelibrary.wiley.com/doi/10.1002/wcm.806/abstract

We consider the problem of reporting events using wireless
sensor networks. To reduce the data volume generated by each
event, the correlated data from the (neighboring) nodes that
detect the event must be brought together to be processed and
compressed before relaying the result across several hops to the
data sink. This process is supported by an aggregation tree,
which specifies the flow of information towards the sink. For
efficiency, aggregation trees should compress the data close to
their sources. We propose two solutions to the event-triggered
reporting problem. Firstly, we propose the first protocol to
use a staggered schedule in the construction of the aggregation
tree. Due to the use of such a schedule, our protocol divides
the tree-construction time by roughly the number of hops in
the network, and this advantage comes only at the expense of
a small degradation of the quality of the obtained aggregation
tree. Secondly, we consider a multi-hop cluster-based topology
with fixed aggregation points. This topology is appropriate for
large networks with unreliable radio links. We approximate the
optimal cluster size distribution and evaluate the improvement
over a uniform cluster size distribution.

Keywords: wireless sensor networks, event reporting, data
aggregation

1 Introduction

Duty-cycling and in-network data aggregation are two very ef-
ficient techniques to save power in wireless sensor networks
(WSNs). Duty-cycling is the technique of reducing idle listening
by turning off the radio modules periodically. Unfortunately,
duty-cycling increases the latency experienced by data packets.
In-network data aggregation [1] is the process of compressing
locally the correlated data of neighboring sensors in order to
reduce the amount of data that travels across several hops to
the data sink.

A data-aggregation tree can be a very efficient routing struc-
ture for data aggregation. In this tree, every node waits for
the data from its children nodes, compresses all the received
data with its own, and forwards the result to its parent. Most
algorithms to construct an aggregation tree involve high over-
heads because they were designed to report long-lasting data
flows that make the setup overhead negligible. In this paper,

∗This is the pre-peer reviewed version of an article published in Wi-
ley Wireless Communications and Mobile Computing. This work
is funded by UK EPSRC Research Grant EP/D076838/1, entitled:
“Smart Infrastructure: Wireless Sensor Network System for Condi-
tion Assessment and Monitoring of Infrastructure”.

we strive to minimize the tree construction overhead so that
applications involving shorter events can also benefit from data
aggregation. Such reporting of short events is motivated by our
WINES project [2], on which we investigate the use of WSNs
in civil-engineering applications, such as acoustic detection of
fractures in bridges. For example, wireless sensors are used to
capture the acoustic signatures of cable fractures in suspension-
cable bridges. Cable fractures release noise signals for a brief
period of time. Prompt reporting of cable fractures is neces-
sary to stop the vehicular traffic over the monitored bridge soon
after a severe fracture is detected to have occurred.

Our main contributions in this work are two alternative so-
lutions for event-triggered reporting. The first one is the Fast
Aggregation Tree (FAT) protocol, which is a distributed proto-
col to construct a data aggregation tree quickly in a duty-cycled
environment. The speed advantage of FAT over existing pro-
tocols grows with the network size. Our second solution for
the event-triggered reporting is a fixed multi-hop cluster-based
structure where compression of any piece of data can only occur
once. This model suits a number of event reporting problems
in civil engineering and requires less overhead to adapt to link
failure in large networks. We formulate the problem of the op-
timal cluster size distribution and propose a heuristic approach
to solving the problem. We also identify the key variables that
affect the improvement over uniform cluster size.

The rest of this paper is organized as follows. In Section 2,
we propose the FAT protocol and evaluate the quality of the
aggregation tree obtained by the protocol. In Section 3, we
evaluate FAT in presence of intermittent links and argue the
usefulness of clustering in such conditions. In Section 4, we for-
mulate the optimal cluster-size problem and propose a heuristic
to approximate the solution. Finally, Section 5 concludes the
paper.

2 Constructing a tree using a staggered schedule

2.1 Power and delay in event-triggered reporting

Consider a multi-hop WSN that monitors an area in which a
specific set of events occur on average once every Te time units.
A set of sensor nodes, referred to as sources, detect each such
event and generate a reasonable volume of data about that
event. A special node, referred to as the sink, needs the in-
formation about every event within a pre-specified maximum
tolerable delay, Dl, after the event occurs. The data from the
different sources associated with the same event are highly cor-

1

http://onlinelibrary.wiley.com/doi/10.1002/wcm.806/abstract


related, so these sources should aggregate their data, if possible,
before forwarding them across several hops towards the sink. A
number of protocols have been proposed for data aggregation
[3, 4, 5]. We call a data aggregation protocol unstructured if it
aggregates data opportunistically, and we call it structured if
it establishes a routing structure for data aggregation and then
uses that structure to transmit and compress the data.

The sensor nodes are constantly sensing the environment,
but their radio receivers are duty-cycled to save energy. With
period Tc, every node turns on its receiver to check for data
packets from its neighbors. This channel-check operation con-
sumes an amount of energy Ec. In addition, the sensor nodes
need to verify periodically the wireless links with their neigh-
bors and to share updated topological information with them.
This exchange of packets is a maintenance operation that con-
sumes Em amount of energy, and we assume that it is repeated
with period Tm.

When an event occurs, the associated data sources notify
their neighbors, thereby starting the construction of a data-
aggregation structure, usually a tree, to report the event. The
tree construction consumes Eb amount of energy and requires
Db amount of time, excluding the time until the neighbors of
the sources check the channel, which can be as high as Tc. The
tree construction time, Db, depends on the duty-cycle period,
Tc. After the aggregation structure has been constructed, the
data from the sources travels to the sink by following the path
indicated by that structure. The data from a source traverses
multiple intermediate nodes along that path, and in some of
those nodes it is compressed with the data from other sources.
Assume that this traversal process consumes Et amount of en-
ergy and requires Dt amount of time.

By considering all factors, the average total power consump-
tion is

Pt =
Ec
Tc

+
Em
Tm

+
Eb + Et
Te

. (1)

If the wireless links among nodes are stable, frequent mainte-
nance operations are not needed and thus Tm can be set to
a large value. In addition, if events rarely occur, Te is large.
Under these two assumptions, (1) suggests that Ec/Tc domi-
nates the power consumption, which can be reduced by increas-
ing the channel-check period, Tc. Note that Tc cannot exceed
Dl−Db−Dt in order to meet the maximum tolerable delay Dl.
Therefore, to save power we have to reduce Db or Dt. How-
ever, there is a tradeoff between the two components as follows.
Generally, a fast tree construction algorithm (an algorithm with
small Db) generates an inefficient tree. We say that a tree is
inefficient if it aggregates the data from the sources far away
from them (i.e., close to the sink), because such a tree results
in a large Dt. The best tradeoff between Db and Dt depends on
the data volume to be transmitted. For the target applications
of the WINES project, we seek a solution for data volumes that
are large, but not as large as to make Eb and Db negligible.

2.2 Related work

DMAC [6] is a MAC protocol for duty-cycled environments that
organizes the nodes in tiers. A node’s tier is the length of its
shortest path to the sink, as shown in Figure 1 shows. When
considering Tier i, we refer to Tier i + 1 as the previous tier
and to Tier i − 1 as the next tier. All the nodes are time syn-
chronized, and each node has a schedule indicating when to
listen and when to transmit. Figure 2 illustrates the way in
which the schedules of nodes in different tiers are staggered.
This arrangement greatly reduces the latency towards the sink.
However, DMAC’s timing policy does not enable data aggrega-
tion directly.

sink Tier 0

D E F Tier 1

A B C Tier 2

Figure 1: Classification of the nodes in a WSN in tiers, based
on the smallest number of hops in which they can
reach the sink.

Tier 0

Tier 1

Tier 2

To To

Tc

Figure 2: A receive schedule for a tier-based topology that
provides low latency towards towards the sink. The
squares represent the times in which the nodes turn
on their radio receivers. If a node in Tier k generates
a packet at a random time, the delay until that packet
reaches the sink is at most approximately Tc + kTo,
provided that there are no collisions.

DB-MAC [3] and DAA+RW [4] are two unstructured pro-
tocols, and as such their Db is zero. In DB-MAC, each node
forwards its data to its neighbor that, according to the infor-
mation that it gathered by overhearing its neighbors’ transmis-
sions, holds the greatest numbers of packets. In DAA+RW,
several nodes contend to relay a packet, and nodes with more
packets enjoy better chances of winning the contention. In
both DB-MAC and DAA+RW, the nodes hold their packets
for random periods to increase the probability of data aggre-
gation. This technique is insufficient to guarantee aggregation
and introduces delays and overhearing in each packet transmis-
sion. Therefore, for sources generating over a dozen packets,
DB-MAC and DAA+RW result in high Dt and Et. Another
protocol, ToD [7], combines DAA+RW with a fixed aggrega-
tion structure. ToD outperforms DAA+RW in big networks
as it guarantees aggregation after a number of hops, but it is
not efficient for big data volumes in those few hops because it
aggregates data opportunistically.

The optimal data aggregation structure is the Steiner Tree in
graphs, which is NP-hard. Oceanus [5] is one of several central-
ized heuristics that compute at the sink good approximations
of the optimal tree, and thus the tree it constructs yields a
small Dt. In these centralized heuristics, before the sink com-
putes this tree, the sink needs to receive the identity of all the
sources, and after the sink has computed the tree, the infor-
mation about the tree has to travel to all the nodes involved.
Therefore, there are two data flows in opposite directions. The
authors of Oceanus do not suggest how to transmit these two
data flows and no MAC protocol has been proposed specifically
for this purpose. Using an existing MAC, transmitting these
two data flows would incur in a high Db. For example, with a
globally synchronous wakeup such as T-MAC [8] the transmis-
sion of each of these two flows would require an amount of time
KTc, which is likely to be unacceptably large because Tc � T0,
as shown in Figure 2. We believe the best existing MAC for
this application would be DMAC, on top of which the transmis-
sion of the first and the second data flows would last for KTo

2



and K(Tc − To) time units, respectively. In some application,
this value of Db is still too high, and it would be interesting to
reduce Db further without sacrificing Dt. Such a reduction in
Db would allow to increase Tc, thereby saving power, and still
satisfy the maximum tolerable delay Dl.

2.3 The Fast Aggregation Tree (FAT)

We propose the FAT protocol to construct an aggregation tree
after each event. FAT is a distributed structured aggregation
protocol, and its goal is to provide Dt comparable to that of
centralized heuristics but with a much shorter tree construction
time, Db.

FAT assumes that all the nodes are globally time synchro-
nized, which can be achieved by either hardware or software
[9]. FAT uses DMAC’s tiered architecture, which is depicted
in Figure 1. We will use the topology in that figure to explain
the FAT protocol with examples. When considering a node, we
refer to its neighbors in the next tier as its potential parents,
because only they may become that node’s parents in the tree
that FAT constructs. Similarly, we refer to a node’s neighbors
in the previous tier as its potential children. In the topology of
our example, D and E are A’s potential parents, and D, E and
F are B’s potential parents. In the initialization of our proto-
col, each node executes the distributed Bellman-Ford algorithm
to determine its tier and its potential parents.

2.3.1 Normal operation

Under the assumption of rare events, most of the time there
is nothing to transmit, and this is the normal operation of the
FAT protocol. However, to keep latency low, every node senses
the radio channel periodically with period Tc to check whether
it may need to participate in a tree construction process. If
during this channel-check operation it senses the channel idle,
it turns its transceiver off until its next channel-check operation
in order to save power. All the nodes in the same tier check the
channel simultaneously, and, To units of time later, the nodes
in the next tier do the same, as shown in Figure 2.

As an example of FAT’s normal operation, if node D senses
the channel idle during its periodic channel-check operation,
D assumes that none of its potential children, A and B, are
engaged in a tree construction process that requires D’s collab-
oration, so D turns off its transceiver until its next scheduled
channel-check operation. If, on the other hand, D senses the
channel busy, it is probably because A or B deliberately trans-
mitted a signal called activation tone at exactly the time when
D and the other nodes in Tier 1 were scheduled to check the
channel. The activation tones do not bear any information and
the sources of these tones only transmit them in order to make
their potential parents sense the channel busy. If a node per-
forming a channel check senses the channel busy, we say that
it becomes an offerer.

2.3.2 Response to events

When an event occurs, some nodes detect it and thus become
data sources. All the sources independently initiate the con-
struction of a data aggregation tree specifically suited to report
the new event. The sources initiate this tree construction by
becoming contenders. A contender is any node seeking to find
a next hop towards the sink. This next hop will be the con-
tender’s parent node in the data aggregation tree, so we refer to
this node as a parent. When a contender obtains a parent, that
parent becomes a contender, and so on, except if that parent
happens to be the sink. Eventually, this recursive algorithm
obtains an aggregation tree containing a path from every data
source to the sink.

Let us explain how the nodes respond to an event with an
example. Suppose that an event occurs and only nodes A and
B become its associated data sources. Because A and B are
sources, they become contenders. As such, A and B trans-
mit activation tones at the scheduled channel-check time of the
nodes in their next tier, which is Tier 1. Their neighbors in
Tier 1, which are D, E and F , detect these tones, and thus be-
come offerers. Immediately after the channel check, the offerers
start a period of duration To, referred to as contention period,
during which they keep their receivers active. This period is
the only opportunity of the contenders, A and B, to obtain a
parent. If an offerer has not obtained any children at the end
of the contention period, it can sleep until the next scheduled
channel check. Otherwise the offerer becomes a contender and
the process repeats itself until the sink.

2.3.3 Contention for a parent

During the contention period, each contender contends against
the other contenders to transmit a Parent Request (PR) packet
to its preferred parent, which is the node among its potential
parents that it prefers to have as a parent in the tree. If a PR
packet is successfully received by the offerer that was intended
as its recipient, that offerer accepts the request to become a
parent by replying with a Parent Confirmation (PC) packet.
Initially, each contender chooses its preferred parent randomly.
However, it may change this choice later, but only until it re-
ceives PR packet. However, until it receives a PR addressed to
itself, it may change its initial choice if it overhears some pack-
ets indicating tyhat a different parent would lead to a better
aggregation tree.

We explain why a contender may change its preferred parent
with an example. Suppose that nodes A and B initially choose
D and F , respectively, as their preferred parents. Suppose that
A manages to transmit a PR packet to its preferred parent,
D, before B transmits a PR packet to its preferred parent, F .
If D receives A’s packet correctly, D replies to A with a PR
packet. Suppose that A and B receive this PR packet. Node
A has just obtained a parent, so it does not need to take any
further action. Node B, on the other hand, has just learned
that D is A’s parent, and this new piece of information makes
B reconsider its preferred parent. Node B estimates that D
would be the best parent, because D could compress the data
from A and B together, so B sets D as its preferred parent.
After this, B contends to transmit a PR packet to D, and when
this packet reaches D, D confirms that it will be B’s parent by
replying with a PR packet.

2.3.4 The random nature of FAT

In the previous example, the two sources, A and B, obtained the
same parent, D. This result is very desirable because the data of
the two sources will be compressed close to them, which implies
that the constructed tree is efficient. However, several random
factors intervene in FAT, so FAT could have constructed a less
efficient tree. For example, if B had transmitted a PR packet
before A did, B’s initial preferred parent, F , would have replied
to B’s PR packet with a PC packet, and thus B would have
obtained F as a parent. Node A is too far away to receive the
PR packet from F , so A would have maintained its original pre-
ferred parent, D. As a result, eventually A would have obtained
D as parent, resulting in a less efficient tree.

During a contention period, some of the PR packets sent
by a contender may not be received by its recipient, so every
contender sends PR packets until it receives a PC packet in
response. PC packets may also be lost, and this may cause two
offerers to obtain the same node as a child, which is a prob-

3



lem that can be handled after the tree construction. Another
potential problem is a permanent failure of the wireless link
between a contender and its initial preferred parent. In order
to find a parent in spite of this situation, a contender changes
its preferred parent if it repeatedly fails to receive a reply in
response to a PR packet.

The contention period duration, To, is a fixed parameter for
the entire network. If To is too long, the offerers wait unneces-
sarily long for PRs and waste energy. If To is too short, some
contenders may not have time to find a parent. A contender
also fails to find a parent if all the links to its potential parents
fail. In any of the two cases, we say the normal construction
of the tree has failed. We provide the following extension to
the FAT to handle this eventuality through an emergency con-
struction of the tree, which is triggered by emergency tones.
Every offerer checks for emergency tones at the end of the con-
tention period. All the unsuccessful contenders and the offerers
that detected an emergency tone help propagate the emergency
tones. They do so by sending activation and emergency tones
when the nodes in the previous and next tier are checking for
them. The goal is to propagate the emergency tones to all
the nodes in the network. Every node that received an emer-
gency tone remains active for enough time to execute a reactive
routing protocol such as Ad-hoc On-Demand Distance Vector
(AODV). This process ensures that all the data sources find a
path to the gateway if it exists.

2.4 Analysis of the Tree Construction Delay Db

The duration of FAT’s normal construction is at most Db =
KTo, where K is the total number of tiers in the WSN. As we
mentioned before, Db = KTc for centralized protocols such as
Oceanus [5]. Considering To � Tc, this means that FAT con-
structs the aggregation tree much faster than the centralized
protocols, especially for large networks. This is the main ad-
vantage of FAT, the proposed algorithm. A faster construction
allows to reduce Tc and still meet the deadline Dl, thus sav-
ing power by reducing the number of channel check operations.
The emergency construction of FAT is much longer and energy-
consuming than the normal construction of FAT. It consists of
the propagation time of the emergency tones and the execution
time of AODV. The first part can consist of several multiples of
(Tc−To), depending on the topology and on which links failed,
as can be derived from Figure 2.

2.5 Simulation of the aggregation Tree Quality

Having seen FAT’s advantage of requiring lower Db than the
centralized protocols, now we investigate the cost of this ad-
vantage in terms of an increased Dt. A better aggregation tree
compresses the event information closer to the data sources,
thereby reducing the traversal time Dt. A custom simulator
has been developed to evaluate Dt for the trees obtained by
FAT and the following algorithms:

• Shortest Path Tree (SPT). This algorithm is oblivious of
the set of sources and simply uses the hop count as a metric
when constructing the tree.

• Dijkstra1. This algorithm enhances Dijkstra’s algorithm to
promote aggregation. It still uses the number of hops as
the cost metric, but when choosing the next node to add
to the tree, it prefers source nodes to non-source nodes if
their hop number is the same. In addition, when choosing
the next hop for a new addition to the tree, it prefers nodes
with data if their hop distance is the same.

• Centralized1. This algorithm has several steps. First, it
constructs a tree rooted in node Ne using the Dijkstra1

algorithm, where Ne is the node that lies the closest to the
event. Then, this algorithm removes all the nodes that are
neither sources nor in the path from a source to node Ne,
and it links Ne with the sink through the shortest path.
This algorithm is optimistic because in practice Ne may be
unknown.

In order to compare fairly Dt for all these trees, we use the same
MAC protocol for all of them. We choose CSMA although
other protocols may be more efficient. We also simulate the
DMAC protocol as benchmark of the achievable performance
without data aggregation. DMAC provides very short delay
in duty-cycled environments and involves no tree construction
overhead.

We simulate 50 nodes randomly deployed over a 200 m by
200 m rectangle. The transmission and interference ranges are
60 m and 150 m, respectively. The sink is at one corner of the
rectangle. The event to be reported occurs in the diagonally
opposite corner and the s = 12 nodes closest to the event loca-
tion detect the event in some way and thus become data sources.
Each source node generates ten packets. The transmission time
of a packet containing the result of compressing the data from
n sources is

Tn = T1(1 + α(n− 1)) (2)

where T1 is the transmission time of a packet containing the
data of one source without aggregation with any other data,
which is assumed to be 8 ms, and α is a parameter between 0
and 1. For α = 0, we can compress the data from any number
of nodes into one packet as short as one containing data from
only one node. For α = 1, which is the other extreme value of
α, no compression is feasible.

Figure 3 shows the average of the results of simulating FAT
for 400 random deployments. It reveals that the relative perfor-
mance of the different algorithms in terms of Dt varies greatly
with α. The results may also vary for other aggregation mod-
els. For α = 0, Centralized1 is a reasonable approximation of
the optimal solution, which is the Steiner tree. FAT performs
about 7 % worse than Centralized1, but FAT offers a similar
improvement over SPT.

0 0.2 0.4 0.6 0.8 1

−10

0

10

20

Aggregation coefficient α

tr
av

er
sa

l
ti

m
e
D
t

co
m

p
a
re

d
w

it
h

S
P

T
(%

)

FAT

Centralized1

Figure 3: Relative difference in Dt of FAT and Centralized1
when compared to SPT. The smaller the value, the
better the tree is. Centralized1 is a good solution
when little aggregation is feasible (α ≈ 0), but per-
forms poorly as more data can be aggregated. For
α = 1, SPT is the optimal tree.

4



We can see that FAT offers lower Dt than the SPT. It is im-
portant to note that this performance improvement is achieved
without significantly increasing Db. This may seem counterin-
tuitive because one may think that Db should be zero for the
SPT because the SPT is a fixed structure for all events and
thus there is no need to construct a new tree for each event.
However, it is false that Db is zero for the SPT. When an event
occurs, a new set of nodes become data sources. The ancestors
of the new sources do not need to be chosen because they are
fixed, but every ancestor needs to know exactly which of its
children have packets so that it knows when it does not need to
wait for any more packets so that it can transmit the result of
compressing those packets to the next hop. We are not aware of
any protocol to notify the ancestors of the sources in this way,
and we believe that a very efficient way to do so would be to
use the same staggered schedule as FAT does, so the resulting
protocol would be identical to FAT with the only difference that
the recipients of the PR packets are not changed dynamically
based on the overhead information. Therefore, if we use this
idea with the SPT, the resulting Db would be very similar to
that of FAT.

The Dijkstra1 heuristic approximates the tree that our pro-
tocol would obtain if every node, rather than making an initial
random choice of the recipient of its PR, made the optimal
choice. We do not plot the results of Dijkstra1 because they
are very similar to those of the FAT, indicating that the ran-
domness of the initial parent choice hardly degrades the tree
quality. For α = 1, aggregation is infeasible and the SPT is the
optimal tree.

Figure 4 shows that the benefit of good aggregation increases
with the number of sources s. It also shows that even for a
small number of sources, any aggregation protocol greatly out-
performs DMAC.

2 4 6 8 10 12
0

2

4

6

number of sources s

tr
av

er
sa

l
ti

m
e
D
t

(s
ec

o
n
d
s)

DMAC

SPT

FAT

Centralized1

Figure 4: FAT’s advantage over both SPT and DMAC increases
with the number of sources. We obtained this graph
for α = 0, which implies maximum aggregation.

3 Clustering for scalability

After a tree construction process has finished, if no path has
been constructed from a particular source node to the sink, we
call that source node isolated. We say that the tree construction
succeeded if there are no isolated sources. The normal construc-
tion of the FAT protocol always succeeds if there is a path from
every source to the sink and if the periodic maintenance op-
erations keep every node’s topological data up to date. The

topological data needed by every node are its tier number and
its list of neighbors in the next tier.

3.1 The node-failure problem

Now assume that each node fails with probability f0, and that
the periodic maintenance operations are so infrequent that the
node failures remain undetected. FAT succeeds despite these
node failures if during its execution every contender can reach
at least one of its potential parents. However this is not always
the case. Sometimes, when a nodes fails, the nodes in its subtree
need to change their tier in order for FAT to succeed.

We define fb as the probability of a source node remaining
isolated after FAT’s normal construction. As an example of
the computation of fb in a simple topology, if every node has
n potential parents and the sources are h hops away from the
sink, fb is 1 − (1 − fn0 )h. This example suggests that FAT
becomes more robust as the number of hops decreases and the
node density increases. We define the node density ρ as the
number of nods per unit area. Let rt be every node’s radio
transmission range. We define the normalized node density as
ρ̄ = πr2t ρ, which indicates the expected number of nodes within
a node’s transmission range.

We use simulations to evaluate fb in random deployments.
For comparison, we also evaluate the probabilities of having
isolated source nodes for two other techniques, namely, when
using a fixed tree, and after executing FAT’s emergency con-
struction, and we represent these probabilities by fs and fe,
respectively. We deploy the nodes at random locations, but we
discard the topologies with over 20 % of disconnected nodes,
which rarely occur for ρ̄ ≥ 7. The monitored area is a rectangle
of width d and height 4rt. The sink and the event center are
located at the middle of left and right borders of the rectangle,
respectively, a distance d away from each other.

Figure 5 shows the average of simulating 3200 random deploy-
ments. We can see that as the width of the monitored rectangle
d grows, the fraction of isolated nodes increases, which is logical
given that the number of potential failure points increases. We
can also see that, as the normalized node density ρ̄ increases, fb
decreases, which is what we expect because a higher node den-
sity results in every node having more potential parents. The
source isolation probability after FAT’s normal construction, fb,
is up to 40 % smaller than when using a fixed tree, fs. However,
fb is unacceptably high even for small, dense networks.

In order for fb to be sufficiently low, most nodes failures
should be detected by the maintenance operations, which can
be achieved by setting Tm sufficiently small. Otherwise, a pro-
portion fb of the sources will initiate the emergency construc-
tion, which is slow and costly. We could choose Tm so as to
minimize the sum of consumption of the maintenance and re-
porting operations

Em
Tm

+
((1− fb)Eb + fbEe + Et)

Te
, (3)

where fb is a function of Tm. In practice, we may have some
constraints. For example, we may have an upper threshold
on fb because we cannot tolerate the delay of the emergency
construction. As another example, we may want to have more
maintenance operations to record all the link failures in order to
estimate fb, which is useful to measure of the network reliability
and to decide Tm.

As the number of hops in the network grows, the cost of
keeping the topological information up to date grows. This is
because, when a node fails near the gateway, its whole subtree
may need to update its tier information. In addition, the cost
of the emergency construction, Ee, grows with the number of

5



4 7 10
normalized event-sink distance, d/rt

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

so
u
rc

e
 i
so

la
ti

o
n
 p

ro
b
. 
f

ρ̄0

ρ̄0

ρ̄0

ρ̄1

ρ̄1

ρ̄1

ρ̄2

ρ̄2

ρ̄2

ρ̄0 =7,ρ̄1 =14,ρ̄2 =28fs

fb

fe

Figure 5: Probability f of a source node becoming isolated
when f0 =5 % of the sensor nodes fail and their neigh-
bors are unaware of this. For three different event-
sink distances and for three different node densities
ρ̄, three different techniques are compared. These
techniques are the use of a fixed tree, FAT’s normal
construction, and FAT’s emergency construction, and
their respective source isolation probabilities are rep-
resented by fs, fb and fe. The values of f should
be read from 0 to the upper location of the bar, as
opposed to from the difference between the locations
of the lower and upper borders of the bar. This rep-
resentation is possible because fs > fb > fe.

nodes. Therefore, the maintenance operations may represent
the major source of energy consumption in large networks.

3.2 Cluster-based topology

We can to enhance the FAT protocol to require less frequent
maintenance operations in large networks as follows. We parti-
tion the network in clusters, as in Figure 6, and we execute FAT
in every cluster, with the cluster head playing the same role as
the sink in our initial description of FAT. The cluster heads are
the only nodes to belong to two clusters. This is so that the
packets from every source can eventually reach the sink. We
introduce gaps in the schedules from one cluster to the next
one so that not all nodes need to update their tier when a node
in another cluster fails. This cluster-based topology reduces
the maintenance cost, but unfortunately it aggregates data less
efficiently (it yields higher Dt). This is because if an event is
detected by nodes in different clusters, their data will travel a
longer distance until it is compressed. A cluster-based topology
also suffers increased delays (Db is higher) due to gaps in the
schedule.

In cluster-based topologies, the size of the clusters is impor-
tant. The choice of bigger clusters reduces the probability that
an event is detected by multiple clusters, which is beneficial.
However, increasing the cluster size also increases the mainte-
nance overhead. Also note that nodes close to the gateway have
to relay more packets and thus have less energy than nodes fur-
ther away from the sink, and thus the optimal cluster size varies
with the distance from the sink.

4 One-time aggregation using clusters

The previous section suggests that combining the FAT protocol
with a cluster-based topology can potentially reduce the main-
tenance cost in networks with many tiers and a certain level of
link failure probability. The optimal distribution of the cluster
sizes as a function of the distance from the sink is difficult to
analyze in such a topology. Therefore, here we consider the

rb

ra

Layer 1

h1

Layer 2

h2

. . .

. . .

Layer L

hL

Figure 6: Segmentation of the network in layers and clusters.
The sink is at the center and the clusters are approx-
imately squares.

optimal cluster size problem in a simpler system. This system
uses a data compression model that differs from (2) as follows,
and it is designed to suit some of our applications in the WINES
project [2].

4.1 Unrepeatable compression model

In contrast to the aggregation model in (2), here we assume
that aggregation is unrepeatable, which means that compressed
data cannot be compressed again with other data. We also
assume that relaying a packet containing the raw data from
one node across one hop costs Er, and that relaying the result
of compressing the data from n nodes across one hop costs Ec,
independently of the value of n. We define the compression
factor

σ =
Er
Ec
, (4)

and we consider values of σ between 4 and 40.

This model is motivated by the problem of reporting frac-
tures in bridges, which belongs to the WINES project [2]. In
this problem, when the sensor nodes detect the acoustic signals
from the fractures, they generate large data volumes in which
the sink is not interested. On the contrary, the sink only needs
an event summary containing, for example, the list of nodes
that detected the event, the detection time, the probability that
the signals stem from a relevant event, and its type. In order to
compress the data from multiple sources, the full waveforms of
the acoustic data are needed, because the compression involves
the cross-correlation of the signals. The summary cannot be
cross-correlated with raw data, so compression is unrepeatable.
Although from an information theoretic point of view it should
be possible to develop algorithms for repeatable aggregation,
they are difficult to develop and hard to implement on the sim-
ple hardware of the sensor nodes.

4.2 Optimal cluster size distribution problem

We consider a multi-hop WSN with a single sink such as the
one in Figure 6. The monitored area is limited by two concen-
tric circles of radii ra and rb centered at the sink. We divide
the network in L concentric layers, and we define hi as the
difference between the two radii that delimit Layer i. There-
fore, we have

∑L
i=1 hi = rb − ra. We divide each Layer i into

d2πri/hieclusters, which are approximately rectangles of side
hi. Each cluster has a cluster head, located approximately in
the middle of the cluster edge lying the closest to the sink. We
assume that compression is unrepeatable and that it may only
occur at the cluster heads.

6



The node density is ρ and the transmission range is rt. The
nodes within ra + rt from the sink can reach it directly. This
assumption is justifiable because the sink may have a more
sensitive receiver or an antenna with a higher gain. We define
the normalized network size as

β =
rb − ra
rtx

. (5)

With period Te, all the nodes inside a randomly located area,
referred to as event area, become sources. The event area is
a square of side s, two of whose sides are approximately par-
allel to two radii centered at the sink. The raw data from
every source travels to the clusterhead of that source, possibly
through multiple hops. The clusterhead compresses the data,
and the results are forwarded to the sink, also possibly through
multiple hops.

We assume that data transmission is the only source of energy
consumption. We refer to the traffic of raw data towards the
clusterhead as internal traffic, and to the traffic of compressed
data from the cluster heads to the sink as external traffic. We
define Eik and Eek as the expected energy that a node in Layer
k spends to forward internal and external traffic, respectively,
each time that an event occurs somewhere in the network. We
also define the addition of the previous two terms as Etk =
Eik + Eek, and the external to the total traffic ratio as

ε =
Eek
Etk

. (6)

Our optimization problem is to find the cluster-size distribu-
tion that maximizes the network lifetime. In other words, we
seek the optimal values of L and {hk}k=1,...,L that minimize
max

(
Etk
)
, with k ∈ {1, . . . , L}.

If an event area covers several clusters, the data from different
clusters will not be compressed with each other, resulting in
a higher Ekk , which is undesirable. Assume for a moment a
uniform cluster-size distribution. If we increase the cluster size,
the expected number of clusters affected per event decreases,
experimenting a beneficial reduction in Eek, but unfortunately
Eik increases. Therefore, there must be an optimal uniform
cluster size that minimizes Etk. For this distribution, all the
hk are identical, so all the Eik are also identical, but all the Eek
will not be identical because the nodes closer to the sink have
to relay more data. In particular, the most energy consuming
layer would be Layer 1. Starting from the uniform distribution,
we can extend the lifetime by reducing h1 and increasing hL,
because we reduce the energy consumption in Layer 1, which
is the potential bottleneck. Therefore, a non-uniform cluster-
size distribution can provide a longer network lifetime than a
uniform one.

4.3 Related work

We only consider here the literature proposing ways to con-
struct a permanent aggregation structure to support the re-
porting of multiple unpredictable events. In [10], the authors
study the use of fixed trees for this problem. However, this
approach incurs high maintenance overhead in large networks,
as discussed in Section 3. The ToD protocol [7] proposes a
hybrid structure consisting of clusters and two spanning trees.
By using efficient routing, it guarantees complete aggregation
in a few hops when the cluster diameter exceeds the diameter of
the event area. Aggregation in ToD can occur in several ways,
namely opportunistically within a cluster using DAA+RW, or
deterministically in primary and secondary aggregators. To
use ToD for unrepeatable compression, we have to select an ag-
gregation point, and we believe this point should be the first

secondary aggregator in the path to the sink. The ToD simula-
tions [7] involve only three different cluster sizes, thereby failing
to explore the optimal cluster-size problem.

SCT [11] proposes a structure similar to the one in Figure 6,
but in which all the clusters have the same size. In addition, the
authors of SCT only consider multi-hop clusters very briefly. In
the rest of their paper, they choose a cluster size that enables
single hop communication with the cluster head. In addition,
the authors assume that the sources associated with a given
event are uniformly distributed in the entire monitored area,
whereas in most problems the sources associated with a given
event are located in a reduced area centered at the place where
the event occurred.

UCS [12] and EEUC [13] are two techniques to choose clusters
of unequal size for data aggregation. They assume unrepeat-
able compression as we do, but, in contrast to the clusters in
our model, their clusters consist of only one hop. They assume
that the transmission cost between two nodes grows with dε,
where d is the distance between the nodes and ε ≥ 2 is a con-
stant. They also consider that all the nodes in the network are
sources. Most of the simulations of UCS [12] were obtained for
two-layer topologies, and only a few of them for a three-layer
topology. The authors chose such a small number of layers
because their heuristic is not scalable, as it considers many pa-
rameters and uses exhaustive search to find the optimal setting.
UCR is simpler, as it increases the cluster size linearly with a
single parameter c, so it is easy to approximate the optimal c.
However, the authors fail to justify the choice of a linear vari-
ation. UCR requires every node to be able to receive messages
from the sink, and that the received signal strength depends de-
terministically with the distance from the sink, which may not
be the case for certain operating environments. Furthermore,
UCS and UCR do not identify the parameters upon which the
improvement of an unequal cluster-size distribution depends.

4.4 Cost analysis

We assume that every node can communicate with its neighbors
less than rt away. If two nodes lie a distance d away from each
other, the expected number of hops between them is ζ ≈ ωd/rt,
where ω is a constant that depends on the normalized node
density ρ̄. For an extremely dense network, the number of hops,
ζ, is exactly dωd/rte, with ω = 1. As ρ̄ becomes smaller, ω
increases. In the following, we use ζ ≈ ωd/rt, and refer to it as
the hop count approximation.

4.4.1 Internal traffic

The expected distance from a random location in a cluster in
Layer k to its cluster head, which lies at the middle of the lower
part of the cluster, is

h−2
k

∫ hk

0

∫ hk

0

√
(x− hk/2)2 + y2 dx dy ≈ 0.76hk. (7)

Therefore, the expected number of hops of the internal traffic
is ζ = 0.76ωhi/rt. The probability that a node will detect an
event when it occurs somewhere in the network is s2/A, where
A = π

(
r2b − r2a

)
is the monitored area. The number of reporting

nodes grows with the number of nodes in the cluster mk, but
this load is also divided among the mk nodes. Therefore, the
expected internal cost per event for a node in Layer k is

Eik =
0.76ωs2

A
Erhk. (8)

7



4.4.2 External traffic

We assume the event area is a square whose side is s and whose
orientation matches the one of the clusters. The expected num-
ber of events reported in Layer k when an event occurs some-
where in the network is

nk =
qk (hk + s)2

Af
(9)

where qk is the number of clusters in Layer k, and it is given by
qk = d2πrk/hke, and Af = π

(
(rb − s)2 − r2a

)
is the area where

the lower left of the event may occur.
When an event occurs, the number of compressed packets

that travel to the sink is equal to the number of clusters in-
tersecting with the event area. The total number of external
packets that traverse Layer k is

∑L
j=k+1 nj , and that traversal

consists of ωhk/rt hops. There are 2πrkhkρ nodes in Layer k,
and we assume that their load is uniformly distributed among
them. Therefore, the expected external cost per event for a
node in Layer k is

Eek = Ec

(
ω
hk
rt

) ∑L
j=k+1 nj

2πrkhkρ
. (10)

4.4.3 Optimization problem

Considering all factors, the expected energy consumption of a
node in Layer k when an event occurs is

Etk =
Ecω

2πrtrkρ

L∑
j=k+1

2πrj (hj + s)2

hjAf

+
0.76ωs2

A
Erhk. (11)

We can compute the optimal layer-size distribution by solving
the following optimization problem:

minimize max
{
Etk
}

subject to

L∑
i=1

hi = rb − ra

over hk � rt

. (12)

We have imposed the constraint that hk � rt because otherwise
the hop count approximation becomes unreasonable.

The optimization problem (12) has L continuous variables
and it is non-convex, so it is difficult to solve. Based on the
physical understanding of the problem we propose the follow-
ing heuristic. We start with all the layers of equal size. In each
iteration, we extend by ∆ the size of the most energy consum-
ing layer and we shrink the least energy consuming layer by
that same amount. The parameter ∆ does not need to be very
small because in a real deployment we may not have very pre-
cise geographic information. This heuristic approximates the
optimal distribution of sizes given L. We execute this heuristic
for all the possible values of L, which is an integer, and select
the L that yields the minimum max

{
Etk
}
.

4.5 Simulations

We define the variety improvement ν as the relative lifetime im-
provement of our unequal cluster-size heuristic compared to the
optimal uniform cluster size. In this section, we use simulations
to evaluate how ν depends on three key parameters, namely the
normalized network size β, the normalized event size γ = s/rt
and the compression factor σ. In our simulations, we fix the
node density around ρ̄ = 10 because with this value, the net-
work becomes connected network with a high probability. In

many WSNs, we can control ρ̄ by changing the transmission
range rt.

The left-most column of small figures in Figure (7) shows
the influence of the network size β. As the network grows, the
number of external packets grows, further straining the nodes
close to the gateway. To reduce the number of external packets,
the optimal average layer width, mean(hk), grows, but not as
much to avoid an increase in the external to total traffic ratio
ε. As ε increases, ν decreases.

The middle column of Figure (7) analyzes the effect of chang-
ing the event size γ. As the event area grows, more clusters are
affected by each event, and the load upon the nodes near the
gateway increases. To reduce this load, the optimal average
cluster size is increased. Larger clusters lead to greater impor-
tance of internal packets, and thus to a reduction in ε and an
increase in ν.

The right column of Figure (7) presents the results when
we vary the compression factor σ. When more compression is
feasible, it is not so important to reduce the number of external
packets, so the optimal average layer width decreases. Despite
this decrease, the internal traffic becomes the main source of
power consumption, so ε decreases. At the same time, the
variety improvement ν grows.

In the three columns, we see that when ε decreases, ν in-
creases. This is what we expect. When ε is small, the internal
traffic accounts for the greatest share of the energy consump-
tion (Etk ≈ Eik). The internal traffic of Layer k, Eik, is linearly
proportional to the height of Layer k, as given by (8), and thus
Etk is almost linearly proportional to hk. Therefore, when ε is
small, we can control Etk very easily simply by changing hk.
This makes it easier to distribute the power consumption more
uniformly between the layers, and for this reason a small ε leads
to a big ν.

To summarize, our algorithm achieves up to a 12 % improve-
ment in terms of network lifetime over a uniform cluster size.
Such improvement is increased when the WSN consists of few
hops, when the events are detected by many sensors, and when
data can be compressed significantly. This improvement does
not come at the cost of any additional overhead during the net-
work operation, because the layers are set during the network
initialization.

5 Conclusions and future work

We have proposed the FAT protocol, which is the first protocol
that combines a staggered schedule with data aggregation. By
using this schedule, FAT divides the tree construction delay by
the number of hops in the network when compared to exist-
ing protocols. A faster tree construction allows the nodes to
check for packets less frequently, which saves energy. We used
simulations to compare the efficiencies of the aggregation trees
obtained by the FAT protocol and a centralized heuristic. Our
results show that the centralized heuristic was only 7 % better
than our protocol, which is a small price to pay for the reduc-
tion in the tree construction time. However, a key advantage
of FAT is its speed and scalability with the network size.

Similarly to every tree structure, the FAT has a disadvantage
that, if a link becomes unavailable, all the nodes that lie in its
sub-tree may need to be reconfigured. Our simulations showed
that the FAT method is vulnerable to outdated topological in-
formation, so the topology information should be updated pe-
riodically. As the network grows, the cost of the maintenance
operations grows. However, this cost can be reduced by com-
bining the FAT with a cluster-based topology.

We formulated the optimal-cluster size problem under a data
compression model that differs from the one of the FAT protocol

8



0 40 80 120
1

2

3

4

m
ea

n(
h
k

)

γ=4;σ=10

0 40 80 120
0

4

8

12

V
ar

ie
ty

 im
pr

ov
em

en
t ν

 (%
)

0 40 80 120
Network size β

0.0

0.4

0.8

ex
te

rn
al

 to
 to

ta
l r

at
io

 ε

initial

final

0 10 20
1

2

3

4

β=120;σ=15

0 10 20
0

4

8

12

0 10 20
Event size γ

0.3

0.5

0.7

0.9
initial

final

0 10 20 30
1

2

3

β=80;γ=4

0 10 20 30
0

4

8

0 10 20 30
Compression factor σ

0.5

0.6

0.7

0.8

0.9
initial

final

Figure 7: Influence of the network size β, the event size γ and the compression factor σ in our system. In the 3 × 3 matrix of
panels, each column represents the same set of simulations, in which we fix two variables, which are shown at the top
of each column, and we change the remaining variable. In each row, we show three different variables. In the third
row, we plot ε before and after applying our heuristic.

9



and from the ones commonly found in the literature, but that
serves very well to report the acoustic signals from fractures in
bridges and tunnels. Our model assumes significant compres-
sion in a single point. We proposed a heuristic to approximate
the optimal cluster sizes, which can achieve up to a 12 % in-
crease in lifetime when compared to the uniform cluster-size
approaches. We selected three key parameters that allow us to
explain the lifetime improvement, and evaluated the influence
of those parameters with simulation. In our future work, we
shall detail how to reduce the maintenance overhead of FAT.
We plan to use exhaustive search methods to show how close
our cluster-size heuristic result is from the optimal solution.

References

[1] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network
aggregation techniques for wireless sensor networks: a sur-
vey,” IEEE Wireless Commun. Mag., vol. 14, no. 2, pp.
70–87, 2007.

[2] WINES Consortium, “Wired and Wireless Intelligent
Networked Systems (WINES) – Smart Infrastructure
Project,” [Online]. Available: www.winesinfrastructure.
org , 2008.

[3] G. di Bacco, T. Melodia, and F. Cuomo, “A MAC proto-
col for delay-bounded applications in wireless sensor net-
works,” in Proc. Mediterranean Ad Hoc Networking Con-
ference, Jun. 2004, pp. 208–220.

[4] K. W. Fan, S. Li, and P. Sinha, “Structure-free data aggre-
gation in sensor networks,” IEEE Trans. Mobile Comput.,
vol. 6, no. 8, pp. 929–942, 2007.

[5] A. F. Harris III, R. Kravets, and I. Gupta, “Building trees
based on aggregation efficiency in sensor networks,” Else-
vier J. Ad Hoc Networks, vol. 5, no. 8, pp. 1317–1328, Nov.
2007.

[6] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An
adaptive energy-efficient and low-latency MAC for tree-
based data gathering in wireless sensor networks,” Wiley
J. Wireless Comm. and Mobile Computing, vol. 7, no. 7,
pp. 863–875, 2007.

[7] K. W. Fan, S. Li, and P. Sinha, “Scalable data aggre-
gation for dynamic events in sensor networks,” in Proc.
ACM Conf. Embedded Networked Sensor Systems (Sen-
Sys), 2006, pp. 181–194.

[8] K. G. Langendoen, “Medium access control in wireless
sensor networks,” in Medium Access Control in Wireless
Networks, Volume II: Practice and Standards, H. Wu and
Y. Pan, Eds. Hauppage, New York: Nova Science Pub-
lishers, May 2008, pp. 535–560.

[9] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: a
cross-layer platform for real-time embedded wireless net-
works,” Springer J. Real-Time Systems, vol. 37, no. 3, pp.
183–231, Dec. 2007.

[10] L. Cai and D. Corneil, “Tree spanners,” SIAM J. Discrete
Mathematics, vol. 8, pp. 359–359, 1995.

[11] Y. Zhu, R. Vendantham, S.-J. Park, and R. Sivakumar, “A
scalable correlation aware aggregation strategy for wireless
sensor networks,” in Proceedings of the First Int’l Conf.
Wireless Internet, 2005, pp. 122–129.

[12] S. Soro and W. Heinzelman, “Prolonging the lifetime of
wireless sensor networks via unequal clustering,” in Pro-
ceedings of the 19th IEEE Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2005.

[13] G. Chen, C. Li, M. Ye, and J. Wu, “An unequal
cluster-based routing protocol in wireless sensor networks,”
Springer J. Wireless Networks, vol. 15, no. 2, pp. 193–207,
Feb. 2009.

10

www.winesinfrastructure.org
www.winesinfrastructure.org

	Introduction
	Constructing a tree using a staggered schedule
	Power and delay in event-triggered reporting
	Related work
	The Fast Aggregation Tree (FAT)
	Normal operation
	Response to events
	Contention for a parent
	The random nature of FAT

	Analysis of the Tree Construction Delay Db
	Simulation of the aggregation Tree Quality

	Clustering for scalability
	The node-failure problem
	Cluster-based topology

	One-time aggregation using clusters
	Unrepeatable compression model
	Optimal cluster size distribution problem
	Related work
	Cost analysis
	Internal traffic
	External traffic
	Optimization problem

	Simulations

	Conclusions and future work

