
Hardware Architectures for Real-Time

Video Enhancement

and their Application to an Adaptive

Image Sensor

Maria E. Angelopoulou

A thesis submitted for the degree of

Doctor of Philosophy of the University of London

and for the Diploma of Membership of the

Imperial College

Department of Electrical and Electronic Engineering

Imperial College of Science, Technology and Medicine

University of London

May 2009

Abstract

The work presented in this thesis lies in the area of real-time video process-

ing and focuses on the problem of enhancing in real-time the spatio-temporal

resolution of the captured video sequence. To achieve the above, this thesis ex-

plores, proposes, and brings together, into a novel imaging system, appropriate

imaging techniques related to different levels of processing: high-level video en-

hancement algorithms, low-level implementation on reconfigurable hardware,

Field Programmable Gate Arrays (FPGA) in particular, and state of the art

image sensor technology. Contrary to traditional cameras, which are passive,

the proposed imaging system is dynamically configured in real-time according

to the captured video data, based on the real-time interaction of an adaptive

image sensor with an FPGA-based processing unit. The FPGA both configures

the adaptive image sensor in a manner that maximizes the captured informa-

tion, and further processes this raw data to render outputs of high resolution

both in space and in time. Therefore, this work proposes possible sensor config-

urations and the appropriate processing methods for video enhancement under

real-time constraints. These methods mainly include super-resolution and blur

1

identification techniques, and architectures of these methods are proposed and

implemented on FPGA. The throughput that is achieved is significantly higher

than the 25 fps real-time requirement, for frame sizes up to 1024× 1024, and

the system’s performance is robust to noise for Signal to Noise Ratio (SNR)

as low as 20 dB.

2

Contents

1 Introduction 28

1.1 Motivations and Objectives . 28

1.2 Overview . 30

1.3 Statement of Originality . 33

1.4 Publications . 37

2 Background 40

2.1 Introduction . 40

2.2 Traditional Imaging Systems . 43

2.2.1 The Observation Model 45

2.3 Computational Photography and Video 48

2.3.1 Topology of a Computational Imaging System 49

2.3.2 Dynamic Range . 50

2.3.3 Field of View . 51

2.3.4 3-D Imaging . 52

2.3.5 Image Matting . 52

2.3.6 Computational Illumination 53

3

2.3.7 Computational Sensors 54

2.3.8 Space-Time Resolution 55

2.4 Dynamic Configuration of an Adaptive Image Sensor 64

2.5 Accelerator Devices . 67

2.6 Field Programmable Gate Arrays 69

2.6.1 The Device . 69

2.6.2 Programming Languages and Tools 70

2.7 External Memory . 72

2.8 Summary . 73

3 FPGA Implementation of the 2-D Discrete Wavelet Trans-

form 76

3.1 Motion Vectors: Definition . 78

3.2 Multiresolution Motion Estimation 79

3.3 The Multiresolution Pyramid 84

3.4 Introduction to the 2-D DWT 85

3.4.1 The dyadic decomposition 86

3.4.2 The 1-D DWT . 87

3.4.3 The 2-D DWT: Literature Review 93

3.5 Common Implementation Decisions and Assumptions 94

3.5.1 Image memory . 95

3.5.2 Filter implementation 97

3.6 Implementing the Computation Schedules 104

4

3.6.1 Row-column Implementation 104

3.6.2 Line-based Implementation 105

3.6.3 Block-based Implementation 111

3.7 Output . 119

3.8 Results and Comparisons . 122

3.8.1 Throughput . 123

3.8.2 FPGA slices . 127

3.8.3 Memory issues . 127

3.8.4 Energy and Power Consumption 131

3.9 Appropriate Optimizations . 137

3.10 Summary . 139

4 Video Enhancement by Exploring the Configuration Space of

an Adaptive Image Sensor 141

4.1 Employing Larger Pixels to Reduce Motion Blur 143

4.2 SR-Based Motion Deblurring . 145

4.3 Deconvolution-Based Motion Deblurring 149

4.4 Comparing the Two Approaches with Respect to Sensor Speci-

fications . 154

4.5 Performance Evaluation . 159

4.5.1 Comparison of the Two Approaches on Dynamic and

Static Regions . 162

4.5.2 SR-Based Approach with Various Motion Magnitudes . . 168

5

4.5.3 Quantitative Performance Evaluation 170

4.6 Extending the Proposed Methods to Non-Rigid Objects 175

4.7 Summary . 176

5 Real-Time Super-Resolution with Isotropic PSFs 178

5.1 Introduction to Super-Resolution 180

5.2 Related Work . 182

5.3 The Iterative Back Projection (IBP) Super-Resolution Approach 184

5.4 Increasing the System Robustness 186

5.4.1 Reducing the Noise Effect 187

5.5 Architecture of the SR System 189

5.5.1 Off-chip Memory Banks 191

5.5.2 Individual Processing Units 193

5.5.3 Data Re-use and Maximum Performance 196

5.5.4 On-chip Memory . 198

5.6 Results . 199

5.6.1 Implementation Requirements 199

5.6.2 Performance Evaluation 202

5.7 Summary . 217

6 Blur Identification and Super-Resolution with Non-Isotropic

PSFs 219

6.1 Introduction . 219

6.2 Blur Identification and Subsequent Restoration 221

6

6.3 Description of the Algorithm . 225

6.3.1 Blur Identification . 229

6.3.2 Classification . 232

6.3.3 Inter-frame and Intra-frame Motion 237

6.4 Accounting for Intra-frame Motion in a System with an Adap-

tive Image Sensor . 238

6.5 Registration of Frames Blurred with Different PSFs 242

6.6 The Effect of Blur Identification and Validation on SR Recon-

struction Quality . 243

6.7 Hardware Architecture . 250

6.7.1 Directional Filters and Minimum Total Intensity Block . 250

6.7.2 The Rotation Block . 253

6.7.3 The Extract Processing Window Block 254

6.7.4 The Construct ACF and Classification Blocks 256

6.8 Experimental Results . 258

6.8.1 Implementation Requirements 258

6.8.2 Performance Evaluation for the Blur Identification and

Validation System . 262

6.9 Summary . 270

7 Conclusions and Future Work 272

7.1 Summary of the Thesis . 272

7.2 Conclusions . 275

7

7.3 Future Work . 277

7.3.1 Short Term . 277

7.3.2 Long Term . 279

A Example Camera Datasheet 283

8

List of Figures

1.1 Bidirectional interaction between FPGA and adaptive image sensor. 30

1.2 Overall design flow and relation with the chapters of the thesis. . . . 31

2.1 Traditional imaging system. 43

2.2 A hypothetical 3× 4 CMOS image sensor. 44

2.3 The degradation stages of the observation model that describes the

generation of the LR output. (a) High resolution input (b) Atmo-

spheric blur (c) Motion blur (d) Camera pixel blur (i.e. subsampling

of the original pixel grid) (e) Additive system noise 46

2.4 The effect of motion blur on real-life images. 47

2.5 Computational imaging system. 50

2.6 (a, b, c) Samples of a still scene produced during the HR integration

for pixel sizes 1 × 1 Sh, 2 × 2 Sh, and 2 × 2 Sh. (d, e) Bicubic

interpolation of a single frame of the LR sequences of (b) and (c).

Clearly, when no motion is involved 1× 1 Sh gives the best result. . 57

9

2.7 (a, b, c) Time samples produced during the HR integration for pixel

sizes 1×1 Sh, 2×2 Sh, and 4×4 Sh, where Sh denotes the size of the

elementary pixel of the sensor (d, e) Bicubic interpolation of a single

frame of the LR sequences of (b) and (c) gives insufficient spatial

resolution. SR methods can be used instead for the reconstruction

on the HR grid. 59

2.8 The part of the computational imaging system with which this thesis

is concerned, and the proposed automated bidirectional interaction

between the modules. 64

2.9 LR time samples produced during the HR integration for different

configurations of an adaptive image sensor. 65

3.1 The multiresolution pyramid. 82

3.2 The 2-D DWT decomposition as a ‘chain’ of successive levels. 87

3.3 Diagrammatic representation of the dyadic decomposition for three

decomposition levels. 88

3.4 The convolution-based implementation of the forward 1-D DWT.

(a) The conventional filtering-and-downsampling structure. (b) Us-

ing the polyphase matrix of the analysis filter-bank. 89

3.5 The lifting-based implementation of the forward 1-D DWT. 90

3.6 The in-place mapping scheme. The dyadic decomposition is applied

on a hypothetical 8× 8 original image. 96

10

3.7 Mirroring at the borders of an 8-pixel incoming line, for a 5/3 lifting

filter-bank. 99

3.8 Hardware implementation of the 5/3 lifting filter-pair, designed to

perform the 1-D DWT. The write enable signal (we) determines if

the registers with write enable inputs will be written. 100

3.9 The contents of the FIFO in respect to time for the filtering of an

8-pixel line. 101

3.10 This filter-bank derives from that of Fig. 3.8, by applying a few

changes (the shaded areas), to incorporate a multiple-input function.

The lower part is not shown, as it remains the same. 103

3.11 Generic block diagram of a system which executes the 2-D DWT

using an off-chip image memory. 105

3.12 Flowchart of the RC algorithm as implemented (r/c = current row/column,

j = current level). 106

3.13 Block diagram of the RC architecture. 107

3.14 Flowchart of the LB algorithm as implemented (r = current row, j

= current level). 109

3.15 Block diagram of the LB architecture. The shaded area includes the

on-chip buffers used in the architecture. 110

3.16 On-chip line buffers of level j, used in LB. 111

11

3.17 Vertical filtering in initialization mode in the LB architecture. The

second step of initialization can be simplified avoiding the overwrit-

ing of r2 with the same value it already has, by forcing its we input

to low. Also at the second step, r3 will be written with the previous

value of r1. 112

3.18 Vertical filtering in normal mode in the LB architecture. Three

inputs are loaded in parallel into the FIFO, while buf2(j) passes

through multiplexer m4 of the filter-bank. 113

3.19 Block diagram of the BB architecture. The shaded area includes the

on-chip buffers used in the architecture. 116

3.20 On-chip memory of level j, used in BB. 117

3.21 The normal-mode vertical filtering at level j, in BB, is followed by

initialization-mode horizontal filtering at level j + 1. Being at the

beginning of the vertical initialization stage at level j + 1, Lj+1 is

written in buf1(j+1). 118

3.22 Lena 512× 512. The original image. 119

3.23 Decomposition level 0. (a) Subbands L0 and H0. (b) Subbands LL1,

LH1, HL1 and HH1. 120

3.24 Decomposition level 1. (a) Subbands L1 and H1. (b) Subbands LL2,

LH2, HL2 and HH2. 120

3.25 Decomposition level 2. (a) Subbands L2 and H2. (b) Subbands LL3,

LH3, HL3 and HH3. 120

12

3.26 Number of cycles. Note that the values are multiplied by 106 in the

3-D graph, the 2-D subgraphs of all schedules for M=1024, and the

2-D subgraph of BB and RC for M=512. A different scaling is used

in the 2-D subgraph of LB for M=512 and the 2-D subgraphs of all

schedules for M=256: the values are multiplied by 105. 124

3.27 Throughput results (in frames/sec). 125

3.28 Number of FPGA slices. 128

3.29 Total number of accesses (contains both read and write accesses)

of the image memory. For LB and BB this number is the same,

and does not vary as L varies, since it is, in both cases, equal to

2×M2. The values of the vertical axis are multiplied by 106 in the

3-D graph, in the 2-D subgraphs of all schedules for M=1024, and in

the 2-D subgraph of RC for M=512. A different scaling is used for

the vertical axes in the 2-D subgraph of LB/BB for M=512 and the

2-D subgraphs of all schedules for M=256: the values are multiplied

by 105. 129

3.30 Number of BRAMs. 130

3.31 On-chip energy consumption (in mJ). 132

3.32 Total energy consumption (in mJ). An off-chip SDRAM is consid-

ered. The total energy required for BB is very close to that of RC

(for RC it is slightly higher). 135

13

4.1 The outputs of two different sensor configurations. (a) The HR con-

figuration renders a single, motion-blurred output during the HR

integration. (b,c,d,e) Configuring the motion area to 2× 2 HR pro-

duces 4 time samples during the HR integration, each containing a

fragment of the trajectory of (a). 144

4.2 Flowchart describing the operation of the SR-based system for each

independent moving object. 146

4.3 (a) SR-based motion-deblurring on an adaptive image sensor. (b) HR

grid covering the static background. (c,d) Uniform LR pixel grids

formed on the motion regions. The LR pixel size increases with the

local motion magnitude. 148

4.4 Flowchart for the deconvolution-based system. 150

4.5 The interpolated motion PSF. (a) Spline interpolation on the dis-

crete motion set of a particular feature. (b) Discretization on the

HR grid and PSF weights. 152

4.6 (a) Deconvolution-based motion-deblurring on an adaptive image

sensor. (b, c) Multiplexed LR and HR pixels of a hybrid grid. 153

4.7 (a) The input of deconvolution. The LR holes are reconstructed on

the HR grid based mainly on the surrounding HR pixels. (b) Voronoi

tessellation. Each Voronoi cell is associated with a discrete motion

set. (c) Deconvolution is applied individually on each Voronoi cell,

to reconstruct the final output on the HR grid. 155

4.8 Motion blur decreases the temporal resolution of frames. 158

14

4.9 Reconstruction of dynamic regions. 163

4.9 Reconstruction of dynamic regions. 164

4.10 Reconstructing the static regions of the scene on the HR grid. 165

4.11 (a) A scene with three different motion magnitudes as captured by a

conventional sensor. (b1, c1, d1) Motion-blurred regions. (b2, c2, d2) De-

termining the pixel size of each region based on the local motion

magnitude, blur is reduced to a sufficient degree in the produced

LR sequences. As the LR pixel size increases, more LR frames are

produced, for the same time interval. 169

4.12 Reconstruction of dynamic regions for different motion magnitudes. . 171

4.12 Reconstruction of dynamic regions for different motion magnitudes. . 172

4.13 Ground-truth frames used for the generation of the test sequences. . 174

5.1 The forward model consists of a series of unknown degradations re-

lated to the imaging system. The inverse model estimates those

degradations to reconstruct the missing high-resolution data. 179

5.2 The formation of the LR output presented mathematically. A 4× 4

PSF is employed. Two simulated LR frames with displacements

(0, 0) and (0.25, 0.25) are produced. 181

5.3 High level architecture overview. The architecture has been imple-

mented on a Celoxica ADMXRC4SX board [Cel08], which hosts a

Xilinx Virtex-4 FPGA and 4 Zero Bus Turnaround (ZBT) SSRAM

banks. 190

15

5.4 The numbers correspond to the LR frames. (a) A sliding window

indicates the group of frames processed during the current SR stage.

While the processing occurs on these frames, a new group of four

frames is written in the memory banks. (b) Triple buffering scheme

applied on the LR RAMs. 192

5.5 (a) Extract Proccessing Window Unit. Nh denotes the number of

columns of the HR frame, and S is the size of the PSF relating the

LR to the HR grid. (b) Interpolation Unit 193

5.6 The HR Pixel Refinement Unit. LRok and LRsk
i denote the contri-

bution of each pair of LR frames Lok and Lsk
i , in the refinement of

the particular HR pixel. 195

5.7 Temporal Aspect of HR Grid (a) At every clock cycle the cursor

moves one position on the HR grid indicating the currently pro-

cessed HR pixel. (b) The reference LR frame (c) An LR frame with

displacement (2,1) . 197

5.8 Time diagram with execution cycles. 197

5.9 The number of FPGA resources increases linearly with the number

of LR frames (K). (a) Number of FPGA slices. (b) Number of

BRAMs. The number of BRAMs is independent of the image size,

for the sizes reported in Table 5.1. 201

5.10 “Ground-truth” frame with HR spatial resolution and LR temporal

resolution for the drinks sequence. This is the output of an ideal

sensor that combines HR spatial resolution with LR integration time. 205

16

5.11 RMSE values obtained for real-time SR when using 8 LR frames of

drinks with different word-lengths and SNRs. (a) Bilinear interpo-

lation used as initial approximation. (b) Bicubic interpolation used

as initial approximation. 206

5.12 RMSE as a function of the number of iterations of the IBP applied

on the drinks sequence. The graphs correspond to different word-

lengths and number of LR frames: (a) 8 frames and data rounded

to 8 bits, (b) 8 frames and data rounded to 9 bits, (c) 12 frames and

data rounded to 8 bits, and (d) 12 frames and data rounded to 9 bits.206

5.13 Reconstruction of drinks for various SNRs. The first column shows

the output of floating-point bicubic interpolation using a single LR

frame, while the second one demonstrates the higher quality obtained

by the real-time SR FPGA implementation. 208

5.14 “Ground-truth” frame for the car sequence, i.e. the output of an

ideal sensor combining HR spatial resolution with LR temporal res-

olution. 209

5.15 RMSE values for real-time SR on the cars sequence. (a, b) Em-

ploying 8 LR frames, different word-lengths and SNR values, and

using (a) bilinear and (b) bicubic interpolation as the initial guess.

(c, d, e) RMSE values obtained for the given word-lengths and the

indicated numbers of LR frames. 210

17

5.16 Comparing the convergence properties of (5.3) (a-d) and (5.5) (e-h),

for the cars sequence. By accounting for the noise statistics in the

LR frames, (5.5) gives robustness with respect to noise. 212

5.17 Reconstruction of car for different SNRs. The SR outputs visually

demonstrate the higher quality obtained by the implemented real-

time algorithm, compared to the motion-blurred output of a tradi-

tional HR sensor and the bicubic interpolation of the output of an

LR sensor. 215

6.1 The ground-truth image. 233

6.2 Various motion PSFs and the corresponding motion-blurred images. 234

6.3 Calculated normalized total intensities I(φ) and autocorrelation co-

efficients R̄ for the indicated motion types. The figure continues at

the next page. 235

6.3 Calculated normalized total intensities I(φ) and autocorrelation co-

efficients R̄ for the indicated motion types. 236

6.4 The algorithm of the system operation for a dynamic region. 240

6.5 TI and ACF for carousel (top) and ambulance (bottom row). On

the right, a detail of the ACF is presented, for lags 0 to 33. 244

6.6 The intra-frame motion of the time samples for the three configura-

tions. 245

6.7 The blurred output for configuration 1× 1. 245

18

6.8 The reconstructed outputs for the SNR values and reconstruction

methods that are indicated in the figure. 246

6.9 The ground-truth frames for the two sets of experiments. 247

6.10 Errors for the two sets of experiments, for various SNRs. The legend

applies to both graphs, with (b) containing only the 2 × 2 configu-

ration values. 248

6.11 Reconstructed outputs for ambulance. 249

6.12 An overview of the joint blur identification and validation system,

as implemented on FPGA. 251

6.13 The Extract Processing Window (EPW) block operates in two dif-

ferent modes, which are distinguished in the figure with the black

and white shades. Each mode is associated with a processing stage. . 253

6.14 The Construct ACF block. The number of registers comprising

groups Ra and Rb equals the number of lags under consideration. . . 254

6.15 Time diagram of the ACF computation for a hypothetical 6-pixel

row “abcdef”. The t axis indicates the clock cycles. 256

6.16 System throughput for different frame sizes and motion directions.

The vertical axis is in logarithmic scale. 259

6.17 Number of FPGA slices for different number of directional filters and

frame sizes. The number of considered ACF coefficients equals 30. . 261

6.18 ROC curves for the indicated number of filters and noise level. . . . 263

6.19 Ground-truth frames used for the generation of the test sequences. . 263

19

6.20 The linear and uniform motion assumption is valid for the blurred

frames on the left (a,c,e), but not for those on the right (b,d,f). In

particular, the motion is nonlinear for (b,d) and linear but nonuni-

form in (f). For each experiment, the calculated total intensity graph

and the mean autocorrelation coefficients are demonstrated in the

figure. 264

6.21 The same scenarios as Fig. 6.20, but under significant noise: SNR =

20 dB. 265

6.22 The average and standard deviation values of the errors between the

actual and estimated motion direction, for linear and uniform motion.268

6.23 The average and standard deviation values of the errors between the

actual and estimated motion extent, for linear and uniform motion. . 269

A.1 An example camera datasheet. 284

20

List of Tables

4.1 Average (ǫµ) and standard deviation (ǫσ) of the reconstruction error

for the group of experiments that are executed on the test sequences. 175

5.1 Iterations for real-time performance for different HR sizes. 200

6.1 The notation that is used in the proposed blur identification and

validation algorithm. 227

21

Acknowledgements

This PhD thesis was completed under the supervision of Professor Peter Y. K.

Cheung and Dr. Christos-Savvas Bouganis. The work presented in Chapter 3

was carried out under the supervision of Dr. Konstantinos Masselos. I sin-

cerely thank my supervisors for their insightful guidance and support. I have

immensely enjoyed our cooperation during all these years, and I feel very priv-

ileged to have worked with them.

During my PhD, I had the opportunity to collaborate with researchers and

academics who are experts in their fields, whom I want to thank. I thank

Dr. George A. Constantinides for his help with Chapter 5, and Dr. Yiannis

Andreopoulos for his help with Chapter 3. I also thank Dr. Anil A. Bharath

and Dr. Thomas J. W. Clarke for providing feedback on several aspects of this

work at my transfer examination. I want to thank Professor Maria Petrou for

her helpful suggestions regarding image processing issues.

I also thank the examiners of this thesis, Professor Nishan Canagarajah

and Dr. Oskar Mencer, for their useful comments that have contributed to the

clarity of the text.

22

Finally, I would like to thank our group administrator, Mrs Wiesia Hsissen,

for her help in dealing with numerous administrative issues during my PhD

studies.

I dedicate this thesis to my mother Eva, my father Evangelos, my grand-

mother Marika, and my beloved fiancé Alexandros. Their love and support

kept me going through the PhD years.

23

List of Notation

Notation Meaning

Sh The width of the elementary pixel of the sensor.

~d Motion vector.

fj jth video frame.

~h Vector of unknown HR pixels (in the super-resolution problem).

~l Vector of known LR pixels (in the super-resolution problem).

A
Matrix that contains the relative contribution of each unknown

HR pixel to each known LR pixel (in the super-resolution problem).

N The set of all positive integers.

σf The standard deviation of the noise-free image.

σn The standard deviation of the noise.

Lok The kth observed low resolution frame.

δ0(k) The standard deviation of the noise of Lok.

Lsk
The kth simulated low resolution frame in the Iterative Back

Projection Super Resolution approach.

Lj

Low-frequency output of the 1-D DWT applied horizontally

on the image rows at decomposition level j.

Hj

High-frequency output of the 1-D DWT applied horizontally

on the image rows at decomposition level j.

LLj Low-frequency output of the 2-D DWT at decomposition level j.

LHj , HLj , HHj High-frequency outputs of the 2-D DWT at decomposition level j.

24

List of Terms and Acronyms

ACF Discrete Autocorrelation Function.

Adaptive Image Sensor A sensor that can be configured in real-time to

locally form larger pixels.

BB Block-Based 2-D DWT computation schedule.

BIV Blur Identification and Validation scheme.

BRAM On-chip Block RAM memory.

Control path The path of the circuit through which control signals travel.

Critical path The longest path of the circuit between storage elements, e.g.

flip-flops.

Data path The path of the circuit through which data travel.

DRAM Dynamic Random Access Memory.

DSP Digital Signal Processor/Processing (context dependent).

DWT Discrete Wavelet Transform.

25

FIFO First-In-First-Out buffer. A buffer from which values are read in the

order in which they arrived.

FPGA Field Programmable Gate Array.

fps Frames per Second.

GPU Graphics Processing Unit.

Ground-truth Image The real-world image without any degradations. Used

as a reference to determine the reconstruction quality.

Handel-C An hardware-oriented extension of ANSI C that includes struc-

tures that control hardware parallelism and instantiation.

HR High spatial and low temporal resolution, referring to pixels or frames (context-

dependent).

Isotropic Invariant with respect to direction.

LB Line-Based 2-D DWT computation schedule.

LR Low spatial and high temporal resolution, referring to pixels or frames (context-

dependent).

LUT Look-Up Table. An element of the circuit with multiple inputs and a

single output whose value is definite for each set of inputs.

Non-Isotropic Direction-dependent.

26

Pipelining The process of inserting registers in the circuit to reduce the

clock period.

PSF Point Spread Function.

RC Row-Column 2-D DWT computation schedule.

RMSE Root Mean Squared Error.

Slice A fine-grain component on an FPGA. The component contains two

4-LUTs with optional output registers, and additional logic for efficient

carry operations. Used as a unit for area measurement.

SNR Signal to Noise Ratio.

SR Super-Resolution.

SRAM Static Random Access Memory.

Synthesis The automated process of mapping an algorithm to a set of prim-

itive hardware blocks on the targeted device.

TI Total Intensity.

VHDL Very high speed integrated circuit Hardware Description Language.

Word-length The width of a stored value or a signal in bits.

ZBT Zero Bus Turnaround.

27

Chapter 1

Introduction

1.1 Motivations and Objectives

Enhancing in real-time the resolution of video data is a critical issue in a num-

ber of popular applications, such as biomedical applications and surveillance.

For instance, when a camera is inserted into a patient’s body, it experiences

motion blur both due to its own motion and due to the movements of the

human organs. In surveillance applications, high resolution is critical on local

regions of interest, such as human faces or number plates.

Traditional cameras are passive, being based on a static image sensor. In-

stead this thesis proposes a dynamic imaging system that is based on the real-

time interaction of an adaptive image sensor with a processing unit. In par-

ticular, this thesis explores and proposes state of the art techniques related to

different levels of processing: video enhancement algorithms, implementation

on reconfigurable hardware, and image sensor technology, and finally proposes

28

an imaging system that maximizes the spatio-temporal resolution of the out-

put by bringing together the appropriate techniques from the above individual

fields. The proposed system allows the real-time resolution enhancement of

the captured video sequence both locally on selected regions and globally on

the entire frame, based on the requirements of the given application.

The adaptive image sensor is a state of the art sensor, which is no longer

subject to the constraint of time and space invariant pixel size [Fov08, CDT06].

Elementary pixels can be grouped together to form a larger pixel where and

when necessary. Utilizing the above technology and taking advantage of the

advances in the area of reconfigurable hardware, this work explores how a Field

Programmable Gate Array (FPGA) can dynamically configure a time-variant

image sensor, so as to maximize the raw information collected from the en-

vironment. Appropriate processing methods and their FPGA-based architec-

tures are proposed to further process that information and reconstruct a final

output of both high temporal and high spatial resolution. By exploiting the

parallelism, pipelining and data reuse possibilities offered by reconfigurable

hardware, real-time performance, i.e. at least 25 fps for resolutions up to

1024× 1024, is achieved.

In the proposed video enhancement system, the role of the FPGA is twofold,

as illustrated in Fig. 1.1. The FPGA processes the raw information in real-time

and, also, decides how to configure the adaptive image sensor in a way that

maximizes the raw information that is captured, according to the collected

data.

29

FPGA

configure

process

adaptive image sensor

Figure 1.1: Bidirectional interaction between FPGA and adaptive image sensor.

1.2 Overview

As will be explained in the chapters that follow, the proposed video enhance-

ment system relies on the reconfiguration property of an adaptive image sen-

sor and comprises processing blocks that aim to reconstruct a final output

of high spatio-temporal resolution. The processing mainly contains modules

that execute blur identification, motion estimation, and reconstruction with

Super-Resolution techniques.

The overview of the design flow is shown in Fig. 1.2. Each block of Fig. 1.2

is related to the chapters of the thesis as indicated. The proposed FPGA-based

video enhancement system utilizes the reconfiguration property of an adaptive

image sensor to maximize the raw information that is captured. The captured

information is further processed by the blocks that are enclosed in the dashed

rectangle (Fig. 1.2) for the reconstruction of the system output.

The thesis begins in Chapter 2 by examining some of the previous and

concurrent work in computational photography and video, which is the broad

area of interest of this thesis. Moreover, Chapter 2 presents some common

background that is required throughout the thesis.

30

Blur Identification

Chapter 6

Motion Estimation:

Construction of the Wavelet Pyramid
Chapter 3

Super-Resolution Image Reconstruction

Chapters 5 & 6

Configuration of the

Adaptive Image Sensor

Chapters 4 & 6

Figure 1.2: Overall design flow and relation with the chapters of the thesis.

31

Chapter 3 investigates the implementation of the main 2-D DWT compu-

tation schedules on FPGA. The construction of the wavelet pyramid is a key

operation in a variety of applications that are based on multiresolution de-

composition, such as image compression. Multiresolution decomposition also

comprises a critical issue for robust motion estimation. The importance of

motion estimation in the flow of Fig. 1.2 derives from the fact that the output

frames should be registered before their pixels are fused with Super-Resolution

techniques.

Chapter 4 explores the configuration space of an adaptive image sensor.

The aim of the sensor configuration is to maximize the raw information col-

lected from the environment. Two different types of configuration are pre-

sented and for each configuration, appropriate methods are proposed to further

process that information and reconstruct a final output of both high tempo-

ral and high spatial resolution. Thus, two different approaches are proposed,

namely a SR-based and a deconvolution-based approach.

Chapter 5 investigates the implementation of Super-Resolution (SR) on

FPGA, which enables the real-time reconstruction of the system output with

high resolution both in space and time. By including information for the

noise statistics in the reconstruction process, the robustness of the traditional

Iterative Back Projection SR algorithm is increased. In Chapter 5, the intra-

frame motion of the SR inputs is considered to be negligible.

Contrary to Chapter 5, in Chapter 6, the motion blur in the frames at the

input of the reconstruction block is considered to be non-negligible, as would

32

be required in the case of very fast motion. Thus, the intra-frame motion

information of the SR inputs should be identified and incorporated in the SR

reconstruction process. When the frames are degraded by heavy motion blur,

the PSFs are highly non-isotropic, which further complicates their estimation.

The ill-posed nature of blur identification is usually addressed using the as-

sumption of linear and uniform motion. However, in real-life systems, this may

deviate significantly from the actual motion blur. To resolve the above, this

work proposes combining a scheme that validates the initial motion assump-

tion with the real-time reconfiguration property of an adaptive image sensor.

If the linearity and uniformity assumption is invalid for a given motion region,

the sensor is locally reconfigured to larger pixels that produce higher frame-

rate samples with reduced blur. Once the appropriate configuration that gives

rise to a valid initial motion assumption is applied, highly accurate PSFs are

estimated, resulting to an improved SR reconstruction quality.

Notation is introduced in each chapter as required. However, some basic

notation, terms and acronyms that are used throughout the thesis are given

in p. 24. Moreover, a list of terms and acronyms is given in p. 25.

1.3 Statement of Originality

The main contribution of the work presented in this thesis can be summa-

rized as follows. This thesis explores and proposes state of the art techniques

related to different levels of processing: video enhancement algorithms, im-

33

plementation on reconfigurable hardware, and image sensor technology, and

finally proposes an imaging system that maximizes the spatio-temporal reso-

lution of the output by bringing together the appropriate techniques from the

above individual fields.

More specific contributions of this thesis lie in four main areas, which are

the following:

1. The configuration space of an adaptive image sensor is investigated with

respect to the quality of the final output. Two configuration schemes

are proposed, which both provide rich spatio-temporal sampling for the

real-world scene. Each configuration scheme is then combined with the

appropriate processing block that further enhances the raw captured

data, in order to provide a system of high reconstruction quality. Thus

an SR-based and a deconvolution-based system are proposed, each asso-

ciated with a particular type of sensor configuration and data processing.

The performance evaluation of the two systems demonstrates that the

SR-based outperforms the deconvolution-based system.

2. A robust to noise hardware-based Super-Resolution (SR) reconstruction

scheme is proposed that is based on the Iterative Back Projection (IBP)

SR approach. The IBP approach is shown to be very appropriate for

hardware implementation, inherently offering the possibility to maxi-

mize the data reuse and parallelism in the data processing operations.

The original IBP scheme is modified in order to account for the presence

34

of noise, by incorporating the noise statistics in the reconstruction pro-

cess. This results in a robust to noise system with high reconstruction

quality under noise levels in the range of 10 to 70 dB, as the system eval-

uation demonstrates. To meet the strict timing constraints required for

real-time video capturing, a high-throughput architecture of the above

scheme is proposed and implemented on an FPGA. The proposed archi-

tecture achieves in real-time reconstruction of high quality, which has

been quantitatively evaluated, under noise levels within the range of 10

and 70 dB.

3. A joint linear blur identification and assumption validation (BIV) scheme

is proposed that is combined with the reconfiguration property of an

adaptive image sensor to enable accurate reconstruction. Since blur iden-

tification is an ill-posed problem, traditional blur identification methods

utilize the linear and uniform initial motion assumption. In real-life sys-

tems, this assumption may deviate significantly from the actual motion,

impairing subsequent restoration. To address this problem, while tradi-

tional blur identification is limited to the estimation of the blur param-

eters, the proposed scheme goes further and also evaluates the validity

of the initial assumption, while calculating the blur parameters. If the

linearity and uniformity assumption is invalid for a given motion region,

the adaptive sensor is locally reconfigured to larger pixels that produce

higher frame-rate samples with reduced blur. Results demonstrate that

35

once the appropriate sensor configuration, which gives rise to a valid

motion assumption, is applied, highly accurate PSFs are estimated, re-

sulting to an improved SR reconstruction quality. To target real-time

restoration, a high-throughput hardware architecture of the proposed

BIV scheme is presented and is implemented on a Field Programmable

Gate Array (FPGA). The implementation requirements are given for dif-

ferent sets of parameters, and the system performance is evaluated under

noise levels within the range of 10 and 70 dB. The blur parameters that

are associated with each SR input are incorporated in the SR reconstruc-

tion process, and the reconstruction quality is evaluated under the above

noise levels.

4. The major 2-D DWT computation schedules are compared and evaluated

on FPGA. The evaluation demonstrates that the choice of a particular

architecture for the execution of the 2-D DWT depends on the given spec-

ifications. These are related to the targeted throughput, area, and power

consumption. The comparative analysis that is carried out indicates that

the Line-Based (LB) approach achieves the highest throughput and the

lowest energy consumption, while the Row-Column (RC) approach is re-

lated to the lowest area. The importance of this work derives from the

wide range of image and video processing applications that are based on

the 2-D DWT, such as image registration and compression. The inves-

tigation of the 2-D DWT computation schedules can act as an insight

36

on which schedule is most suitable for the specifications of the given

application.

1.4 Publications

Parts of the work that is presented in detail in this thesis have been published

in the following literature. In the list of publications, every reference is fol-

lowed by the number of the chapter of the thesis that covers the corresponding

material.

Journal publications:

1. Maria E. Angelopoulou, Konstantinos Masselos, Peter Y.K. Cheung and

Yiannis Andreopoulos, “Implementation and Comparison of the 5/3 Lift-

ing 2D Discrete Wavelet Transform Computation Schedules on FPGAs”,

Journal of Signal Processing Systems for Signal, Image, and Video Tech-

nology (formerly the Journal of VLSI Signal Processing Systems for Sig-

nal, Image, and Video Technology), vol. 51, no. 1, pp. 3-21, April

2008. (Chapter 3)

2. Maria E. Angelopoulou, Christos-Savvas Bouganis, Peter Y.K. Cheung

and George A. Constantinides, “Robust Real-Time Super-Resolution on

FPGA and an Application to Video Enhancement”, to appear in ACM

Transactions on Reconfigurable Technology and Systems. (Chapter 5)

37

Conference publications:

1. Maria E. Angelopoulou, Christos-Savvas Bouganis and Peter Y.K. Che-

ung, “Video Enhancement on an Adaptive Image Sensor”, in Proc. IEEE

International Conference on Image Processing (ICIP), pp. 681-684, Oc-

tober 2008. (Chapter 4)

2. Maria E. Angelopoulou, Christos-Savvas Bouganis, Peter Y.K. Cheung

and George A. Constantinides, “FPGA-based Real-time Super-Resolution

on an Adaptive Image Sensor”, in Proc. Applied Reconfigurable Com-

puting (ARC), pp. 125-136, March 2008. (Chapter 5)

3. Maria Angelopoulou, Konstantinos Masselos, Peter Cheung and Yian-

nis Andreopoulos, “A Comparison Of 2-D Discrete Wavelet Transform

Computation Schedules on FPGAs”, in Proc. IEEE International Con-

ference on Field Programmable Technology (FPT), pp. 181-188, Decem-

ber 2006. (Chapter 3)

4. Maria E. Angelopoulou, Christos-Savvas Bouganis and Peter Y.K. Che-

ung, “A Sensor-Based Approach to Blur Identification and Super-Resolution

for Real-Time Video Restoration”, IEEE International Conference on

Image Processing (ICIP), November 2009, to appear. (Chapter 6)

Journal paper pending review:

1. Maria E. Angelopoulou, Christos-Savvas Bouganis and Peter Y.K. Che-

ung, “Blur Identification with Assumption Validation for Sensor-Based

38

Video Reconstruction and its Implementation on FPGA”, IET Comput-

ers & Digital Techniques, submitted June 2009. (Chapter 6)

39

Chapter 2

Background

2.1 Introduction

This chapter examines some of the previous and concurrent work in compu-

tational photography and video, which is the broad area of interest of this

thesis. Moreover, this chapter presents some common background that is re-

quired throughout the thesis. Background theory associated with individual

chapters will be given at the beginning of each chapter.

The chapter begins in Section 2.2 by presenting the topology of a traditional

digital imaging system and the forward model that describes the formation of

the output frames. In computational photography and video, the traditional

topology is extended, as described in Section 2.3.1, to accommodate computa-

tional modules that produce new forms of visual information. In the remainder

of Section 2.3, the main fields of computational photography and video are in-

troduced, along with some representative techniques that are used to improve

40

the quality of the final output. The diversity of these techniques does not only

concern the method of implementation, but also the level of application. Thus,

apart from the computational level, some of the approaches that are described

concern the sensor and optics level, and also the incident illumination that is

employed.

The work of this thesis belongs to the field of computational video that aims

at increasing the spatio-temporal resolution of the final output. Section 2.3.8

provides the background for this field, discussing the fundamental space-time

trade-off and presenting the related literature of systems that aim at surpassing

this trade-off. Section 2.3.8 finally introduces the system that is proposed in

this thesis.

The proposed system is based on an adaptive image sensor. The uncon-

ventional properties of the adaptive image sensor are explained in Section 2.4.

Apart from the adaptive sensor, the proposed system also includes a com-

putational processing unit that further processes the raw data to produce a

final output of high spatio-temporal resolution. As mentioned in Chapter 1,

this work targets real-time video capturing. Real-time video processing appli-

cations impose strict timing constraints being at the same time significantly

computationally expensive. Therefore, for this type of applications, software

solutions are often inadequate, as has been demonstrated in a number of recent

publications. In [GNVV04], Guo et al. present a detailed quantitative anal-

ysis, which demonstrates the low throughput that general-purpose processing

platforms, such as Pentium 3, VLIW, and MIPS, render when executing image

41

and video processing applications, and the speedup that can be achieved by

employing reconfigurable hardware instead. For the 2-D convolution opera-

tion, which constitutes a very common block in video processing applications,

Cope et al. demonstrate that both FPGAs and GPUs give a speedup which

is at least an order of magnitude higher over a Pentium 4 3.0 GHz [CCLW05].

In [BMC09], it is shown that when implementing the Extended Kalman Filter

algorithm to process 2-D maps containing up to 1.8 k features on FPGA, a

3-fold improvement is achieved over a Pentium M 1.6 GHz, while a 13-fold

improvement is achieved over an ARM920T 200 MHz.

Considering the strict performance constraints of real-time video process-

ing applications and the low throughput that general-purpose processing plat-

forms give when executing such data intensive algorithms, it is highly impor-

tant to choose an appropriate accelerator for the computationally intensive

video processing tasks. The remainder of the chapter introduces the hard-

ware technology that is available for this kind of acceleration. Specifically,

Section 2.5 discusses the variety of hardware solutions that exist, and explains

the choice of utilizing reconfigurable hardware. Section 2.6 focuses in Field

Programmable Gate Arrays (FPGA) and briefly discusses FPGA technology

and programming issues. Incorporating an FPGA-based processing unit into

the computational imaging system, offers a flexible platform that can be cus-

tomized depending on the user’s needs, with relatively low power consumption,

area costs, and high speed.

Finally, an FPGA-based system typically includes an external memory

42

LENS
Basic

Processing

Traditional
Sensor

OUTPUT

Figure 2.1: Traditional imaging system.

block for the storage of the input and the output data. Section 2.7 thus dis-

cusses the available options regarding the technology of the off-chip memory

and the type of memory that is employed in this thesis.

2.2 Traditional Imaging Systems

The topology of a traditional digital imaging system is presented in Fig. 2.1.

The main components of a traditional digital camera are: a lens, which cap-

tures the rays of light passing through the aperture, and an image sensor. The

image sensor is a 2-D array of pixels that convert incident light to an array of

electrical signals. Today, the most common type of sensor is the CMOS image

sensor [GE05].

The topology of a CMOS image sensor is illustrated in Fig. 2.2. The CMOS

image sensor is a 2-D array of pixels that converts the incident light to an

array of electrical signals. Each one of these pixels contains a photodiode,

which converts light into photocurrent. The percentage of the area of the

43

Column Amplifiers
Column ADC/ Mux

R
o
w

 D
e
c
o
d
e
rs

Photodiode

Figure 2.2: A hypothetical 3× 4 CMOS image sensor.

sensor’s pixel that is occupied by the photodiode is known as the fill factor.

The higher the fill factor, the more sensitive is the sensor. The rest of the

sensor’s pixel contains transistors. These transistors need to be as small as

possible, in order to increase the fill factor, so that more light will be absorbed

by the photodetector, and as a result the integration of the light will give a

valid value for that pixel faster. With the scaling of the CMOS technology,

the fill factor of CMOS sensors increases. As it can be observed in Fig. 2.2,

the architecture of the sensor is close to that of a RAM: row and column select

circuits are used, and the charge voltage signals are read out one row at a

time. The random access readout of a CMOS image sensor, contrary to the

serial readout of CCD sensors [GE05], allows the sensor to operate at very

high frame rates.

It should be noted that the basic processing unit illustrated in Fig. 2.1 is

solely responsible for converting the sensed pixel values into an image.

44

2.2.1 The Observation Model

The output of the sensor is formed after a series of degradations are applied on

the real-world scene. The real-world scene comprises the ground-truth frame

whose resolution is high both in space and time. The forward model that

describes the formation of the output of the imaging system is known by the

term observation model [FREM04, PPK03]. Thus, the high-resolution pixels

of the ground-truth ‘input’ undergo a series of degradations. The degradation

stages that comprise the observation model are briefly described below.

The low spatial resolution (LR) degradation channel associated with each

LR frame comprises a series of degradations, as shown in Fig. 2.3. The first

stage involves the atmospheric blur. A group of images that are largely affected

by this type of degradation are astronomical images. This work deals with the

stages of the observation model that succeed the atmospheric blur and that

are directly related to the imaging system. These are: the motion blur, the

spatial blur and the additive noise on the pixels of the sensor.

The effect of motion blur can be represented by a convolution with the

motion Point Spread Function (PSF). If the cause of motion is due to camera

shake, as in Fig. 2.3 (c), this convolution spans the entire frame. On the other

hand, if the cause is due to a moving object, as in the images of Fig. 2.4, then

the convolution spans only the part of the scene affected by that motion.

In the next degradation stage, the high-resolution grid of pixels is spatially

subsampled. This subsampling is done by the LR pixels of the image sensor,

45

(a) (b)

(c) (d) (e)

Figure 2.3: The degradation stages of the observation model that describes the gen-

eration of the LR output. (a) High resolution input (b) Atmospheric blur (c) Motion

blur (d) Camera pixel blur (i.e. subsampling of the original pixel grid) (e) Additive

system noise

46

(a) (b)

(c) (d)

Figure 2.4: The effect of motion blur on real-life images.

47

and thus this type of blur is known as camera pixel blur. The generation of

each LR pixel can be thought of as calculating a weighted average of all the

pixels of the high-resolution input which topologically correspond to that LR

pixel; therefore, applying a 2-D PSF on the high resolution pixel neighborhood.

The 2-D gaussian function is widely accepted as an appropriate sensor PSF,

as it resembles the pixel’s sensitivity: being high in the middle and decreasing

towards its borders with a gaussian-like decay.

The final degradation stage involves technology-related non-idealities of the

given sensor, which compose an additive noise factor that reduces the pixel

signal fidelity. Sources of such noise include shot noise, quantization noise,

readout noise, fixed pattern noise, and reset noise [TFG01, MKG+97]. The

level of additive noise determines the illumination range that can be detected

by the sensor. The quality of the sensor’s outputs, which are produced within

that range, is quantified using the Signal-to-Noise-Ratio (SNR), i.e. the ratio

of the signal power to the noise power.

2.3 Computational Photography and Video

Computational photography and video comprise an emerging new field that

combines innovative image sensors and computational methods. Its objective

is to surpass the limitations of traditional digital photography and video. The

role of imaging systems has moved from merely capturing raw pixels, to gen-

erating richer forms of visual information that comprise a more meaningful

48

representation of the real-world scene [Nay06, RTM+06].

Due to the novelty of the field, there is not yet a clear definition for com-

putational photography, as its limits are still unknown. The essence of com-

putational photography is very elegantly captured in Brian Hayes’ apposite

remark [Hay08]: “Neuroscientists have recognized that the faculty of vision

resides more in the brain than in the eye; what we “see” is not a pattern

on the retina but a world constructed through elaborate neural processing of

such patterns. It seems the camera is evolving in the same direction, that the

key elements are not photons and electrons, or even pixels, but higher-level

structures that convey the meaning of an image.”

2.3.1 Topology of a Computational Imaging System

The difference between the digital system of Fig. 2.1 and an old film-based

camera system mainly lies in the substitution of the film with a silicon image

sensor. The remainder of the optical system is still almost the same, based on

the traditional principle of camera obscura [New82].

Contrary to the simple digital camera, a computational imaging system

extends the functionality of the modules of Fig. 2.1 in order to produce new,

richer types of information [Nay06, RTM+06]. Fig. 2.5 shows the topology

of a computational imaging system. As stated in [RTM+06], computational

photography techniques generalize the basic elements of digital photography:

namely, the optics, the image sensor, the processing that converts the sensed

values into an image, and the illumination. The sections that follow examine

49

Computational
Optics

Computational

illumination

Computational
Processing

Computational

Sensor

OUTPUT

Figure 2.5: Computational imaging system.

some of the previous and concurrent work in extending the above elements

beyond the capabilities of traditional digital photography.

2.3.2 Dynamic Range

Digital cameras typically employ 256 levels of brightness in each color channel.

These are often not enough to capture the large variations of brightness in a

real-world scene. The effect of limited dynamic range is obvious if a person

sits in a dark room in front of an open window. In that case, if the exposure

time is long, the person is well imaged but the window is saturated. On the

other hand, if the exposure time is short, the outdoor scene appears well lit,

but the person is too dark.

In the literature, various methods have been proposed for high dynamic

range imaging, either employing computational processing or employing a

specific sensor technology. The main idea of high dynamic range computa-

tional processing methods is to capture multiple images with different expo-

50

sure times and use further processing to combine the best parts of the captured

images [RBS99, Gos05].

At the level of the sensor, several techniques are proposed. One approach

employs logarithmic sensors [KDS+00]. Another technique proposes applying

a checkerboard pattern with varying sensitivities on the sensor array [NM00].

Other approaches include well-capacity adjusting [DMBS98] and self-reset [McI01].

2.3.3 Field of View

The majority of imaging systems, either artificial or biological, capture only

a part of the 360o field that surrounds them. The vision capability of a given

imaging system can thus be significantly improved if the captured field of view

is increased.

At a computational processing level, the field of view is increased by em-

ploying panorama stitching, also known as image mosaicking. The first signifi-

cant work on panorama stitching was done by Mann and Picard in 1994 [MP94].

Recently, Brown and Lowe proposed in [BL03] a fully automatic technique for

the construction of panoramas.

Alternative solutions for increasing the field of view utilize unconventional

optics, such as the catadioptric camera of [NP99]. The catadioptric camera is

formulated by applying in front of a conventional camera a particular type of

lens, which includes a relay lens and a paraboidal mirror.

51

2.3.4 3-D Imaging

The process of extracting the scene’s 3-D structure is referred to as 3-D imaging

or depth sensing. This is very useful for applications such as object and face

recognition, tracking, and 3-D computer games.

Various computational processing 3-D imaging methods can be found in

literature, such as those that are based on light detection [ZTCS99, BB04].

Recently, depth sensors have been proposed, such as the time-of-flight sensor

of [GYB04], and the array of avalanche diodes presented in [NRBC04]. Also,

particular topologies for computational optics have been proposed for the ex-

traction of depth information, such as the multiview radial imaging system

of [KN06]. The latter employs a hollow cone, which is mirrored from the

inside and is applied in front of a conventional camera.

2.3.5 Image Matting

Another important method of computational photography is digital image

matting. Image matting is the process of extracting a foreground object from

the background along with the foreground opacity (“alpha matte”) for each

pixel of the object. Matting is a highly ill-posed problem, which is normally

simplified by employing a certain degree of user interaction. Thus matting

methods normally require the image to be accompanied by a a rough seg-

mentation of the image into three regions: foreground, background and un-

known [RT00, CCSS01, LLW08]. Recently, Levin and colleagues proposed

52

spectral matting, which computes a set of fuzzy matting components in an

unsupervised manner [LRAL08].

2.3.6 Computational Illumination

Incident illumination can be controlled in a structured manner so as to enable

post-capturing processing, such as virtual relighting or the fusion of multiple

frames into a single output of higher quality.

Debevec, Wenger, and colleagues have done extensive work in this field,

with the main objective of synthetically relighting a human performance with

arbitrary lighting environments after the capturing process [WGT+05, DHT+00].

Their work is based on the linearity of light: any possible lighting environment

can be expressed as a linear combination of single-light images. A basis of

single-light images is formed by capturing an actor’s appearance under sin-

gle rays of light originating at (x, y, z) and emitting in direction (θ, φ), and

relighting is achieved by linear combinations of the basis images.

A simpler version of the multiple illuminations scheme is to combine a pair

of images captured with and without flash. The technique is known as flash-

no flash and is presented in [ED04, PSA+04]. The no-flash image includes the

large-scale illumination effects, but contains high levels of noise. On the other

hand, the flash image has lower noise, contains high frequency components,

but fails to capture the large-scale illumination characteristics. The good prop-

erties of the two images are then blended together to produce an output of low

noise and more details.

53

2.3.7 Computational Sensors

A very interesting type of unconventional sensor that was recently developed,

is the Foveon sensor [Fov08]. Specifically, the Foveon sensor has the following

characteristics.

1. The sensor avoids the Bayer filter by utilizing the property of silicon

to absorb different wavelengths of light at different depths. Therefore,

on each pixel three layers are formed, each corresponding to a different

spectral band, R, G, or B. As a result the sensor captures all spectral

bands at every pixel location, thus reducing post-processing and avoiding

demosaicking-related artifacts.

2. The full-color property of the Foveon pixels makes feasible the formation

of full-color super-pixels, by grouping together multiple elementary pix-

els. Larger pixels have higher SNR. Therefore, under low illumination the

sensor grid is globally configured to larger pixel sizes. This significantly

reduces the image noise in low-light conditions.

While in [Fov08] the sensor is configured globally based on the global il-

lumination conditions, the reconfiguration property is locally applied by the

adaptable foveating vision chip of [CDT06]. The bio-inspired chip of [CDT06]

imitates the functioning of the human eye by employing high spatial resolu-

tion on the foveal regions. In the surrounding regions, elementary pixels are

grouped together in a similar manner as in [Fov08].

54

In the video enhancement system that is proposed in this thesis, the lo-

cal reconfiguration capability of an adaptive sensor is utilized for a different

purpose, i.e. for the local motion deblurring of motion regions. Thus, more dis-

cussion on the sensor’s reconfiguration property and the space-time trade-off,

which is related to the pixels’ resolution, follows in Section 2.3.8.

Another type of computational sensor is the ‘gradient camera’ of [TAR05].

Instead of measuring static intensities, the gradient camera, measures static

gradients. This increases the dynamic range, as image gradients are not satu-

rated as much as image intensities.

As has been mentioned in Section 2.3.4, computational sensors have been

also proposed for depth sensing [GYB04, NRBC04].

2.3.8 Space-Time Resolution

This section first discusses the trade-off between the spatial and temporal res-

olution of imaging systems. It then presents methods that have been proposed

to address the above trade-off. Finally, the section introduces the main prin-

ciples of the video enhancement system that is proposed in this thesis.

The Space-Time Trade-off

Two types of resolution determine the quality of information collected by an

image sensor: the spatial and the temporal resolution. The spatial resolution

depends on the spatial density of the photodiodes and their induced blur.

The spatial density of the photodiodes of the sensor not only determines the

55

spatial, but also the temporal resolution. This will be explained in detail in

the paragraphs that follow.

The most intuitive solution to increase the spatial resolution corresponding

to the same field of view would be reducing the pixel size, hence increasing the

pixel density. However, the smaller the photodiodes become, the smaller is the

amount of incident light. As a result, a longer integration time is required for

each photodiode to achieve an adequate signal to noise ratio [GE05, FXK06,

CCGW00].

In the case of no relative motion between the camera and the scene, the

reduction in the amount of light can be compensated by increasing the expo-

sure time of the pixels, i.e. increasing the integration time of the photodiodes.

Fig. 2.7 demonstrates a scenario with zero relative motion between the scene

and the imaging system. Figures 2.7(a, b, c) illustrate the LR sequences that

consist of the samples of a still scene that are produced during the HR inte-

gration, for different pixel sizes. Pixel sizes 1 × 1 Sh, 2 × 2 Sh, and 4 × 4 Sh

are employed, respectively. Since no relative motion exists, all LR frames

within the same group contain exactly the same information. In Fig. 2.7(d)

and Fig. 2.7(e), the output is reconstructed on the HR grid after applying

bicubic interpolation on a single LR frame of the LR sequences of Fig. 2.7(b)

and Fig. 2.7(c), respectively. Clearly, when no motion is involved 1 × 1 Sh

gives a better result.

In real-life systems, relative motion between the imaging system and the

scene normally exists: either the camera is shaking or/and objects are moving

56

(a) (b) (c)

(d) (e)

1x1 Sh ...2x2 Sh 4x4 Sh

Figure 2.6: (a, b, c) Samples of a still scene produced during the HR integration for

pixel sizes 1× 1 Sh, 2× 2 Sh, and 2× 2 Sh. (d, e) Bicubic interpolation of a single

frame of the LR sequences of (b) and (c). Clearly, when no motion is involved 1× 1

Sh gives the best result.

57

in the scene during the integration time. In this case, the integration time spans

a large number of real-world ‘frames’, and the output suffers from motion blur,

thus reducing the temporal resolution. Thus, there is a fundamental trade-off

in imaging systems: an increase in the spatial resolution by reducing the pixel

size reduces the temporal resolution and vice-versa.

The fundamental trade-off between space and time is visualized in Fig. 2.7.

This demonstrates how a scene affected by global motion, deriving from a

shaking camera, would be captured by image sensors of different pixel sizes.

Clearly, as the pixel size increases in the direction of the arrow, the motion

blur is reduced, thus the temporal resolution is increased, but also the spatial

resolution is reduced as well. Figures 2.7(b) and 2.7(c) illustrate the captured

LR sequences for pixel sizes 2 × 2 Sh and 4 × 4 Sh. To reconstruct the LR

output on the HR grid of Fig. 2.7(a), bicubic interpolation is applied on a

single frame of the corresponding LR sequence. The spatial resolution of the

reconstructed frames decreases in the direction of the arrow, as demonstrated

in Figures 2.7(d) and 2.7(e).

In the real-life images of Fig. 2.4, the exposure time was too long for the fast

moving objects to be captured. These images were captured with a commercial

hand-held camera, a Canon IXUS 50. The effect of motion blur is clearly

visible. Fig. 2.4(a), for instance, presents a moving bus as opposed to a still

bike. The first object creates motion blur, whereas the second is well captured.

58

(a) (b) (c)

(d) (e)

1x1 Sh ...2x2 Sh 4x4 Sh

Figure 2.7: (a, b, c) Time samples produced during the HR integration for pixel

sizes 1× 1 Sh, 2× 2 Sh, and 4× 4 Sh, where Sh denotes the size of the elementary

pixel of the sensor (d, e) Bicubic interpolation of a single frame of the LR sequences

of (b) and (c) gives insufficient spatial resolution. SR methods can be used instead

for the reconstruction on the HR grid.

59

Surpassing the Space-Time Trade-off: the Literature

A large number of methods that aim at increasing either the spatial or the tem-

poral aspect of resolution exist in the literature: blur identification methods

estimate the blurring function so as to reconstruct an image of high temporal

resolution, while traditional super-resolution (SR) techniques create an out-

put of high spatial resolution. Various imaging system topologies have been

proposed to acquire the set of LR samples that are needed for SR fusion.

Mainly, two types of topologies exist that aim at increasing the spatial res-

olution of the output: those that utilize multiple cameras [WJV+05, SCI05]

and those where a single vibrating camera is employed [BEZN05, BEZN04].

The work presented in this thesis focuses on the problem of enhancing both

the spatial and the temporal resolution of the output of an imaging system.

The following paragraphs discuss systems that have been proposed to increase

spatio-temporal resolution.

Resolution in both time and space can be enhanced by using multiple cam-

eras to capture a fast moving scene with different subpixel spatial shifts and

different subframe temporal shifts [SCI05]. The main strength of the algorithm

in [SCI05] is that it treats motion blur independently of the cause of temporal

change. Its main weakness lies in the large number of required cameras (such

as 18). In real-life systems, this also introduces additional difficulties in the

alignment of all the captured images from different cameras, a step known as

registration [ZF03, Bro92]. Apart from having to perform registration on many

60

images, the large number of cameras increases the distances between the cam-

era axes, making accurate registration difficult. This limits the applicability

of the system.

In [BEN04] the proposed system consists of a high-resolution (HR) and a

low-resolution (LR) imaging device. The LR device deblurs the image captured

by the HR device, by obtaining motion information for the estimation of the

motion Point Spread Function (PSF). Then, the HR image is deblurred using

deconvolution-based techniques. This approach mainly considers capturing a

single image and focuses in solving the blur caused by the undesired global

motion due to camera shaking. The proposed system uses either two separate

image sensors or a sensor with an LR periphery. If two separate image sensors

are used, motion trajectories can be detected anywhere in the frame and, thus,

the approach can be extended to dealing with the motion of individual objects.

However, the use of two image sensors results in registration-related problems

and an increased size of the device. In addition, the pixel size of the LR detector

remains fixed over time regardless of the motion magnitude. As a result, the

LR integration time is also fixed. Therefore, the temporal resolution of the

outputs of the LR detector decreases as motion becomes faster, and, beyond

a certain threshold of motion magnitude, the LR samples are considerably

blurred themselves. Hence, to reduce motion blur to a desired extent, the

integration time of the LR device should adapt to the motion magnitude and

decrease for faster motion. This issue is not resolved by the system proposed

in [BEN04].

61

Very recently, sensor-based solutions have been proposed that locally deal

with object motion. In particular, the sensor of [CHK+07] employs on-chip

motion detection circuits that indicates regions of interest that are then con-

figured to larger pixels, thus rendering high-frame-rate samples with reduced

spatial resolution. The work presented in this thesis moves a step further.

Thus, after the high-frame-rate samples of the motion regions are produced,

they are fused together in order to enhance the spatial resolution of the output.

This results in an output of high resolution both in space and time. Such a

scheme imposes strict real-time constraints for the real-time computation of

the enhanced frames, as will be discussed in the sections that follow.

Surpassing the Space-Time Trade-off: the Proposed System

The work presented in this thesis aims at resolving the space time trade-off

by developing an imaging system that employs reconfigurable modules inter-

acting in an autonomous fashion. The system addresses the problem of both

local and global motions. The work presented in this thesis is concerned with

the parts of Fig. 2.1 that are presented in Fig. 2.8, namely the sensor and

the processing unit. The aim is to develop an unconventional video enhance-

ment system where the sensor and the processing unit interact and modify

each other according to information that they exchange. In this manner, the

entire system can adapt to the motion properties of the actual scene and thus

produce the best spatio-temporal representation of the real-world data. To

achieve the above objective, a reconfigurable sensor is employed along with

62

an appropriate computational block that processes the captured raw data and

aims to maximize the captured raw information.

The reconfigurable image sensor, which will be referred to as ‘adaptive im-

age sensor’, is a novel type of sensor, where elementary pixels can be grouped

together to form a larger pixel where and when necessary [Fov08, CDT06].

The local sensor reconfiguration property, which can be realized as explained

in [CDT06], is utilized. The local sensor reconfiguration enables to treat inde-

pendently local motion regions, according to the corresponding local motions.

The reconfiguration property of the sensor is illustrated in Section 2.4, while

possible configuration schemes are investigated in Chapter 4.

The raw information that is collected by the sensor will be further enhanced

by the processing unit that reconstructs a final output of both high temporal

and high spatial resolution. The system targets real-time video capturing and,

thus, the necessity for real-time computation imposes strict performance con-

straints. Specifically, to achieve real-time performance, the system throughput

should be at least 25 fps. Such requirements render software processing inade-

quate, due to the high computational complexity associated with the required

pixel-level processing. As will be discussed in Sections 2.5 and 2.6, employing

reconfigurable hardware, and Field Programmable Gate Arrays (FPGAs) in

particular, can give maximum flexibility and performance under strict real-

time constraints. By exploiting the parallelism, pipelining and data reuse

possibilities offered by FPGAs, I will demonstrate that the above objectives

are feasible, while the required area and power consumption of the circuits are

63

Computational

Processing

Computational
Sensor

OUTPUT

Figure 2.8: The part of the computational imaging system with which this thesis

is concerned, and the proposed automated bidirectional interaction between the

modules.

low. These issues will be made clear in the chapters that follow.

2.4 Dynamic Configuration of an Adaptive Im-

age Sensor

The work presented in this thesis aims to surpass the limits imposed by the

space-time trade-off and enhance in real-time the captured video sequence. To

achieve this, this thesis looks beyond the conventional topology of uniform,

time-invariant pixel sensors. Specifically, a real-time video enhancement sys-

tem is proposed, which is based on two cornerstones: the real-time processing

ability of reconfigurable hardware, FPGA in particular, and the reconfigura-

tion property of a state-of-the-art adaptive image sensor. The current section

introduces the benefits offered by the technology of the adaptive image sensor.

The state of the art in imaging technology has produced sensors that

64

1x1 Sh

...

2x2 Sh

3x3 Sh
L
R

 f
ra

m
e
s

Figure 2.9: LR time samples produced during the HR integration for different

configurations of an adaptive image sensor.

are no longer subject to the constraint of time and space invariant pixel

size [Fov08, CDT06]. Elementary pixels can be grouped together to form

larger pixels that produce high-frame-rate samples. Taking advantage of what

imaging technology has to offer, this work proposes an FPGA-based system

that uses an adaptive image sensor, to locally form areas of larger pixels on the

motion regions, and execute on-line, real-time video enhancement. The sen-

sor’s configuration speed depends on the technology of the given sensor. The

architectures that are proposed in this thesis can be combined with sensors of

various configuration speeds, as will be made clear in the chapters that follow.

Let Sh denote the size of the elementary pixel of the sensor, corresponding

to resolution HR, which is the highest spatial and lowest temporal resolution.

Let m and n be the height and width of an area of the sensor measured in Sh

units. That area may be reconfigured to larger pixel sizes and thus include

65

pixels whose size is larger than Sh. In that case, according to the space-time

trade-off, this area produces multiple time samples during the HR integration.

If all pixels, regardless of their size, are considered as points in the 3-D space,

then, during the HR integration, m×n such points will be produced for an m×n

area. The distribution of these points between time and space is determined

by the pixel size. Increasing the pixel size of a particular region, decreases

the density of these points on the 2-D plane and increases their density along

the time axis, as the total number of points in the 3-D space should remain

m×n for the given area. In one end, there is the regions without motion that

should be covered with HR pixels. Therefore, on these regions the distribution

is m× n× 1, where m is on the x axis of the 2-D plane, n is on the y axis of

the 2-D plane, and 1 is on the time axis, which gives the number of LR time

samples that are produced during the HR integration. This is the case that is

demonstrated in the first configuration of the sensor of Fig. 2.9. At the other

end, there is the configuration 1 × 1 × (m× n), which would occur if all the

available pixels were grouped together to form one large pixel. Thus, if the

pixel size of area Q equals 2× 2 Sh, the LR spatial resolution is 4 times lower

than the HR resolution, while the temporal resolution is 4 times higher. In

other words, 4 LR time samples are produced for Q during the HR integration,

as demonstrated in the second configuration of the sensor of Fig. 2.9. If the

spatial relation is 3 × 3, 9 LR samples are produced, as shown in the third

configuration of Fig. 2.9.

66

2.5 Accelerator Devices

The algorithms related to video processing applications are cues of the most

computationally challenging problems in the area of Digital Signal Process-

ing (DSP). When real-time constraints are added to such applications, tra-

ditional software processing is inadequate, and other solutions should be em-

ployed. The choice between alternative accelerators depends on the specifica-

tion of the target application regarding throughput, area, and power.

At one end, dedicated Application-Specific Integrated Circuits (ASICs) are

undoubtedly the best solution if the objective is maximum performance for a

fixed application. At the other end, Digital Signal Processors (DSPs) require

significantly shorter design times than ASICs, provide considerably lower man-

ufacturing costs, especially when the production scale is small, and offer the

ability to be easily upgraded. To provide such benefits, DSPs trade-off per-

formance and power consumption, being a lot slower and considerably more

power-hungry compared to ASICs.

Between the two ends, i.e. ASICs and DSPs, lie the Field Programmable

Gate Arrays (FPGA). FPGAs are flexible semiconductor devices, in the sense

that they can be programmed and configured after manufacturing. FPGAs

offer a variety of advantages when it comes to the implementation of video

processing algorithms. The same hardware can be used for the implementation

of different algorithms or different versions of the same algorithm. Moreover,

even if the specifications of a particular algorithm might not yet be complete,

67

the design on the FPGA can begin at once and be upgraded according to the

final specifications, when these are ready. Such flexibilities are not offered by

ASICs, and, compared to digital signal DSPs, FPGAs provide implementation

efficiency, being much faster and less power-hungry.

Recently, Graphics Processing Units (GPUs) have developed from simple

graphics rendering devices for personal computers into powerful general pur-

pose processors [CCLW05]. The processing power of GPUs is recognized in

various application domains, such as super-computing [KHDO06]. However,

when compared to FPGAs, the performance of GPUs is considerably lower,

mainly due to the following:

1. GPUs employ solely floating-point arithmetic representation. Floating-

point representation can be used to accommodate values with highly

varying dynamic range. This comes at the price of increased power con-

sumption and circuit area. Contrary to GPUs, FPGAs offer the pos-

sibility of fine tuning the word-lengths of the circuit. By limiting the

word-lengths to shorter bit-widths, more compact circuits are produced,

thus reducing area and power consumption and increasing speed. The

above trades-off system compactness and output quality. Based on the

precision requirements of the given application, the designer can deter-

mine the word-length that corresponds to the optimal point with regards

to the quality-compactness trade-off, or completely avoid the decrease in

the quality. Extended work on word-length optimization for DSP sys-

68

tems is done by Constantinides [Con01].

2. Contrary to GPUs, FPGAs offer the possibility of custom pipelining.

Increasing the number of pipelining levels increases the throughput, at

the price of increasing the latency, area and power consumption. The

increase in the latency is insignificant when the system produces long

streams of outputs. Custom pipelining is a powerful weapon when spe-

cific system requirements are targeted.

3. The current heat dissipation of GPUs is considerably higher than FP-

GAs. In fact, moderate FPGAs do not use a fan to remove the heat as

GPUs do.

2.6 Field Programmable Gate Arrays

2.6.1 The Device

The Field Programmable Gate Array (FPGA) was invented by a co-founder

of Xilinx Inc. [Xil08], Ross Freeman, in 1984 [Xil04]. Nowadays, Xilinx Inc.

leads the FPGA market along with Altera Corporation [Alt08].

An FPGA is mainly composed by a large number of routing channels and

Configurable Logic Blocks (CLBs). The routing channels connect arbitrary

CLBs together through switch-boxes. The CLB of a Xilinx Virtex-4 FPGA

device contains four interconnected slices [Xil]. All slices contain two 4-input

Look-Up Table (4-LUT), two storage elements, wide-function multiplexers,

69

carry logic, and arithmetic gates. In addition, two out of the four slices also

include distributed RAM and 16-bit shift registers. In the most recent Xilinx

device, the Virtex-5 device, 6-input LUTs have substituted the 4-input LUTs.

On-chip memories are extremely useful for temporary storage, as they in-

crease the memory access locality and reduce the power consumption and

I/O costs that are related to external memory accesses. Thus, in addition

to distributed RAM, FPGAs include a large number of Block RAM mem-

ories (BRAMs). Virtex-4 devices feature 18 Kb dual-port BRAMs, whose

number depends on the size of the device [Xil]. Each port has its own address,

data in, data out, clock, clock enable, and write enable. Therefore, in every

cycle, data may be written and read from either or both ports. As will be

discussed in detail in the sections of this thesis that deal with implementation

issues, the presence of dual-port BRAMs on FPGA can be utilized to maximize

data reuse and increase parallelism.

2.6.2 Programming Languages and Tools

A number of programming tools and languages is available to facilitate the

design process for FPGA implementation. These are associated with different

levels of abstraction:

1. Gate Level: A designer can draw by hand the circuit schematic. This

involves choosing elementary building blocks, i.e. logic gates, flip-flops

and multiplexers, and graphically connecting them.

70

2. Register Transfer Level: Using a Hardware Description Languages (HDL),

the designer can describe hardware at Register Transfer Level (RTL). In

RTL the circuit is described as a set of registers and functions that de-

termine the flow of data between the registers. The most popular HDLs

are VHDL and Verilog.

3. System Level: Extensions to the C programming languages are nowa-

days developed, that allow the designer to focus at the system level and

ignore the low level circuit. The most common among these are Handel-

C [Cel05] and SystemC [Ini03].

When design complexity increases, moving from the gate level to the system

level significantly reduces the design time. However, high level synthesis is still

relatively new; thus, the system performance achieved with C-based languages

cannot compete the performance obtained when HDLs are used in the design

process. In this thesis, VHDL and Handel-C have been used. Specifically,

VHDL [Ash95] has been used for the implementation of the 2-D DWT com-

putation schedules in Chapter 3, while Handel-C [Cel05] has been employed

for the more complex processing blocks of Chapters 5 and 6. Due to the fact

that VHDL is a lower-level hardware description language than Handel-C, a

lower level of description is adopted in Chapter 3, while the hardware blocks

of Chapters 5 and 6 are described in a higher level and thus less detail.

71

2.7 External Memory

An FPGA-based system that implements a data-intensive algorithm requires

an external memory block for the storage of the input and the output data.

This off-chip memory needs a memory controller that coordinates the com-

munication with the on-chip system. The control logic implemented by the

controller depends on the technology of the external memory. A number of

options are available, as far as the memory technology is concerned.

Two major technologies are Static Random Access Memory (SRAM) and

Dynamic Random Access Memory (DRAM). The difference between these

technologies is in the type of memory cell. In SRAM, each data bit is stored

in a latched storage cell whose charge lasts as long as the memory remains

powered, whereas the DRAM memory cell uses a capacitor for dynamic storage,

and thus its content needs to be refreshed periodically. The controller of an

SRAM is simpler than a DRAM controller, mainly due to the fact that no

refresh cycles need to be considered.

Another criterion for categorizing memories is whether actions are initiated

by a clock. Based on this criterion, memories can be either synchronous or

asynchronous. Synchronous memories associate data and control signals to

clock edges, whereas for asynchronous memories the data flow is solely con-

trolled by address transition.

Standard synchronous memories require turnaround cycles between read

and write operations. These idle cycles can be avoided by using Zero Bus

72

Turnaround (ZBT) memory devices. ZBT memories have zero latency between

read and write cycles, thus maximizing the available bandwidth.

In this thesis, two types of memory have been considered. In Chapter 3, a

standard Synchronous DRAM (SDRAM) is considered for the purposes of the

power/energy estimation. This decision is based on the fact that DRAMs are

more power-hungry than SRAMs, and thus power/energy results are provided

for the worst-case scenario. In Chapters 5 and 6, the Celoxica ADMXRC4SX

board [Cel08] has been employed for the FPGA implementation of the pro-

posed architectures. This board offers 4 ZBT Synchronous SRAM (ZBT SS-

RAM) banks, and a built-in memory controller, which is accessed via hardware

macros that are offered by the manufacturer [Cel08]. Therefore, the memory

controller has been treated in this work as a black box, and issues related to

its internal structure are out of the scope of this thesis. More information on

such issues can be found in [Cel08, BHNC05, Lat06].

2.8 Summary

This chapter has provided a background of the previous, concurrent, and on-

going work in the area of computational photography and video. Various

techniques are briefly presented, each related to one or more of the four basic

elements of the imaging system, namely, the sensor, the optics, the processing

unit, and the incident illumination. The chapter has focused on the problem

of increasing the spatio-temporal resolution of the output frames, which is the

73

main interest of this thesis. The space-time trade-off related to image sensors

has been discussed, along with techniques that have been proposed to surpass

the trade-off. The proposed video enhancement system addresses this trade-

off. As has been explained, the proposed system employs a reconfigurable

sensor and a reconfigurable processing unit, which interact in an autonomous

fashion, based on real-world information. The aim of the proposed system is to

maximize the raw captured data and, with the appropriate processing, maxi-

mize reconstruction quality of the final output. The reconfiguration property

of the adaptive image sensor [Fov08, CDT06], which makes feasible the above

scheme, has been discussed in detail. Also, the different hardware options that

could be employed for the processing have been presented, and the choice of

FPGAs has been justified.

As has been mentioned in this chapter and will be demonstrated in the

chapters that follow, FPGAs are excellent processing platforms for computa-

tional imaging systems. This is not only due to their flexibility and high speed,

which enables real-time performance, but also due to their low area and power

costs, that give low-power portable devices.

The first step of video reconstruction, which is based on multiple samples of

low spatial resolution, is the registration of these samples. Reliable registration

is a prerequisite to achieving high quality reconstruction with the subsequent

reconstruction block. Therefore, before exploring the appropriate video en-

hancement techniques and presenting the proposed system, registration-related

issues are discussed in the next chapter. In particular, the focus of Chapter 3

74

is on the pyramidal structure, which allows a multi-resolution approach to

the registration problem. The work presented in Chapter 3 is a thorough in-

vestigation of low level hardware issues related to the implementation of the

major two-dimensional Discrete Wavelet Transform computation schedules on

FPGA, such as throughput, area, and energy dissipation. Readers who are

mainly interested in the video enhancement that is proposed in this thesis

may want to skip Chapter 3 and move on to Chapter 4.

75

Chapter 3

FPGA Implementation of the

2-D Discrete Wavelet Transform

The two-dimensional Discrete Wavelet Transform (2-D DWT) is nowadays es-

tablished as a key operation in image and video processing. The wide range of

applications that utilize the DWT-based multiresolution decomposition frame-

work includes image compression and motion estimation. In this thesis, motion

estimation is of major importance, as it enables the registration and, subse-

quently, the correct fusion of the high frame-rate samples that are produced

at the LR regions of the sensor. Since the performance of motion estimation

is highly dependent on the multiresolution decomposition step, this chapter

is devoted to the 2-D DWT that effectively implements the decomposition

scheme. In particular, the chapter evaluates different architectures for the ef-

ficient implementation of the 2-D DWT on FPGA, and provides a detailed

analysis of the above implementations. Readers who are mainly interested in

76

the video enhancement system that is proposed in this thesis may want to skip

this chapter and go directly to Chapter 4.

The chapter begins with a discussion on the role of the DWT in multires-

olution motion estimation. Specifically, Section 3.1 introduces the concept of

motion vectors, which are the unknowns of the motion estimation problem.

Then, in Sections 3.2 and 3.3, the concepts of multiresolution motion estima-

tion and the wavelet pyramid are introduced.

The remainder of the chapter focuses on the DWT and investigates the

implementation of the major 2-D DWT computation schedules on FPGAs.

Section 3.4 introduces the main concepts related to the DWT. Section 3.5

presents implementation decisions that are, for comparison reasons, common

in the different FPGA implementations of the different 2-D DWT computation

schedules. This decisions mainly concern the off-chip storage and the filterbank

that implements the 1-D DWT. Sections 3.6.1, 3.6.2 and 3.6.3 describe the

FPGA-based architectures of the three main 2-D DWT computation schedules.

Section 3.8 evaluates the different FPGA-based architectures, with respect to

the throughput, the number of FPGA slices, and the memory and energy

requirements. Finally, Section 3.9 briefly discusses what type of optimizations

are more appropriate for each schedule.

Parts of this chapter, related to the implementation of the 2-D DWT com-

putation schedules on FPGAs, have been published in [AMCA08] and [AMCA06].

77

3.1 Motion Vectors: Definition

A motion vector is the projection of the three-dimensional motion of an object

onto the two-dimensional plane. The group of motion vectors for each frame

of a given video sequence is also known as the optical flow field or the image

velocity field. Formally, a motion vector is defined as follows.

Definition 1. Let f1 and f2 denote two grayscale adjacent video frames, and

let f1(x) = f1(x, y) and f2(x) = f2(x, y) be the grayscale pixel values at point

x = [x y]T . Let u = [ux uy]
T denote a point of f1, and let v = [ux+dx uy +dy]

T

denote the location of u in f2. Then, the motion vector ~d = [dx dy]
T is defined

as the vector that minimizes the following residual function ǫ:

ǫ(~d) =
ux+ωx
∑

x=ux−ωx

uy+ωy
∑

y=uy−ωy

(f1(x, y)− f2(x + dx, y + dy))
2 (3.1)

where ωx, ωy ∈ N.

The positive integers ωx and ωy thus determine the neighborhood of pixels

on which the minimization function of (3.1) is applied. This neighborhood is

also known as the integration window. The size of the integration window is,

according to (3.1), equal to (2ωx + 1) × (2ωy + 1). Typical values for ωx and

ωy are values between 2 and 7 pixels [Bou02].

78

3.2 Multiresolution Motion Estimation

The process of determining the motion vectors describing the motion of points

between adjacent video frames is known as motion estimation. The points on

which motion estimation is applied are usually referred as features. Therefore,

the motion estimation problem is also known as feature tracking.

For the feature tracker to render an accurate solution, choosing the fea-

tures that participate in the tracking process is an important step. It is thus

common practice to identify the “good” features to track before the actual mo-

tion estimation stage. “Good” features correspond to physical points of high

textural content. The high textural content of a feature usually signifies good

tracking performance. However, if a feature derives from the image properties

and not from the actual object properties, then the tracker will be disoriented.

Therefore, “bad” features include points of high texture that do not actually

exist in the real world, such as the intersection of a foreground object with the

background. The problem of selecting good features, is addressed by Shi and

Tomasi in the popular paper of [ST94]. The textural information of a given

feature is evaluated based on eigenvalue computation, whereas the concept

of “dissimilarity” is used to identify features that do not correspond to actual

physical points [ST94]. A monitoring process is employed for “dissimilarity” to

be identified, based on the concept that non-physical features experience large

variations in time. The problem of selecting discriminative tracking features is

also addressed in the more recent work of [CLL05b]. A very robust algorithm

79

for the detection of features is the Scale Invariant Feature Transform (SIFT)

algorithm [Low04]. SIFT allows the extraction of features from images that

correspond to substantially different affine distortions, viewpoints, levels of ad-

ditive noise, and levels of illumination. However, in this thesis, the application

of interest involves adjacent video frames. Between such frames the changes in

scale, rotation, illumination, and noise are limited. Experiments have shown

that the additional computational cost that makes SIFT robust to such issues

would be redundant for the case of adjacent video frames, and that the Shi

and Tomasi algorithm provides instead a good trade-off between algorithmic

complexity and performance. Therefore, in the remainder of the thesis, the

Shi and Tomasi algorithm is employed for feature selection.

As explained in [Bou02], a good feature tracker should be both accurate

and robust. The accuracy of the tracker affects the local subpixel accuracy of

the identified motion vector ~d. For the accuracy of ~d to be high, the size of the

integration window, determined by ωx and ωy, should be small [Bou02]. On the

other hand, the robustness refers to the ability of the tracker to track a feature

regardless of various changes, such as changes in the object size, the motion

magnitude or the lighting conditions. Therefore, for the tracker to be robust,

the integration window should be relatively large. Therefore, there is a trade-

off between accuracy and robustness, which is directly related to the size of

the integration window. Specifically, decreasing the window size, increases the

local subpixel accuracy, but decreases the robustness of the tracking process.

The accuracy-robustness trade-off is normally tackled by incorporating

80

multiresolution analysis in the tracking process [Bou02]. In the multiresolu-

tion analysis, a frame is represented as a set of frames with different resolutions

corresponding to different frequency bands. The motion activities at different

resolutions represent the same motion structure at different scales. Therefore,

the estimated motion vectors, which are computed in low resolution approx-

imations of the frame, form the initial guess for the computation of motion

vectors at a higher resolution, where they are refined to increase the accuracy.

In other words, the optical flow output at each level is propagated and refined

at the higher level, up to the highest resolution frame, which is in fact the

original frame. A multiresolution “pyramid” is illustrated in Fig. 3.1. The

base of the pyramid corresponds to Level 0, the highest level of decomposition

that contains the original frame.

In summary, the overall pyramidal motion estimation occurs as follows. Let

ℓi denote the ith level of the decomposition pyramid, where ℓ0 is the highest

level, i.e. the original frame. First, the motion vectors Vm are computed at

the lowest resolution, which corresponds to level ℓm. Vectors Vm are then

propagated to the next level, i.e. level ℓm−1, in the form of an initial guess.

That initial guess is refined at level ℓm−1, and thus the motion vectors Vm−1

are computed. Vectors Vm−1 are then propagated to level ℓm−2, where the

refined vectors for ℓm−2 are computed, and so on. The motion vectors are thus

propagated to higher levels, where they are refined, and the above process is

repeated for each level, up to level ℓ0.

By adopting the pyramidal tracking algorithm, a residual motion vector is

81

Level 0

Level 1

Level 2

Figure 3.1: The multiresolution pyramid.

82

calculated at each level of the pyramid. Let ℓ + 1 and ℓ denote two adjacent

levels of the pyramid. Then, the residual motion vector that is calculated at ℓ

is defined as follows.

Definition 2. Let f ℓ
1 and f ℓ

2 denote two grayscale adjacent video frames at

the resolution corresponding to level ℓ, and let f ℓ
1(x) = f ℓ

1(x, y) and f ℓ
2(x) =

f ℓ
2(x, y) be the grayscale pixel values at point x = [x y]T . Let uℓ = [uℓ

x uℓ
y]

T

denote a point of f1, and let gℓ = [gℓ
x gℓ

y]
T denote the initial guess at level ℓ,

which is available from computation executed from level ℓm to level ℓ+1. Then,

the residual motion vector ~dℓ = [dℓ
x dℓ

y]
T is defined as the vector that minimizes

the following residual function ǫℓ:

ǫℓ(~dℓ) =

uℓ
x+ωx
∑

x=uℓ
x−ωx

uℓ
y+ωy
∑

y=uℓ
y−ωy

(f ℓ
1(x, y)− f ℓ

2(x + gℓ
x + dℓ

x, y + gℓ
y + dℓ

y))
2 (3.2)

where ωx, ωy ∈ N.

It should be noted that in multiresolution motion estimation the size of

the integration window remains constant, equal to (2ωx + 1) × (2ωy + 1), for

all the levels of the pyramid, i.e. for all values of ℓ. By using the initial

approximation gℓ at level ℓ, the residual motion vector ~dℓ is small and thus

easy to compute [Bou02].

83

3.3 The Multiresolution Pyramid

In multiresolution analysis, the smoothed versions of the original frame at dif-

ferent resolutions form a pyramidal structure. An example of a multiresolution

pyramid is the Gaussian pyramid. The Gaussian pyramid is formed by apply-

ing the Gaussian function as the smoothing function at every level. However,

the Gaussian pyramid includes large amount of redundancy between different

levels of decomposition [ZAS06].

A more systematic approach for the construction of the pyramid is provided

by the wavelet theory [ZAS06, ZSA01, ZZ92, CCA+07, MK98]. Wavelet de-

composition provides an ideal trade-off for the processing of video frames [ZAS06,

ZSA01]. In particular, at high frequences the wavelet transform is sharper

in time1, while at low frequences it is sharper in frequency. This is in con-

trast to the Gabor and Fast Fourier Transforms, which use a fixed resolu-

tion at all locations in the space/time frequency plane. Thus, the wavelet

domain is very appropriate for the incorporation of the block matching tech-

nique [HCHT04, CLS+08, LCT+08], which is the popular approach to motion

estimation. The good qualities of the wavelet decomposition with regards to

motion estimation, render the wavelet transform extremely appropriate for

multiresolution motion estimation techniques [ZAS06, ZSA01].

In the literature, motion estimation, registration, optical flow, and tracking

1The spatial domain and not the time domain is employed in this thesis. However, for

consistency with the theory of the 1-D DWT the term “time” is used, referring to the

horizontal axis on which the 1-D signal is propagated.

84

algorithms have been exhaustively discussed, both with respect to algorithmic

performance and hardware implementation. Thorough surveys of image reg-

istration methods are presented in [Bro92, MV98, ZF03]. In [YJS06, Avi04,

Avi07, PO06], robust tracking algorithms have been proposed. A method for

highly accurate motion estimation is presented in [BW05], while [dBNS96,

GS03] discuss techniques for robust optical flow estimation. When it comes

to the hardware implementation of registration and motion estimation meth-

ods, a number of hardware architectures, targeting FPGAs in particular, have

been proposed in [JLR03, McE06, DRP+06, DS07, MCL02]. Thus, the current

chapter focuses on the critical process of constructing the wavelet pyramid, on

which multiresolution motion estimation is based, and presents a systematic

evaluation of alternative hardware architectures for the 2-D wavelet transform.

3.4 Introduction to the 2-D DWT

The two-dimensional Discrete Wavelet Transform (2-D DWT) is nowadays

established as a key operation in image processing. In the area of image com-

pression, the 2-D DWT has clearly prevailed against its predecessor, the 2-D

Discrete Cosine Transform. This is mainly because it achieves higher compres-

sion ratios, due to the subband decomposition it involves, while it eliminates

the “blocking” artifacts that deprive the reconstructed image of the desired

smoothness and continuity [VH92]. The high algorithmic performance of the

2-D DWT in image compression justifies its use as the kernel of both the

85

JPEG-2000 still image compression standard [ISO00, ITU08] and the MPEG-

4 texture coding standard [ISO98].

3.4.1 The dyadic decomposition

The 2-D DWT can be considered as a “chain” of successive levels of decompo-

sition as depicted in Fig. 3.2. Because the 2-D DWT is a separable transform,

it can be computed by applying the 1-D DWT along the rows and columns of

the input image of each level during the horizontal and vertical filtering stages.

Every time the 1-D DWT is applied on a signal, it decomposes that signal in

two sets of coefficients: a low-frequency and a high-frequency set. The low-

frequency set is an approximation of the input signal at a coarser resolution,

while the high-frequency set includes the details that will be used at a later

stage during the reconstruction phase.

This procedure, presented in Fig. 3.2, is known as the dyadic decomposition

of the image, and its impact upon the image’s pixels can be presented by the

diagram of Fig. 3.3, for the case of three decomposition levels. The shaded

areas in Fig. 3.3 represent the low-frequency coefficients that comprise the

coarse image at the input of each level.

Let us briefly describe the steps of this decomposition. The input of level

j is the low-frequency 2-D subband LLj, which is actually the coarse image

at the resolution of that level. In the first level, the image itself constitutes

the LL image block (LL0). The coefficients L (H), produced after the hor-

izontal filtering at a given level, are vertically filtered to produce subbands

86

horizontal filtering stage

vertical filtering stage

h.f. :

v.f. :

H
0

L
0

HH
1

HL
1

LH
1

LL
1

HH
2

HL
2

LH
2

LL
2

H
2

L
2

HH
3

HL
3

LH
3

LL
3

IN
(LL

0
)

H
1

L
1

level 0 level 1 level 2

unit that implements the forward 1D-DWT

...

h.f. h.f.h.f.v.f. v.f.v.f.

Figure 3.2: The 2-D DWT decomposition as a ‘chain’ of successive levels.

LL and LH (HL and HH). The LL subband will either be the input of the

horizontal filtering stage of the next level, if there is one, or will be stored,

if the current level is also the last one. All LH, HL and HH subbands are

stored, to contribute later in the reconstruction of the original image from the

LL subband.

3.4.2 The 1-D DWT

In Fig. 3.2, the units that implement the 1-D DWT are depicted as black boxes.

These are now considered in detail. Two main options exist for the implemen-

tation of 1-D DWT: the traditional convolution-based implementation [Mal89]

and the lifting-based implementation [DS98, ACA02].

Convolution-based 1-D DWT: The conventional convolution-based 1-D

DWT of [Mal89] is presented in Fig. 3.4(a). As shown in Fig. 3.4(a), this

consists of two analysis filters, h (low-pass) and g (high-pass), followed by

87

L
E

V
E

L
 1

L

E
V

E
L

 0

L
E

V
E

L
 2

L

E
V

E
L

 3

...

h.f. v.f.

h.f. v.f.

v.f.h.f.

h.f.

horizontal filtering stage
vertical filtering stage

h.f. :
v.f. :

HH
1

HL
1

LH
1

HH
2

HL
2

LH
2

HH
3

HL
3

LH
3

HH
1

HL
1

LH
1

HH
2

HL
2

LH
2

H
2

L
2

HH
1

HL
1

LH
1

HH
2

HL
2

LH
2

HH
1

HL
1

LH
1

H
1L

1

HH
1

HL
1

LH
1

H
0

L
0

LL
0

LL
1

LL
2

LL
3

Figure 3.3: Diagrammatic representation of the dyadic decomposition for three

decomposition levels.

88

h[n] 2

g[n] 2

x[n]
lp[n]

hp[n]

(a)

2

z-1 2

X(z)
LP(z)

HP(z)
E

0
(z)

(b)

Figure 3.4: The convolution-based implementation of the forward 1-D DWT.

(a) The conventional filtering-and-downsampling structure. (b) Using the polyphase

matrix of the analysis filter-bank.

subsampling units. The signal x[n] is decomposed into the approximation

(low-frequency) signal lp[n] and the detail (high-frequency) signal hp[n]. Note

that in the structure of Fig. 3.4(a) the downsampling is performed after the

filtering has been completed. This is clearly inefficient since, in this case, half

of the calculated coefficients are redundant, and the filtering is realized at full

sampling rate.

Early research on filter-bank design proved that the execution of 1-D DWT

can be accelerated by using the polyphase matrix of the filter-bank, instead

of the conventional filtering-and-downsampling structure of Fig. 3.4(a). As

Fig. 3.4(b) shows, the signal is split into two signals (polyphase components)

at half of the original sampling rate. The downsampling is now performed prior

to the actual filtering, thereby avoiding the calculation of coefficients that will

89

2

2

X(z)

z-1

~P
1
(z) U

1
(z) P

2
(z) U

2
(z)

HP

LP

1/K

K...

...

P
m

(z) U
m

(z)

-
+

-
+

-
+

+
+

+
+

+
+

Figure 3.5: The lifting-based implementation of the forward 1-D DWT.

later be discarded. The polyphase components of the signal are filtered in

parallel by the corresponding filter coefficients, producing the same result as

if the downsampling was performed as described in [Mal89].

The analysis polyphase matrix for Fig. 3.4(b) is defined (in the Z-domain)

as:

E0(z) =

He(z) Ho(z)

Ge(z) Go(z)

 , (3.3)

where He(z) and Ho(z) denote the Type-I even and odd polyphase components

of the corresponding low-pass analysis filter, and Ge(z) and Go(z) denote the

Type-I even and odd polyphase components of the corresponding high-pass

analysis filter.

Using the analysis polyphase matrix of (3.3), the wavelet decomposition

can be written (in the Z-domain) as:

LP (z)

HP (z)

 = E0(z)

Xe(z)

Xo(z)

 , (3.4)

90

where LP (z) denotes the approximation at the coarser resolution, HP (z) de-

notes the detail signal, and Xe(z) and Xo(z) denote the Type-I even and odd

polyphase components of the signal X(z).

The convolution-based 1-D DWT suffers from high computational com-

plexity and high memory utilization requirements [ZAS+01].

Lifting-based 1-D DWT: The lifting scheme reduces the transform com-

putational requirements by factorizing the polyphase matrix of the DWT into

elementary matrices.

The principles of the forward lifting will be briefly discussed. More in-

formation on the lifting scheme can be found in [DS98, ACA02]. As it is

proven in [DS98], if (H, G) is a perfect-reconstruction filter-pair, the following

factorization of matrix E0(z) of (3.3), into lifting steps, is feasible:

E(z) =

K 0

0 1/K

m
∏

i=1

1 Ui(z)

0 1

1 0

−Pi(z) 1

 , (3.5)

where K is a constant and m is the number of predict-and-update steps. They

both depend on the type of filter-pair that is used.

Note that the lifting factorization of (3.5) is not unique. That is, for a

given wavelet transform, multiple ways of factorizing its polyphase matrix can

often be found.

The numerical factorization of (3.5) is represented by the schematic dia-

gram of Fig. 3.5. The forward lifting scheme consists of the following steps:

91

1. The splitting step, where the signal is separated into even and odd sam-

ples.

2. The prediction steps, associated with the predict operator Pi(z).

3. The update steps, associated with the update operator Ui(z).

4. The scaling step, indicated by the scaling factors 1/K and K.

The inverse transform is realized by traversing the schematic of Fig. 3(b)

from right to left (reverse signal flow) and switching the signs of the predict

and update operators as well as the scaling factors. Because of the complete

reversibility of the lifting scheme even if non-linear predict and update oper-

ators are used in the schematic of Fig 3(b), a rounding operator can be used

to ensure integer form for all the data produced, throughout the execution of

the 2-D DWT. In this case, the 2-D DWT is completely reversible, and, there-

fore, lossless. Such transforms are known as integer-to-integer transforms and

are extremely useful in lossless coding. To build an integer version of a given

wavelet transform, if scaling is present, then the scaling step should be either

split further [CDSY98, DC97] or omitted. In fact, the scaling performed at

the end of each decomposition level in the conventional decomposition can be

skipped altogether [AK00], or incorporated into the subsequent encoding or

processing stage of each bitplane and as a result it is not explicitly considered

in this chapter.

Due to the lower computational cost, the flexibility offered in the trans-

form factorization, and the perfect reconstruction property, the lifting-based

92

implementation is generally preferable for the design of optimized systems.

3.4.3 The 2-D DWT: Literature Review

Several computation schedules have been proposed, to implement the 2-D

DWT. In practical designs, the most commonly used computation schedules

are: the row-column (RC) [Mal89], the line-based (LB) [CO00] and the block-

based (BB) [LNB+99]. The simplest of these is RC, which adopts the level-by-

level logic of Fig. 3.2. However, such an approach necessitates the use of large

off-chip memory blocks as the only source of the filter’s inputs. Contrary to

RC, both LB and BB involve an on-chip memory structure that operates as

a cache for the original image, minimizing the accesses of the large memory

blocks. Thus, memory utilization and memory-access locality are improved.

The main difference among LB and BB concerns the way the original image is

traversed. Specifically, in LB, non-overlapping groups of lines are processed,

whereas, BB operates using non-overlapping blocks of the image.

Implementations of 2-D DWT computation schedules can be found in [Cas08]

and [Amp08]. In [DGLC03] a combined lifting line-based FPGA implementa-

tion for the single-level 5/3 and 9/7 2-D DWT is presented.

In [ZAS+01], [WB03] and [CVO96], 2-D DWT computation schedules have

been compared on a theoretical basis. In [ASL+03] and [MAS06], they are

compared on programmable architectures and on a VLIW DSP, respectively.

Even though the above comparisons are particularly enlightening, none of them

is based upon hardware implementations, which would take advantage of the

93

implementation efficiency and the parallelism in data processing that hardware

could offer. In addition, the vast majority of comparisons of the different alter-

natives focuses on convolution-based realizations and lifting is not considered.

A discussion of VLSI architectures which also considers lifting-based DWT

modules is presented in [CTHC05]. However, very few performance figures are

presented for the multilevel lifting 2-D DWT, which is the case of interest in

image coding applications.

In the remainder of the chapter, the three major 2-D DWT lifting-based

computation schedules are implemented on FPGA-based platforms and com-

pared in terms of performance, area and energy requirements. The computa-

tion schedules are compared for different image sizes (M×M) and number of

levels (L) of the transform. This comparison will give significant insight on

which schedule is most suitable for given values of the relevant algorithmic

parameters, such as the size of the frames and the number of decomposition

levels.

3.5 Common Implementation Decisions and As-

sumptions

The comparison of the main 2-D DWT computation schedules is performed on

the basis of some common implementation decisions and assumptions. These

are concerned with the memory architecture used to store the image (image

memory) and the filtering structure used to compute the DWT.

94

3.5.1 Image memory

In this comparison, a single-port image memory is considered. The image

memory is usually off-chip. However, it may also be on-chip, when dealing

with small frames and/or using large FPGA devices. Considering the fact

that the image memory can sometimes be on-chip, the comparison is made as

generic as possible by using a common clock for the image memory and the

rest of the system.

Employing a single-port image memory in the analysis adds flexibility

as far as the available memory is concerned, as many boards don’t include

multi-port large memory blocks. Also, since the image memory is usually

off-chip, the fact that single-port off-chip RAMs consume less energy per ac-

cess than multi-port ones is something to consider [ZAS+01, CTHC05]. In

data-intensive algorithms, such as the 2-D DWT, memory accesses are highly

frequent. Thus, when the image memory is off-chip, from an energy perspective

single-port RAMs are ideal, trading off the higher performance of multi-port

RAMs [CTHC05].

Traditionally, two memory blocks are used in image processing systems:

one to store the original image, and one for the outputs. To avoid the second

block, the in-place mapping scheme is used: the filter’s outputs are written

over memory contents that are already consumed and no longer needed. To

adopt this scheme, each memory location should have the same bit-width as

the outputs of the transform.

95

L
E

V
E

L
 1

L

E
V

E
L

 0

L
E

V
E

L
 2

h.f. v.f.

h.f. v.f.

horizontal filtering stage
vertical filtering stage

h.f. :
v.f. :

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

LL
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

L
0

H
0

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

LL
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

L
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

H
1

HL
1

LH
1

HH
1

HL
2

HL
1

LH
1

HH
1

HH
2

HL
1

LH
1

HH
1

HL
2

HL
1

LH
1

HH
1

HH
2

HL
1

LH
1

HH
1

LL
2

HL
1

LH
1

HH
1

LH
2

HL
1

LH
1

HH
1

LL
2

HL
1

LH
1

HH
1

LH
2

HL
1

LH
1

HH
1

LL
2

HL
1

LH
1

HH
1

LH
2

HL
1

LH
1

HH
1

LL
2

HL
1

LH
1

HH
1

LH
2

HL
1

LH
1

HH
1

HL
2

HL
1

LH
1

HH
1

HH
2

HL
1

LH
1

HH
1

HL
2

HL
1

LH
1

HH
1

HH
2

HL
1

LH
1

HH
1

Figure 3.6: The in-place mapping scheme. The dyadic decomposition is applied on

a hypothetical 8× 8 original image.

96

The in-place mapping scheme is illustrated in Fig. 3.6. The dyadic decom-

position is applied on a hypothetical 8 × 8 original image and the outputs of

each stage are written in memory locations that have already been read and

filtered. The shaded areas, in Fig. 3.6, represent the pixels of the coarse image

at the input of each level. It might be interesting for the reader to compare

Fig. 3.6 with Fig. 3.3, to see how the pixels of the different 2-D subbands,

of the dyadic decomposition diagram, are distributed over the memory array.

Note that in Fig. 3.6 every distinct square represents one pixel and bares the

name of the 2-D subband in which it belongs. The decomposition of the hypo-

thetical 8× 8 original image cannot go beyond level 2, as there are not enough

pixels in the LL2 subband to proceed with the filtering operations.

3.5.2 Filter implementation

A single filter is used in all three implementations, introducing the minimum

hardware cost. That is, the same single filter is shared among all levels and

also among the vertical and the horizontal filtering stages within each level.

The choice of using a single filter is mostly appropriate for an RC architecture

that uses a single-port RAM.

The 5/3 lifting-based filter-pair: As for the type of filter, considering

the advantages that the lifting scheme offers, a lifting-based filter is used,

instead of a traditional convolution-based filter. Two types of lifting-based

filter sets are mainly used in implementations of the DWT, the 5/3 lifting

97

filter-pair [ACA02] and the 9/7 lifting filter-pair [DS98]. The 5/3 lifting filter-

bank is used, as it is more hardware efficient: for the same number of pipeline

stages, it has a significantly smaller critical path than the 9/7 lifting filter-bank,

while occupying significantly smaller area. This is due not only to the smaller

number of lifting steps required, but also to the simplicity of the multiplying

units: only two simple multiplications are involved (by (1/2) and by (1/4)),

that can be implemented with simple shifters.

For the conventional 5/3 filter-pair, the analysis low-pass filter h (Fig. 3.4)

has 5 coefficients, while the analysis high-pass filter g (Fig. 3.4) has 3 coeffi-

cients. The filter coefficients are the following:

• Low-pass filter h: {−1/8, 2/8, 6/8, 2/8,−1/8}

• High-pass filter g: {−1/2, 1,−1/2}

The factorization of the polyphase matrix of the conventional 5/3 filter-

bank renders two elementary matrices. Therefore, the lifting version of the

5/3 filter-bank will include only one predict-and-update step, or equivalently

m will equal to 1 (see Section 3.4.2). For each pair of input samples, 2n and

2n + 1, the lifting equations of this filter-bank are the following:

HP [2n + 1] = X[2n + 1]−

⌊

X[2n] + X[2n + 2]

2

⌋

(3.6)

LP [2n] = X[2n] +

⌊

HP [2n− 1] + HP [2n + 1] + 2

4

⌋

(3.7)

where X are the signal samples, HP is the high-frequency output coefficient,

98

0 1 212 3 4 5 6 7 6

in
it
ia

liz
a

ti
o

n

m
ir
ro

ri
n

g

fi
n

a
liz

a
ti
o

n

m
ir
ro

ri
n

g

line to be filtered

Figure 3.7: Mirroring at the borders of an 8-pixel incoming line, for a 5/3 lifting

filter-bank.

LP is the low-frequency output coefficient, and ⌊.⌋ represents the floor oper-

ator. The floor operator ensures an integer-to-integer lossless transform.

Hardware implementation of the 5/3 lifting filter-pair: In the hard-

ware implementation of the filter, a three-word FIFO stores inputs X[2n + 1],

X[2n], X[2n + 2], and a register stores HP [2n − 1], which was calculated in

the previous lifting step. According to the above equations, for a new pair

of output coefficients to be computed, two (and not one) new filter inputs

are needed. Thus, a filtering operation will take place, and a pair of output

coefficients will be produced, every two cycles.

The hardware implementation of the 5/3 lifting filter-pair is shown in

Fig. 3.8. Registers r1, r2 and r3 constitute the FIFO. Observing Fig. 3.9,

one concludes that the filter’s behavior is determined according to whether

the initialization phase is over. The initialization signal controls multiplexers

m1 and m2, which determine if the data flows with a step of one or a step of

two. Thus, the filter-bank might behave in one of the two following ways:

99

register without write enable input

we
neg

neg unit that gives negative value of input

HP

pipeline

r1 r2 r3

filter input

r6

>>1

>>2

in
it
ia

liz
a

ti
o

n
_

s
ig

n
a

l

w
e

_
N

o
rm

a
lM

o
d

e

r4 r5

m1

m2

+ 2

LP

register with write enable input

Figure 3.8: Hardware implementation of the 5/3 lifting filter-pair, designed to

perform the 1-D DWT. The write enable signal (we) determines if the registers with

write enable inputs will be written.

100

t

2

21

210

101

012

234

456

initialization

finalization

normal mode

LP[0], HP[0]

LP[1], HP[1]

LP[2], HP[2]

LP[3], HP[3]

new samples in the FIFO, coming directly from the filter's input

samples already in the FIFO

new samples in the FIFO, coming from r6

012

234

676

46 5

3

5

7

new content of r6 that will be written in the FIFO at the next

clock cycle

Figure 3.9: The contents of the FIFO in respect to time for the filtering of an

8-pixel line.

101

1. The initialization mode, which corresponds to the initialization phase. In

this mode, the data flows with a step of one. Two samples are mirrored

around the first sample, and a simple shifting takes place in the FIFO,

as shown in Fig. 3.7.

2. The normal mode, where the data flows with a step of two. After the

initialization phase has been over, the we NormalMode signal will be

forced to high when the FIFO should be written. Since the filtering

operation should take place every two cycles, the we NormalMode signal

gets high every second cycle. Thus, the pattern shown in Fig. 3.9 is

achieved. The same pattern applies for the finalization mirroring to be

executed (Fig. 3.7), but the source of r1’s input is now the FIFO itself,

eliminating the need to access memory during this step.

In RC, only one input enters the filter-bank per cycle, since the single-

port image memory is the only source of input coefficients. Thus, for RC, the

filter-bank of Fig. 3.8 is ideal. On the contrary, as will be demonstrated in the

following sections, both LB and BB involve multi-port on-chip buffers, that

can supply the filter-bank with more than one inputs per cycle. In order to

make the best possible use of the parallelism offered, a few small changes were

made to the filter-bank of Fig. 3.8, to incorporate a multiple-input function

(Fig. 3.10). Now, two or three inputs can be inserted in the filter-bank at a

single cycle. However, during the horizontal filtering at level 0, the samples

will be drawn from the single-port memory, just like in the case of RC. Thus,

102

neg

r1 r2 r3

>>1

in
it
ia

liz
a

ti
o

n
_

2
n

d
_

s
te

p

(a

c
ti
v
e

 l
o

w
 s

ig
n

a
l)

w
e

r4 r5

mb mc

...

...

...

m4

...

ma

...

...

...

...

...

...

...

...

...

...

...

...

Figure 3.10: This filter-bank derives from that of Fig. 3.8, by applying a few changes

(the shaded areas), to incorporate a multiple-input function. The lower part is not

shown, as it remains the same.

103

during the horizontal filtering at level 0, the new filter-bank behaves in a single-

input mode, apart from the multiple-input mode in which it functions in any

other case.

3.6 Implementing the Computation Schedules

In this section, the implementation of the RC, LB and BB 2-D DWT com-

putation schedules is described. Fig. 3.11 presents a generic block diagram of

a 2-D DWT FPGA-based system that uses an off-chip image memory (which

is the most common case). The dashed line indicates that on-chip buffers are

not used in all of the three schedules.

It should be noted that, given the off-chip memory limitations, the im-

plementations of the three schedules have been realized targeting the optimal

use of the memory bandwidth. Thus the implementations obtain maximal

throughput, for the given design parameters. Performance issues, including

throughput and off-chip memory accesses, are discussed in detail in the per-

formance evaluation section.

3.6.1 Row-column Implementation

The RC is implemented by applying the forward 1-D DWT in both the hori-

zontal and the vertical direction of the image, for a chosen number of levels, in

the way shown in Fig. 3.3. Specifically, in any given level, in order to proceed

to the vertical filtering, of the current level’s LL image block, the horizon-

104

 din

dout

 we

 addr

 IMAGE

 MEMORY
FILTER

LP

HP
FSM

ON-CHIP
BUFFERS

. . .

FPGA

Figure 3.11: Generic block diagram of a system which executes the 2-D DWT using

an off-chip image memory.

tal filtering should be complete. In addition, in order to proceed to the next

level, the filtering at the previous level should be finished. Figures 3.12 and

3.13 present the flowchart and the block-diagram of RC, as implemented. Re-

lated to the generic block-diagram of Fig. 3.11, in the block diagram of RC

(Fig. 3.13) the on-chip buffering block is omitted.

The RC architecture is the one with the simplest control path. The paral-

lelism achieved during the filtering operations depends on the number of ports

of the image memory. Its major disadvantage is the lack of locality, due to the

use of off-chip large memory blocks. This decreases the performance and in-

creases the power consumption, as it will be demonstrated in the performance

evaluation section.

3.6.2 Line-based Implementation

Fig. 3.14 presents the flowchart of the low-level LB algorithm, as implemented.

In Fig. 3.14 r denotes the current row of the original image and j denotes the

105

horizontal filtering

j = 0

r = 0
c = 0

r = M - step?

r = 0

c = 0

TF

r = r + step

vertical filtering

c = M - step?
F T

c = c + step j = L - 1?
T F

j = j + 1
r = 0

c = 0

TERMINATE

step = 2j

Figure 3.12: Flowchart of the RC algorithm as implemented (r/c = current

row/column, j = current level).

106

din
dout

we

addr

IMAGE MEMORY FILTER

LP

HP

din

finaliz_value

FSM we_Img_Mem

addr_Img_Mem

mux_ctrl

we_NormalMode

init_sig

we_NormalMode

init_sig

finaliz_sig

Figure 3.13: Block diagram of the RC architecture.

current level of processing. The counter COUNT (j) determines (a) if there

exists sufficient information for a vertical filtering to occur at level j + 1 and

(b) which is the filtering mode of the next vertical filtering at level j + 1.

Specifically, if COUNT (j) = 4, a vertical filtering will occur at level j + 1 in

initialization mode, whereas if COUNT (j) = 2, it will occur in normal mode.

If COUNT (j) = 3 or COUNT (j) = 1, there is not sufficient information for a

vertical filtering to occur at the current stage, but as soon as enough coefficients

are produced a vertical filtering will occur in initialization or normal mode,

respectively.

Fig. 3.15 shows the block diagram of the LB architecture. Contrary to

the RC, the LB uses on-chip buffers. The on-chip buffers used in all of the

107

levels are included in the shaded area of Fig. 3.15. In Fig. 3.16 the buffers of

level j are isolated. The LB uses these on-chip buffers, to store coefficients

of intermediate levels which will be used at subsequent levels. This improves

the memory-access locality compared to RC, and, hence, improves the per-

formance. Moreover, contrary to RC where the single-port image memory

imposes a serial nature to the filtering operations, these buffers may be multi-

port to increase parallelism.

A group of lines is processed up to the final level, and a filter’s output is

stored in image memory only if it will be used as it is during reconstruction

and not again during decomposition. Thus, LH, HL and HH coefficients are

stored after the vertical filtering at any level, whereas the LL coefficients are

stored only at the last level (Fig. 3.14).

After the completion of a vertical filtering at level j − 1, the resulting LLj

coefficients are written in R(j). Buffer R(j) will then be horizontally filtered

and the resulting coefficients will be written, depending on the current stage

of level j’s vertical filtering, in one of the following: C(j), R(j) (implementing

the in-place mapping scheme) or buf1(j) (only during the initialization phase

of the vertical filtering at level j, when buf1(j) is still empty).

Using the still empty buf1(j) during vertical initialization, the extra line

buffer, which would store the extra information needed for the initialization

mirroring to occur, is eliminated. When initialization is over, that is during

the normal-mode vertical filtering, the value of the FIFO’s first register (r1)

and the high-frequency output of the current lifting step, are stored in buf1(j)

108

Vertical filtering at level j in normal mode.

LL
j+1

 coefficients stored on chip.
LH

j+1
, HL

j+1
 and HH

j+1
 stored in image memory.

Horizontal filtering at level j+1.

Output coefficients stored on chip.

COUNT(j) = COUNT(j) + 2
j = 0

Vertical filtering at level j in initialization mode.

LL
j+1

coefficients stored on chip.

LH
j+1

, HL
j+1

 and HH
j+1

 stored in image memory.

j = L-1?

NO

Horizontal filtering at j+1.

Outputs stored on chip.
COUNT(j) = COUNT(j) + 1

COUNT(j)=?

1 / 3

j = 0

2 4

COUNT(j)=0

j = j + 1

COUNT(j)=0

j = j + 1

Vertical filtering at level j in normal mode.

All outputs stored in image memory.
j = 0

r = M-1?

COUNT(0) = 0

Horizontal filtering of image's last row.
Output coefficients stored on chip.

Vertical filtering at level j in finalization mode.

LL
j+1

 coefficients stored on chip.

LH
j+1

, HL
j+1

 and HH
j+1

 stored in image memory.

 j = L-1?

Vertical filtering at level j in finalization mode.

All outputs stored in image memory.

FT

TF

TERMINATE

v
e
rt

ic
a
l
fi
n
a
liz

a
ti
o
n

TF

j = 0, r = 0

COUNT(j) = 0 (j = 0,1,...,L-2)
Horizontal filtering of 3 first rows of the original image.

Outputs stored on chip.

r = 3

Horizontal filtering of 2 next rows of the original image.

Outputs stored on chip.
r = r + 2

Horizontal filtering at level j +1.

Output coefficients stored on chip.

j = j + 1

Figure 3.14: Flowchart of the LB algorithm as implemented (r = current row, j =

current level).

109

din

dout

we

addr

IMAGE

MEMORY
FILTER

LP

HP

r1_content

FSM

R(0)

R(1)

R(2)

...

C(0)

C(1)

C(2)

...

buf1(0)

buf1(1)

buf1(2)

...

buf2(0)

buf2(1)

buf2(2)

...

...
...

Figure 3.15: Block diagram of the LB architecture. The shaded area includes the

on-chip buffers used in the architecture.

110

buf1(j)

buf2(j)

C(j)

M/2j

R(j)

Figure 3.16: On-chip line buffers of level j, used in LB.

and buf2(j), respectively. Thus, the coefficients of the preceding lifting step are

retrieved at the current step from buf1(j) and buf2(j). In this way, a continuity

in the vertical filtering of each column is created, since in LB the vertical filter-

ing, contrary to the horizontal filtering, is not inherently continuous. During

vertical finalization, the values of buf1(j) is also the samples that are mirrored.

The filter used in LB, is that of Fig. 3.10, which incorporates a multiple-

input mode to take advantage of the multi-port nature of the on-chip RAMs.

The initialization and normal mode vertical filtering of each column is de-

scribed in Figures 3.17(a) and 3.18(a). The multi-port filter’s behavior that

corresponds to each processing operation is illustrated in Figures 3.17(b) and

3.18(b).

3.6.3 Block-based Implementation

The BB is implemented bringing on chip blocks of the original image. Tradi-

tionally, the size of these blocks is equal to 2L× 2L, to allow the generation of

111

buf1(j)

C(j)

R(j)

L
j
(0)

L
j
(0)

L
j
(0)

H
j
(0)

H
j
(0)

H
j
(0)

L
j
(1)

L
j
(1)

L
j
(1)

H
j
(1)

H
j
(1)

H
j
(1)

L
j
(M/2j+1-1) H

j
(M/2j+1-1)

L
j
(M/2j+1-1)

L
j
(M/2j+1-1)

H
j
(M/2j+1-1)

H
j
(M/2j+1-1)

 0col # : 1 2 3 M/2j-2 M/2j-1

...

...

...

...

LL
j+1

(0),
LH

j+1
(0)

HL
j+1

(0),
HH

j+1
(0)

LL
j+1

(1),
LH

j+1
(1)

HL
j+1

(1),
HH

j+1
(1)

LL
j+1

(M/2j+1-1),
LH

j+1
(M/2j+1-1)

... HL
j+1

(M/2j+1-1),
HH

j+1
(M/2j+1-1)

R(j+1) LL
j+1

(0) LL
j+1

(M/2j+1-1)...LL
j+1

(1)

(a)

buf1(j)

R(j)

r1

r1
1st step of

initialization

2nd step of

initialization

C(j)

C(j)

r2

r2

R(j)

buf1(j)

r3

r3

(b)

Figure 3.17: Vertical filtering in initialization mode in the LB architecture. The

second step of initialization can be simplified avoiding the overwriting of r2 with the

same value it already has, by forcing its we input to low. Also at the second step,

r3 will be written with the previous value of r1.

112

buf1(j)

C(j)

R(j)

L
j
(0)

L
j
(0)

L
j
(0)

H
j
(0)

H
j
(0)

H
j
(0)

L
j
(1)

L
j
(1)

L
j
(1)

H
j
(1)

H
j
(1)

H
j
(1)

L
j
(M/2j+1-1) H

j
(M/2j+1-1)

L
j
(M/2j+1-1)

L
j
(M/2j+1-1)

H
j
(M/2j+1-1)

H
j
(M/2j+1-1)

 0col # : 1 2 3 M/2j-2 M/2j-1

...

...

...

...

LL
j+1

(0),

LH
j+1

(0)

HL
j+1

(0),

HH
j+1

(0)

LL
j+1

(1),

LH
j+1

(1)
HL

j+1
(1),

HH
j+1

(1)

LL
j+1

(M/2j+1-1),

LH
j+1

(M/2j+1-1)
... HL

j+1
(M/2j+1-1),

HH
j+1

(M/2j+1-1)

R(j+1)LL
j+1

(0) LL
j+1

(M/2j+1-1)...LL
j+1

(1)

L
j
(0) H

j
(0) L

j
(1) H

j
(1) L

j
(M/2j+1-1) H

j
(M/2j+1-1)buf2(j) ...

(a)

r1 r2 r3

R(j) C(j) buf1(j)
m4

buf2(j)

(b)

Figure 3.18: Vertical filtering in normal mode in the LB architecture. Three inputs

are loaded in parallel into the FIFO, while buf2(j) passes through multiplexer m4 of

the filter-bank.

113

either an LLL/LHL or an HLL/HHL pair, L denoting the final level. Thus,

an on-chip memory of equal size should be used, where blocks are temporally

stored. This memory is known as Inter-Pass Memory (IPM) [LNB+99]. The

RC algorithm is then applied on the block, up to the last level, the decom-

position of the block is written back to image memory, and the next block is

brought on chip. The traditional version of BB demands complicated control

and addressing [ZAS+01], is not effective in streaming applications and im-

poses high memory requirements (for six levels of decomposition the size of

the IPM would be 4096 words regardless of the image size).

The BB version that is implemented is the one that requires the minimum

size of local buffers and, also, simplifies as much as possible the control and the

addressing. Each level has its own IPM, where coefficients LL are stored to

be filtered horizontally. The size of IPM(j) is such that allows the generation

of an Lj/Hj pair at level j. As have been demonstrated, for a new Lj/Hj pair

to be generated, two new input coefficients should enter the filter-bank. Thus,

the size of IPM(j), where j = 1, 2, ..., L− 1, will be only 2 words. No IPM is

needed for level 0, as the filter’s inputs come straight from image memory.

In the previous section, it was shown that the vertical filtering is not in-

herently continuous in LB. In order for the vertical filtering to be executed

correctly, a group of line-buffers was used. In BB, the horizontal - and not

only the vertical - filtering is also deprived of inherent continuity. Therefore,

apart from line buffers that will be used to create vertical continuity, in order

to create continuity in the horizontal filtering, two double-word registers will

114

now be used in each level. Specifically, IPM(j) will store the input samples,

that will enter the filter’s FIFO, and bufH(j) will be needed to store the two

intermediate results of horizontal filtering. So, the total storage place needed

to create horizontal continuity is much smaller than that needed for the ver-

tical filtering to be continuous. This is because the input image is traversed

first horizontally and then vertically.

The block diagram of the BB architecture is shown in Fig. 3.19. The on-

chip memory needed for level j is illustrated in Fig. 3.20. The control logic,

implemented with the FSM, is a lot more complicated in the case of BB,

compared to that of LB. Mainly, it differs from the control logic presented in

Fig. 3.14 in the following:

1. Successive columns of Lj and Hj coefficients are no longer filtered verti-

cally in a successive manner. After a vertical filtering of an even column

occurs, if the current level is not also the final one, LLj+1 is either written

in bufH(j+1) or in IPM(j+1), depending on the current stage of hori-

zontal filtering at level j + 1. A single step of horizontal filtering at level

j+1 may occur (depending on the horizontal filtering stage) interrupting

the vertical filtering of level j.

2. The horizontal filtering is no longer continuous. After a discrete step of

horizontal filtering at level j+1, it should be decided if a vertical filtering

at level j + 1 can occur. If it does occur, a single step of horizontal

filtering at level j + 2 might follow, and so on. This domino effect in the

115

FILTER

LP

HP

r1_content

FSM

linebuf(0)

linebuf(1)

linebuf(2)

...

buf1(0)

buf1(1)

buf1(2)

...

buf2(0)

buf2(1)

buf2(2)

...

...
...

IPM(1)

...
...

din
dout

we

addr

IMAGE
MEMORY

IPM(2)

bufH(0)

bufH(1)

bufH(2)

Figure 3.19: Block diagram of the BB architecture. The shaded area includes the

on-chip buffers used in the architecture.

116

buf1(j)

buf2(j)

linebuf(j)

M/2j

IPM(j)

bufH(j)

2

Figure 3.20: On-chip memory of level j, used in BB.

worst case reaches the final level, imposing highly frequent interchanges

between successive levels, that complicate the control logic.

As in LB, the filter-bank used in BB should make full use of the parallelism

multi-port buffers offer. Thus, the version of Fig. 3.10 is used, so that the filter-

bank operates in a single-input mode during the horizontal filtering at level 0

and functions in a multiple-input mode in any other case.

In BB, during the vertical filtering stage, line buffers buf1(j) and buf2(j)

will be used in exactly the same way as in LB.

An Lj/Hj pair, produced after the horizontal filtering of IPM(j), is either

stored in a line-buffer (for the odd rows of level j) or consumed at once (for the

even rows of level j) to produce either an LLj+1/LHj+1 or an HLj+1/HHj+1

pair (Fig. 3.21). Hence, in the case of even rows, a vertical filtering action is

undertaken after the generation of every Lj/Hj pair, and no supplementary

line-buffer is needed. On the contrary, in Fig. 3.18, in the even rows of vertical

filtering, a whole row of Lj and Hj coefficients had to be written in R(j), so

that continuous horizontal filtering would be applied on it. Only after the

completion of the horizontal filtering of the even row of level j, the vertical

117

buf1(j)

linebuf(j) L
j
(0)

L
j
(0)

H
j
(0)

H
j
(0)

L
j
(1)

L
j
(1)

H
j
(1)

H
j
(1)

 0col # : 1 2 3

...

...

...

LL
j+1

(0),
LH

j+1
(0)

HL
j+1

(0),
HH

j+1
(0)

LL
j+1

(1),
LH

j+1
(1)

HL
j+1

(1),
HH

j+1
(1)

...

bufH(j+1)(0)LL
j+1

(0) LL
j+1

(1)

L
j
(0) H

j
(0) L

j
(1) H

j
(1)buf2(j) ...

L
j
(2)

H
j
(2)

H
j
(2)

4

L
j
(2) H

j
(2)

L
j
(2)

5

LL
j+1

(1),
LH

j+1
(1)

HL
j+1

(1),
HH

j+1
(1)

LL
j+1

(2)IPM(j+1)

L
j
(0) H

j
(0) L

j
(1) H

j
(1) L

j
(2) H

j
(2)

L
j+1

(0) ...

*

**
buf1(j+1)

*

**

r1 r2 r3

linebuf(j) buf1(j)L
j
(0)/H

j
(0)

m4

buf2(j)

r1 r2 r3
1st step of

initialization

2nd step of

initialization

bufH(j+1)(0) IPM(j+1)(0) IPM(j+1)(1)

r1 r2 r3

bufH(j+1)(0)IPM(j+1)(0)IPM(j+1)(1)

...

L
j
(M/2j+1-1) H

j
(M/2j+1-1)

L
j
(M/2j+1-1)

L
j
(M/2j+1-1)

H
j
(M/2j+1-1)

H
j
(M/2j+1-1)

M/2j-2 M/2j-1

Figure 3.21: The normal-mode vertical filtering at level j, in BB, is followed by

initialization-mode horizontal filtering at level j + 1. Being at the beginning of the

vertical initialization stage at level j + 1, Lj+1 is written in buf1(j+1).

118

Figure 3.22: Lena 512× 512. The original image.

filtering would begin. As a result, the number of line buffers of BB is reduced

by one, compared to that of LB.

3.7 Output

Throughout the execution of the 2-D DWT, the decomposition is carried out

as described in Section 3.4.1. The 2-D subbands that are produced during de-

composition, for the chosen number of levels, are the same for all computation

schedules. This is because the choice of a different schedule only affects the

order in which the coefficients that form the subbands are produced and not

their values. Their values solely depend on the type of filter used to execute the

1-D DWT. Since the same filter, the 5/3 filter-pair, is used in every schedule,

the subbands produced are the same for the three schedules.

In the simulations, original images of sizes 256×256, 512×512, and 1024×

1024 have been used. In this section, the 512× 512 Lena image (Fig. 3.22) is

119

(a) (b)

Figure 3.23: Decomposition level 0. (a) Subbands L0 and H0. (b) Subbands LL1,

LH1, HL1 and HH1.

(a) (b)

Figure 3.24: Decomposition level 1. (a) Subbands L1 and H1. (b) Subbands LL2,

LH2, HL2 and HH2.

(a) (b)

Figure 3.25: Decomposition level 2. (a) Subbands L2 and H2. (b) Subbands LL3,

LH3, HL3 and HH3.

120

used, to visualize the subbands produced during the decomposition executed

by the hardware designs. This visualization is done in Figures 3.23-3.25. The

decomposition is executed for 3 levels. The layout of Figures 3.23-3.25 follows

that of Fig. 3.3, but only the new subbands produced at each level are now

presented. Figures 3.23(a)-3.25(a) consist of the Lj and Hj subbands produced

after the horizontal filtering of LLj. Figures 3.23(b)-3.25(b) consist of the

four subbands produced after filtering vertically Lj and Hj: subbands LLj+1,

LHj+1, HLj+1 and HHj+1. Specifically, Fig. 3.23(a) contains subbands L0 and

H0, which are the outputs of the horizontal filtering of the original image. The

vertical filtering of these renders subbands LL1, LH1, HL1 and HH1, which

are presented in Fig. 3.23(b). Among these four, only subband LL1 will be

further processed during image decomposition, while the other three will be

stored to contribute at a later stage in the reconstruction of the image. Thus,

LL1 will be horizontally filtered to render L1 and H1 (Fig. 3.24(a)), and so on.

When proceeding to a subsequent level, the resolution is decreased by a

factor of 4. Therefore, since the input of level 0 (LL0) is a 512×512 image (the

original image), the input of level 1 (LL1) is a 256× 256 coarse approximation

of the original image. Similarly, the inputs of levels 2 (LL2) and 3 (LL3), are

of size 128× 128 and 64× 64, respectively.

121

3.8 Results and Comparisons

The architectures were implemented in VHDL, synthesized with Synplify Pro

7.7, and placed and routed on Xilinx Virtex 4 XC4VLX15 FPGA, using Xilinx

ISE v.8.1. In all of the implementations, the image memory shares the same

clock with the rest of the system. This simplification renders the comparison

as generic as possible, since the image memory is sometimes on-chip (e.g.

in large FPGA devices). Under this assumption, it should be noted that

the computation schedules with larger traffic towards the image memory are

favored, and no interface circuit is needed.

The current section presents a comparative analysis of the implementations,

in terms of throughput, number of FPGA slices, memory requirements and

energy consumption. These measurements, which are relative to the image size

(M) and the number of decomposition levels (L), span a large parameter space.

In order to deliver this information clearly, in all of the following subsections,

a particular way of presenting the results is employed:

• A 3-D graph is used to present the measurements for each computation

schedule, relative to a given pair of parameters, M and L. On that graph

perpendicular slices are drawn at M=256, M=512 and M=1024.

• The 2-D information corresponding to each slice is displayed underneath

with 2-D subgraphs. Because, in most cases the results vary a lot for

different schedules, this 2-D information is organized in three graphs, one

for each schedule. Note that these 2-D subgraphs are independent from

122

each other, using non-uniform scaling of the y-axis, in order to deliver

accurately the associated non-uniform numerical variations.

• A common graphic notation is used in all 3-D graphs and 2-D subgraphs

(i.e. • is used for RC, △ for LB and ◦ for BB).

3.8.1 Throughput

The RC, the LB and the BB operate on the XC4VLX15 device at 172, 113 and

117 MHz respectively. The three schemes have similar data paths; however,

the frequency varies because the critical path lies in the control path.

The LB obtains the highest throughput among the three schedules. This is

due to the small number of clock cycles it requires to complete the 2-D DWT

(Fig. 3.26); it starts from 150,024 cycles (M=256, L=3), and reaches 2,374,740

cycles (M=1024, L=6). The throughput of LB reaches 757 frames/sec (M=256,

L=3) and drops to 47 frames/sec (M=1024, L=6).

There is no great difference between the number of cycles needed for RC

and BB. Specifically, RC needs 347,651-5,607,174 (Fig. 3.26), while BB requires

354,827-5,767,246 clock cycles (Fig. 3.26). However, because the RC operates

in higher frequency, its throughput is improved, resulting in the difference

observed in Fig. 3.27. If the image memory operates in a smaller frequency

than the rest of the system, BB will outperform RC.

The larger number of cycles in RC, compared to LB, is due to the fact

that a single-port memory is used as the only source of inputs for RC. Thus,

123

3 4 5 6
5.5

5.55

5.6

5.65
x 10

6

L

3 4 5 6
2.355

2.36

2.365

2.37

2.375
x 10

6

L

3 4 5 6
5.65

5.7

5.75

5.8
x 10

6

L

Cycles (M = 1024)

3 4 5 6
1.38

1.39

1.4

1.41
x 10

6

L

3 4 5 6
5.92

5.94

5.96

5.98
x 10

5

L

3 4 5 6
1.41

1.42

1.43

1.44

1.45
x 10

6

L

Cycles (M = 512)

3 4 5 6
3.46

3.48

3.5

3.52

3.54
x 10

5

L

3 4 5 6
1.5

1.505

1.51

1.515
x 10

5

L

3 4 5 6
3.54

3.56

3.58

3.6

3.62
x 10

5

L

Cycles (M = 256)

Figure 3.26: Number of cycles. Note that the values are multiplied by 106 in the

3-D graph, the 2-D subgraphs of all schedules for M=1024, and the 2-D subgraph

of BB and RC for M=512. A different scaling is used in the 2-D subgraph of LB for

M=512 and the 2-D subgraphs of all schedules for M=256: the values are multiplied

by 105.
124

3 4 5 6
47.8

48

48.2

48.4

48.6

L

Throughput (M = 1024)

3 4 5 6
30.5

31

31.5

L

3 4 5 6

20.4

20.6

20.8

L

3 4 5 6
190

190.5

191

191.5

192

L

Throughput (M = 512)

3 4 5 6
122

123

124

125

L

3 4 5 6
81.5

82

82.5

83

L

3 4 5 6
750

752

754

756

758

L

Throughput (M = 256)

3 4 5 6
485

490

495

500

L

3 4 5 6
326

328

330

332

L

Figure 3.27: Throughput results (in frames/sec).

125

inputs enter the filter-bank in a serial manner and no parallelism is involved

in the filtering operations. On the contrary, in LB and BB, two or three

inputs might enter the filter-bank in parallel. Also, in RC the filter’s output

pair cannot be written in image memory in a single cycle; one of the outputs

should be buffered to be written at the next cycle. The results prove that

using multi-port buffers, even with a single filter-bank, halves the number of

cycles for the LB architecture. But this is not the case for the BB, even if

multi-port buffers are also used to increase memory-access locality. This is

due to the streaming nature of the operations taking part in LB, which is no

longer the case for BB. Due to that, in LB at many points the next action is

predetermined, for example the horizontal filtering is continuous and successive

columns are successively filtered. As a result, many low level actions can occur

in parallel, as it is pre-decided that they wouldn’t affect each other. Things

are different for BB, since the control is deprived of such a streaming behavior

and many options should be considered at a specific point, instead of following

a predetermined route. As a result, in the case of BB, the number of cycles is

increased, compared to LB.

Observing Fig. 3.27, one concludes that all three architectures can handle

efficiently the image processing of still images, with minimal hardware cost -

just one filter-bank with only one pipeline stage for the whole structure.

In order for a system to carry out video processing, the whole video-

processing chain should operate at a speed of 30 frames/second. Therefore, a

safety margin should be considered, to judge the video-processing capability of

126

a system based on the results of Fig. 3.27. Observing Fig. 3.27, one can safely

conclude that all three architectures can handle the video-processing of image

sizes 256 and 512. The high throughput for such images would also allow an

efficient operation of all three systems in a low-power mode by reducing the

clock frequency. However, when it comes to image size 1024, even though

the throughput of the LB architecture still allows video-processing, this is no

longer the case for the other two.

3.8.2 FPGA slices

The FPGA slices used in RC are much fewer than in LB and BB (Fig. 3.28).

This is due to the simplicity of the control associated with the RC algorithm.

The number of slices for RC covers a range from 280 (M=256, L=3) up to 329

slices (M=1024, L=6). For LB and BB this range is 2659-3001 and 2646-3597

slices, respectively.

3.8.3 Memory issues

The RC does not involve any on-chip buffers, contrary to LB and BB. Thus,

in RC the image memory is the only source of inputs for the filter-bank. As

a result, the number of image memory accesses is significantly larger in the

RC case (Fig. 3.29). In the cases of LB and BB this number is the same, and

does not vary when the number of levels varies, as it is, in both cases, equal

to 2×M2.

In LB and BB, the on-chip local memory of each level is accommodated in

127

3 4 5 6
2500

3000

3500

4000

L

Slices (M = 1024)

3 4 5 6
2960

2980

3000

3020

L

3 4 5 6
290

300

310

320

330

L

3 4 5 6
2500

3000

3500

4000

L

Slices (M = 512)

3 4 5 6
2850

2900

2950

3000

L

3 4 5 6
280

300

320

340

L

3 4 5 6
2500

3000

3500

4000

L

Slices (M = 256)

3 4 5 6
2600

2700

2800

2900

L

3 4 5 6
280

300

320

340

L

Figure 3.28: Number of FPGA slices.

128

3 4 5 6
5.5

5.55

5.6
x 10

6

L

Accesses (M = 1024)

3 4 5 6
2.0972

2.0972

2.0972

2.0972

2.0972
x 10

6

L

3 4 5 6
1.37

1.38

1.39

1.4
x 10

6

L

Accesses (M = 512)

3 4 5 6
5.2429

5.2429

5.2429

5.2429

5.2429
x 10

5

L

3 4 5 6
3.44

3.46

3.48

3.5
x 10

5

L

Accesses (M = 256)

3 4 5 6
1.3107

1.3107

1.3107

1.3107

1.3107
x 10

5

L

Figure 3.29: Total number of accesses (contains both read and write accesses) of

the image memory. For LB and BB this number is the same, and does not vary as

L varies, since it is, in both cases, equal to 2×M2. The values of the vertical axis

are multiplied by 106 in the 3-D graph, in the 2-D subgraphs of all schedules for

M=1024, and in the 2-D subgraph of RC for M=512. A different scaling is used for

the vertical axes in the 2-D subgraph of LB/BB for M=512 and the 2-D subgraphs

of all schedules for M=256: the values are multiplied by 105.

129

256 512 1024
0

1

2

3

4

5

6

7

8

M

of

 B
R

A
M

s

Number of FPGA block RAMs

LB

BB

Figure 3.30: Number of BRAMs.

BRAMs (Fig. 3.30), generated by the Xilinx ISE Coregenerator, and registers.

The bit-width used is 16 bits. The Virtex-4 BRAMs used are 18 K dual-port

BRAMs.

To obtain maximum throughput, the buffers of the same type and of dif-

ferent levels can be grouped together in a single BRAM, if the space provided

is enough. This way, during the vertical filtering of successive columns, R(j),

C(j), buf1(j) and buf2(j) can feed the filter-bank simultaneously. At the same

time, locations of buf1(j) and buf2(j), that have already been read, are over-

written with the new intermediate results, to be read at the next lifting step.

Moreover, R(j) can be read while R(j+1) is written with the output of a pre-

vious column’s vertical filtering. Therefore, four dual-port BRAMs should be

130

used in the cases of image sizes 256 and 512. Four additional dual-port BRAMs

will be needed for size 1024, to accommodate the larger buffers of level 0. The

number of BRAMs remains the same for 3, 4, 5 and 6 levels, to guarantee high

throughput and enough space for the larger buffers of the lower levels.

In BB, buffers IPM and bufH of each level are implemented as two-word

registers. Contrary to LB, the vertical filtering of successive columns is no

longer successive. Thus, the constraints that guarantee maximum throughput

are not so strict for BB. During vertical filtering, three filter inputs should be

read simultaneously, thus, at least two dual-port BRAMs should be used. To

provide enough memory space, 2, 3 and 6 BRAMs should be used for image

sizes 256, 512 and 1024, respectively. These choices, which also respect the

minimum of two BRAMs, remain the same for 3, 4, 5 and 6 levels, since the

larger buffers of the lower levels are the ones that determine the memory space

needed.

3.8.4 Energy and Power Consumption

In this section, energy measurements for the implementations are presented.

First, on-chip energy results are provided, with the off-chip image memory be-

ing excluded. Afterwards, assuming an off-chip image memory and considering

off-chip power estimates, the total energy, required for the completion of the

transform, is calculated.

131

3 4 5 6
12.9

13

13.1

13.2

13.3

L

On−Chip Energy (M = 1024)

3 4 5 6
5.98

6

6.02

6.04

L

3 4 5 6
6.85

6.9

6.95

7

7.05

L

3 4 5 6
3

3.02

3.04

3.06

3.08

L

On−Chip Energy (M = 512)

3 4 5 6
1.375

1.38

1.385

1.39

L

3 4 5 6
1.7

1.72

1.74

1.76

L

3 4 5 6
0.725

0.73

0.735

0.74

0.745

L

On−Chip Energy (M = 256)

3 4 5 6
0.348

0.35

0.352

0.354

L

3 4 5 6
0.43

0.435

0.44

0.445

L

Figure 3.31: On-chip energy consumption (in mJ).

132

On-chip energy

To estimate the on-chip energy and power consumption of each schedule, the

XPower tool, offered by Xilinx ISE v.8.1, has been used. The estimated on-

chip power dissipation of the RC is 214 mW, which does not notably alter as

M or L vary. This is due to two factors: (a) the RC doesn’t involve on-chip

buffers, whose number would depend on the given parameters M and L, and

(b) the variation in the number of slices for different pairs of these parameters

is very small (Fig. 3.28). This is no longer the case for the other two, where

BRAMs are used, their number being directly dependent on M (Fig. 3.30),

and where the number of slices varies to a larger extent, relative to the given

parameters (Fig. 3.28). Thus, in the case of BB, the power consumption starts

at 241 mW (M=256) and stretches to 268 mW (M=1024). The power con-

sumption of LB is at relatively higher levels, starting at 264 mW (M=256)

and reaching 289 mW (M=1024). The smaller number of slices the LB uses,

compared to BB, is overshadowed by the requirement for more BRAMs, and,

therefore, the LB ends up with a higher power consumption.

The on-chip energy consumed for the execution of the transform, relative

to M and L, is presented in Fig. 3.31. At a first glance, one notices the consid-

erably larger amount of energy related to the BB, compared to the other two.

This is due to the large number of cycles associated with the BB (Fig. 3.26).

The number of cycles is once more the dominant factor in the energy calcu-

lations for the LB. That is, the significantly smaller number of cycles related

133

to LB (Fig. 3.26) results in lower energy than RC, even though the RC is the

less power-hungry of all.

Total energy

The power and energy results, which were presented in the previous section,

were calculated without considering the power associated with the image mem-

ory accesses. This power depends on whether the memory is on-chip or off-

chip. Using an off-chip image memory is normally the only option, especially

when working with large images or/and not very large FPGA devices. In that

case, the power cost per memory access is significantly high, and depends on

technology-related characteristics of the given memory.

A Synchronous DRAM (SDRAM) will be considered as the off-chip image

memory. Note here that the energy consumed at the off-chip interconnect

is not included in the calculations of total energy. The energy of the off-

chip interconnect would normally be proportional to the distance between the

SDRAM and the FPGA device [ZAS+01].

The SDRAM system power calculator available from Micron Technolo-

gies [Mic08], has been used, to calculate the off-chip power associated with

a Micron 64 Mb x16 SDRAM. This tool bases the power calculation on a

combination of SDRAM device specifications and usage conditions in the sys-

tem environment. It, therefore, considers reliable estimates of the static and

dynamic power, to calculate the total power dissipation of the memory.

The choice of SDRAM with respect to its clock frequency is based on

134

3 4 5 6
29.8

30

30.2

30.4

30.6

L

Total Energy (M = 1024)

3 4 5 6
29.6

29.8

30

30.2

30.4

L

3 4 5 6
17.6

17.62

17.64

17.66

17.68

L

3 4 5 6
7.4

7.5

7.6

7.7

L

Total Energy (M = 512)

3 4 5 6
7.2

7.25

7.3

L

3 4 5 6
4.285

4.29

4.295

4.3

4.305

L

3 4 5 6
1.86

1.88

1.9

1.92

L

Total Energy (M = 256)

3 4 5 6
1.76

1.78

1.8

1.82

L

3 4 5 6
1.075

1.08

1.085

1.09

L

Figure 3.32: Total energy consumption (in mJ). An off-chip SDRAM is considered.

The total energy required for BB is very close to that of RC (for RC it is slightly

higher).

135

the following two assumptions. Firstly, it has been assumed that the image

memory will operate at the same frequency as the rest of the system. As have

been mentioned, this is done in order to make the comparison as generic as

possible, since the image memory is sometimes on-chip. Secondly, the entire

system operates at the frequency dictated by the on-chip design. Therefore, an

available SDRAM with clock frequency that is greater or equal to the frequency

of the on-chip system can be used.

As has been stated in Section 3.8.1, the RC, the LB and the BB have

frequencies of 172.4, 113.6 and 117.6 MHz respectively. Therefore, an SDRAM

of clock frequency 183 MHz (speed grade = -55) has been considered for the

case of RC, and 133 MHz (speed grade = -75) for LB and BB.

According to the estimates of the system power calculator, the off-chip

power varies from 715.7 mW to 720.3 mW for the case of RC, as the percentage

of memory write/read cycles vary, for different values of L and M. Note that

the variation is not as large, for different values of M, as one would expect

observing Fig. 3.29. This is because, as M increases, the total number of

cycles increases as well (Fig. 3.26), so the above percentages are maintained at

similar levels. Due to the high cost per memory access that characterizes the

off-chip case, the large number of accesses of the RC (Fig. 3.29), renders this

schedule extremely demanding in terms of power.

Compared to the RC, the off-chip power of the LB and the BB is expected

to be at lower levels, due to the lower number of memory accesses (Fig. 3.29).

The off-chip power estimates vary between 549.7 mW and 559.7 mW for LB,

136

and between 346 mW and 348.8 mW for BB. The lower off-chip power associ-

ated with the BB, compared to LB, is due to the higher percentage of memory

write/read cycles over the total execution cycles. This is due to the fact that

the number of clock cycles is much larger for BB (Fig. 3.26), while both the

BB and the LB need M2 read memory accesses and M2 write memory accesses.

Therefore the distribution of memory accesses is rather dense in LB, compared

to BB. However, due to the significantly smaller number of clock cycles, re-

quired for its completion, the LB maintains the smallest energy when it comes

to total consumption, as Fig. 3.32 shows.

The large number of memory accesses of the BB will keep the total energy

consumption of BB at high levels, as it was the case with the on-chip energy.

As a result, the total energy required for the BB to be executed is very close

to that of the RC (Fig. 3.32), even though the power is significantly lower in

BB.

Using an on-chip image memory would be in favor of the RC, since the

power associated with every memory access will be much less. In this case,

the BB will most certainly consume a lot more total energy than RC, as was

the trend in Fig. 3.31. The LB will still maintain the lowest total energy.

3.9 Appropriate Optimizations

The performance of the three schedules has been investigated under the as-

sumption of using a single-port image memory and a single filter-bank which

137

is shared among all levels and stages of the transform. This section briefly dis-

cusses which optimizations would be appropriate for each schedule to further

improve its performance. Specifically, the objectives would be to increase (a)

parallelism in data processing and (b) locality of data accesses.

As has been discussed, in RC the lack of parallelism is due to the fact

that the single-port image memory is the one and only source of the filter-

bank’s inputs. Therefore, using a multi-port image memory would multiply the

performance by a factor equal to the number of memory ports. On the contrary,

just increasing the number of filter-banks while sticking with a single-port

memory would not help, since there would not be enough on-chip information

to process. As far as the locality of data accesses in RC is concerned, it

could be improved by incorporating in the traditional bufferless architecture

of Fig. 3.13 a single on-chip line-buffer. The inputs of the filter-bank would be

read from this line-buffer in all levels. Therefore, its size should be equal to

the largest dimension of the original image, to accommodate the large number

of coefficients of the first level.

In the cases of LB and BB, the locality of data accesses is already max-

imized, since image memory accesses are restricted to reading the original

image and writing the final outputs. As far as the parallelism is concerned,

since so much information exists in the on-chip buffers, the more filter-banks

available to process it, the better. Thus, in this case increasing the number

of filter-banks would vastly increase the parallelism in data processing, even if

the image memory remains single-port.

138

3.10 Summary

This chapter has addressed the critical task of constructing the wavelet pyra-

mid, which is the basis of the majority of multiresolution motion estimation

techniques. In particular, the three major 5/3 lifting 2-D DWT computation

schedules have been implemented on on the Virtex-4 FPGA family. The im-

plemented architectures have been compared in terms of throughput, area,

memory and energy requirements. In summary, the conclusions of the work

presented in this chapter are the following.

The RC has by far the lowest hardware cost. Not only does it involve no

on-chip buffering, but also the FPGA slices used are significantly fewer than in

the cases of the other two. Due to its simplicity, it enjoys the highest frequency.

However, the insufficient level of parallelism, associated with RC, increases the

number of cycles required for the schedule to be completed. As a result, when

it comes to throughput, it is outperformed by LB (but not by BB). Moreover,

the reduced memory access locality, offered by RC, increases the number of

memory accesses and the total energy to the highest level.

The LB requires the lowest number of cycles among the three schedules,

thanks to, not only the parallelism achieved by using multi-port on-chip buffers,

but also its streaming behavior. Due to the small number of cycles, this sched-

ule also enjoys the highest throughput and the lowest on-chip and total energy

consumption. Due to the use of on-chip buffers, the LB increases the memory-

access locality, compared to RC, minimizing the number of image memory

139

accesses.

The BB increases the memory-access locality, compared to RC, and achieves

the same number of memory accesses as LB. To do this, the BB uses a smaller

number of BRAMs than LB. However, it consumes more FPGA slices than LB

for most sets of parameters. The BB is associated with the highest complexity,

due to the lack of streaming behavior in the filtering operations. As a result,

a significantly larger number of clock cycles is needed for the BB schedule to

be completed. The large number of cycles results in high energy requirements:

it is by far the most expensive when it comes to on-chip energy, and it is

almost as expensive as RC when the total energy is considered, even though

the memory accesses of BB are considerably fewer. The BB has the lowest

throughput, due to control complexity, as well as to the frequency in which it

operates, which is not as high as in the RC case.

In conclusion, all three architectures that have been proposed in this chap-

ter achieve real-time performance for the execution of the 2-D DWT. The

evaluation that has been presented gives insight on which computation sched-

ule is the most suitable for the specific requirements of the given application.

The next chapter begins the discussion of the proposed video enhancement

techniques, which is the main area of interest of this thesis. In particular,

in the next chapter, possible configurations of the adaptive sensor will be

investigated and combined with the appropriate processing, so as to increase

the spatio-temporal resolution of the output frames.

140

Chapter 4

Video Enhancement by

Exploring the Configuration

Space of an Adaptive Image

Sensor

This chapter explores how the elementary pixels of an adaptive image sen-

sor [Fov08, CDT06] can be configured, so as to maximize the raw information

collected from the environment. For each configuration, appropriate meth-

ods are proposed to further process that information and reconstruct a final

output of both high temporal and high spatial resolution. In particular, an

adaptive image sensor is used for motion deblurring. Motion deblurring is

locally performed by configuring the motion regions to larger pixel sizes that

produce high frame-rate samples. Two types of configuration schemes and the

141

appropriate processing methods for the reconstruction of the final output are

proposed. These are namely a deconvolution-based and a SR-based approach.

In summary, the contributions of this chapter are the following:

1. A super resolution (SR) system is proposed for the real-time spatio-

temporal enhancement of video. This SR-based approach employs a

uniform grid of large pixels on the motion areas. The motion magnitude,

and corresponding motion blur, determines the pixel size that gives the

appropriate spatio-temporal trade-off. The effect of motion magnitude

on that pixel size is thus explored.

2. A deconvolution-based system is proposed for the real-time spatio-temporal

enhancement of video. Contrary to the SR-based approach, where each

motion region is configured to a single, uniform pixel size, the deconvolution-

based approach employs spatially multiplexed pixels of different sizes on

the motion regions.

3. A detailed comparison of the proposed SR-based and deconvolution-

based video enhancement systems is presented, using various motion blur

and static scenarios.

The rest of the chapter is organized as follows. Section 4.1 illustrates the

main concept of reducing motion blur by utilizing the reconfigurability of an

adaptive image sensor. Different sensor configuration schemes are explored,

which are employed by the two video enhancement approaches that are pro-

posed. These approaches, namely the SR-based and the deconvolution-based

142

approach, are described in Sections 4.2 and 4.3, respectively. A comparative

discussion of the two schemes is carried out in Section 4.4, while Section 4.5

presents reconstruction results achieved by the two approaches. In Section 4.6,

the extension of the proposed methods to non-rigid objects is briefly discussed.

Finally, the conclusions of the evaluation process are presented in Section 4.7.

A part of the work that is presented in this chapter has been published

in [ABC08].

4.1 Employing Larger Pixels to Reduce Mo-

tion Blur

Before investigating how different configuration schemes may increase the

spatio-temporal information that is captured, it is important to clarify how

the reconfiguration property of the adaptive sensor can be utilized to reduce

motion blur. This concept is visualized in Fig. 4.1, which demonstrates the

blur resulting from the motion of a hypothetical one-pixel moving object. In

Fig. 4.1, two different configurations are thus considered to compare the out-

puts of the sensor that would be produced for each scenario during the HR

integration interval. This interval corresponds to the integration time required

by the elementary pixels of the sensor.

The first configuration employs elementary pixels on the entire sensor, thus

a traditional, time-invariant pixel grid. In that case, a single sample of the mo-

tion region is produced during the HR integration interval which is significantly

143

Integration End

Integration Start

(a) Configuration I: Motion-blurred output for HR.

(b) Configuration II: First LR sample. (c) Configuration II: Second LR sample.

(d) Configuration II: Third LR sample. (e) Configuration II: Fourth LR sample.

Figure 4.1: The outputs of two different sensor configurations. (a) The HR

configuration renders a single, motion-blurred output during the HR integration.

(b,c,d,e) Configuring the motion area to 2× 2 HR produces 4 time samples during

the HR integration, each containing a fragment of the trajectory of (a).

144

blurred. This is illustrated in Fig. 4.1(a).

If the 2 × 2 HR configuration was employed on the motion area instead,

then 4 LR frames would have been produced for that area during that inte-

gration interval. These are illustrated in Figures 4.1(b), 4.1(c), 4.1(d), and

4.1(e). Each one of these samples contains a short part of the trajectory of

Fig. 4.1(a) and thus reduced motion blur. Compared to the output of the

first configuration, these four frames have four times higher temporal resolu-

tion, but also four times lower spatial resolution. One should therefore employ

methods to enhance the spatial resolution of the high-frame-rate samples, in

order to produce an output of both high spatial and high temporal resolution.

The remainder of the chapter explores ways of configuration and processing

that can be employed to address this issue.

It should be noted that real-time video enhancement is targeted. The real-

time performance constraints will be extensively evaluated in the chapters that

follow.

4.2 SR-Based Motion Deblurring

This section presents the first video enhancement scheme that is proposed.

The proposed method utilizes SR techniques for the reconstruction of the final

output on the HR grid. Motion areas are located on the frame and are con-

figured to larger pixel sizes forming LR areas, whereas areas with slow motion

or no motion at all are configured to HR pixels.

145

prediction
& update

motion estimation on LR grid

configure LR window

object in field of view?

motion estimation on HR grid
& training of the predictor

END of tracking for

the particular object

no

yes

reconstruction

Figure 4.2: Flowchart describing the operation of the SR-based system for each

independent moving object.

146

Ideally, the adaptive sensor would be reconfigured at every new HR in-

tegration. In reality, the reconfiguration frequency can be lower, depending

on the technology of the given sensor. Thus, the proposed system operates

as follows. At every new HR integration interval, newly appearing moving

objects are detected. This initial object detection could be done either by

employing a particular sensor technology [CHK+07] or by applying a motion

estimation algorithm on the HR grid between adjacent HR samples [Bou02].

The second option has been used. Once the detection process is completed,

for every individual moving object that is detected, the control of Fig. 4.2

is employed. The configure LR window block is executed only in those HR

integration intervals that include sensor reconfiguration, whereas the rest of

the blocks of the loop are executed in every HR integration interval. A pre-

dictor is employed to determine the position of the object in the next HR

integration interval. Experiments have shown that the Kalman filter [WB] is

appropriate for the given application. When the next sensor reconfiguration

occurs, the position predicted by the predictor determines the location of the

LR area, i.e. the motion region that includes the moving object, which is

configured to larger pixels. During each HR integration, a sequence of LR

frames with reduced blur is produced at every LR area. Each LR area is spa-

tially enhanced using SR to estimate a high resolution frame based on the LR

inputs [PPK03, BK02, FREM04, IP91]. Thus, motion-deblurring is locally

executed on the dynamic regions of the scene. At every new HR integration

interval, the control starts at the second block of Fig. 4.2. The loop ends when

147

the particular object exits the field of view.

Predictor

x, y

adaptive image sensor

memory

banks
SRSRMotion

Estimation
output

(a)

(b) HR grid (c) LR = 2× 2 HR (d) LR = 3× 3 HR

Figure 4.3: (a) SR-based motion-deblurring on an adaptive image sensor. (b) HR

grid covering the static background. (c,d) Uniform LR pixel grids formed on the

motion regions. The LR pixel size increases with the local motion magnitude.

The block diagram of the proposed SR-based system is shown in Fig. 4.3.

The Predictor block locates areas for LR configuration. The pixel size of these

areas is proportional to the motion magnitude, as Figures 4.3(c) and 4.3(d)

indicate. The Motion Estimation block reads the sequence of LR frames pro-

duced at each LR area and returns the motion vectors, i.e. the displacements

between each LR frame and the reference LR frame. This information is used

by the SR unit to enhance the spatial resolution. More information on SR

reconstruction is given in the chapters that follow. To identify the pixels of

the static background and exclude them from the SR reconstruction process, a

dense vector field is considered. Thus, the pixels with zero motion are treated

148

as background pixels. Error values rendered by Motion Estimation [Bou02] are

used to weight the contribution of different LR samples. Also, to increase the

spatial information available to the SR block, LR samples before and after the

integration interval of interest contribute in SR with adjustable weights. The

values of these parameters are given in the evaluation section of the chapter.

The spatial resolution and the frame-rate of the output are those of the

HR sequence, where the motion blur has been removed in the LR regions. In

the special case where the motion blur is due to camera shaking, a single LR

area spans the entire sensor.

In the chapters that follow, the SR block will be further investigated; both

the SR framework and implementation issues of SR on reconfigurable hardware

will be discussed in detail.

4.3 Deconvolution-Based Motion Deblurring

In the deconvolution-based approach the sensor is configured to hybrid regions,

containing both elementary and LR pixels. The subset of LR pixels gives high

frame-rate samples, which are used in order to recover the motion information.

Therefore, a motion PSF is constructed for every moving object. Then a

deconvolution is applied separately on each object to produce a deblurred

output for the part of the frame occupied by that object.

The flowchart of the deconvolution-based system is shown in Fig. 4.4. The

first block of Fig. 4.4 estimates the motion information on the frame. With

149

motion estimation on the LR

pixels of the hybrid grid

grouping of discrete motion sets

&
Voronoi tesselation

construction of motion PSFs

&

interpolation on HR grid

deconvolution of each cell with

corresponding PSF

motion-deblurred output on

the HR grid

Figure 4.4: Flowchart for the deconvolution-based system.

the processing executed by the second and the third block of Fig. 4.4, each

individual moving object is associated with a particular motion PSF. Finally,

deconvolution is applied on each moving object to produce a deblurred out-

put for the part of the frame occupied by that object. More information on

the dataflow of the deconvolution-based approach is provided in the following

paragraphs.

The block diagram of the deconvolution-based system is shown in Fig. 4.6(a).

In order to achieve deblurring via deconvolution using a single sensor, a hybrid

grid consisting of spatially multiplexed HR and LR pixels is used. Different

sizes of LR pixels can be configured as shown in Fig. 4.6(b, c), so that larger

LR pixels will be formed in areas with larger blur. The time samples cap-

tured by the LR pixels are the inputs to the Motion Estimation block. This

150

block renders a set of 2-D points (one point per LR sample) belonging to

the continuous motion trajectories of individual features during the HR inte-

gration. We refer to this discrete subset of the actual motion trajectory by

discrete motion set. Neighboring features with similar discrete motion sets are

grouped together and a center of mass is determined on the frame for each

group. Voronoi tessellation [OBSC00] is applied on the set of these centers of

mass. For each Voronoi cell a motion PSF is constructed on the HR grid by

applying spline interpolation on the points of the associated discrete motion

set and calculating the “energy” along the PSF as in [BEN04].

An example of the construction of a motion PSF of a feature using spline

interpolation is illustrated in Fig. 4.5. The thick dots in Fig. 4.5(a) are the

points of the discrete motion set, indicating the position of the particular

feature at each one of the LR time samples produced during the HR integration

interval. The interpolated PSF corresponds to the part of the curve that is

bounded by the two intersecting line segments. In particular, for the case of

Fig. 4.5, 4 time samples are produced during the HR integration interval. The

2 time samples that lie on the outside correspond to the adjacent LR samples,

which are produced before and after the HR integration interval of interest, and

are needed to determine the shape of the entire PSF. In order to preserve the

temporal order of the measured points, the motion path is parameterized with

respect to time, and thus time increases along the curve, in the direction of

the motion. Moreover, depending on how long the particular feature stayed on

each pixel of the image sensor during the HR integration interval, the “energy”

151

(a) (b)

Figure 4.5: The interpolated motion PSF. (a) Spline interpolation on the discrete

motion set of a particular feature. (b) Discretization on the HR grid and PSF

weights.

is determined along the PSF. In Fig. 4.5(b), the PSF is discretized on the HR

grid, and the different colors indicate different PSF weights, determined by the

calculated “energy” along the PSF.

Once the PSFs are formed, deconvolution is applied separately on the HR

grid of each cell. The input of each deconvolution block consists of the raw HR

pixels of the hybrid grid and the interpolated HR information formed at the LR

pixels of the grid. The interpolated HR pixels are computed by solving a linear

system formed by weighting the surrounding raw HR pixels and the underlying

152

LR information. For the cells where no motion exists, the reconstructed output

is the output of this interpolation. The final reconstructed frame consists of

the individual outputs produced for every cell.

adaptive image sensor

memory

banks

Motion
Estimation

Voronoi
Tesselation

Interpolation

on HR Grid
devonvolutiondevonvolutionDevonvolution

PSF
reconstruction

PSF
reconstruction

PSF
Reconstruction

outputs
for cells

with motion

outputs for cells without motion

(a)

(b) LR = 2× 2 HR (c) LR = 3× 3 HR

Figure 4.6: (a) Deconvolution-based motion-deblurring on an adaptive image sen-

sor. (b, c) Multiplexed LR and HR pixels of a hybrid grid.

To demonstrate the control flow in the deconvolution-based approach, let

us consider a simple visual example, where the entire sensor is covered with

the 2×2 hybrid grid of Fig. 4.6(b). The image of Fig. 4.7(a) is the input of the

deconvolution-based processing block. This comprises the raw HR pixels of the

hybrid grid and the interpolated HR pixels on the regions of the sensor that are

configured to LR pixels. Motion estimation is applied on the LR samples of the

hybrid grid, and the discrete motion sets are identified. Voronoi tessellation is

then applied on the entire grid to isolate the areas corresponding to different

153

motion sets. Fig. 4.7(b) demonstrates the resulting Voronoi cells, where each

cell is associated with a discrete motion set. Finally, deconvolution is applied

individually on each Voronoi cell. Deconvolution is implemented with the

Lucy-Richardson [Luc74] method. The final output is reconstructed on the

HR grid, as shown in Fig. 4.7(c).

As different degrees of blur may exist on the same frame, at every configura-

tion of the sensor, LR areas of certain pixel size may be formed on independent

motion areas, as in the SR approach. Then, at every HR integration, each LR

area is tesselated, and different subregions are related to different PSFs.

4.4 Comparing the Two Approaches with Re-

spect to Sensor Specifications

Depending on the technical specifications of the sensor itself, we distinguish

two cases:

• Sensor specifications (a): The sensor can be configured in every HR

integration.

• Sensor specifications (b): A sparser configuration can only be performed,

i.e. every N HR frames.

The difference between the above cases, sensor specifications (a) and (b), lies

in the accuracy in locating motion regions that will be configured to larger

pixel sizes to form LR areas.

154

(a)

(b)

(c)

Figure 4.7: (a) The input of deconvolution. The LR holes are reconstructed on the

HR grid based mainly on the surrounding HR pixels. (b) Voronoi tessellation. Each

Voronoi cell is associated with a discrete motion set. (c) Deconvolution is applied

individually on each Voronoi cell, to reconstruct the final output on the HR grid.

155

Ideally, all pixels of the scene belonging to the static background would be

configured on the sensor with HR pixels and would, therefore, not belong to

any LR area. Due to the need of high accuracy in locating motion regions, the

case of sensor specifications (a) is closer to that ideal situation than the case

of sensor specifications (b). Therefore, for sensor specification (a), LR areas

include only few background pixels and mainly consist of dynamic parts.

For the reconstruction of dynamic parts, the SR-based approach is the most

effective of the two proposed approaches, due to the following reasons:

1. In the SR-based approach, the LR samples at the input of the SR block

experience reduced motion blur. Therefore, the blending, between the

moving objects and the static background, is reduced. An extensive

discussion of the problem of the blending between objects and back-

ground is presented in [BEN04]. The importance of this problem lies

in the fact that it complicates background extraction. The blending

problem increases for larger motion magnitudes, and is clearly visible in

Fig. 4.8(b). In the deconvolution-based approach, the input of the decon-

volution block comprises an HR frame of low temporal resolution, where

that blending is large for large motions. This complicates background

extraction compared to the SR-based approach [BEN04].

2. As blur increases, the size of LR pixels increases to produce an out-

put with sufficiently reduced blur. Larger LR pixels require more LR

samples for SR reconstruction [PPK03, BK02, FREM04, IP91]. These

156

can be obtained, since the number of produced samples increases with

the pixel size, due to the space-time trade-off, as explained in Chap-

ter 2. Therefore, in this case the SR-based approach is effective. On

the other hand, in the deconvolution-based approach, the quality of the

high spatial-resolution information, which is interpolated in the regions

configured to LR pixels, degrades as the LR pixel gets larger. This inter-

polated information is part of the input of deconvolution (Section 4.3),

thus affecting the quality of the system’s output, as will be demonstrated

in the evaluation section. Thus, the SR-based approach is more effective

for extensive blur.

Ideally, all static regions of the sensor would be covered with HR pixels.

However, in the case of sensor specification (b), LR areas are not formed as

often on motion regions, as the sensor is configured sparsely. Thus, motion re-

gions are not identified as often on the frame, and thus larger LR areas should

be formed to make sure that the moving objects remain within those areas until

the next configuration of the sensor takes place. Inevitably, large motion re-

gions not only include the moving objects, but also contain significant parts of

the static background. In the worst case scenario, for very sparse configuration,

a single LR area spans the entire frame. Therefore, when sensor specification

(b) is employed, the situation may diverge significantly from the ideal scenario

that would employ only HR pixels on the static regions of the scene. In such

cases, it is critical for the configuration of LR areas to allow high-quality re-

157

(a) junction

(b) ice-skating

Figure 4.8: Motion blur decreases the temporal resolution of frames.

construction of both moving and static parts. If the SR-based approach is

applied, all the LR channels will contain exactly the same information for the

parts that are covered with static pixels. Therefore, since uniform LR areas

are employed in the SR-based approach, the quality of the reconstructed static

regions cannot surpass that of interpolation applied on the uniform LR grid of

a reference frame. On the other hand, if the deconvolution-based approach is

used, a hybrid grid would be employed, where 50% of the sensor is configured

to HR pixels. Therefore, 50% of the grid gives the actual ground-truth pixel

158

values. In this case, interpolation is limited on the LR pixels of the grid and

is optimized using the raw HR information of the surrounding HR pixels. As

configuration gets sparser, LR areas contain more background pixels, and the

hybrid grid of the deconvolution approach is more suitable.

To conclude, the SR approach is the most suitable for the reconstruction

of the dynamic parts of the scene and prevails when, due to frequent config-

uration, the LR areas mainly consist of non-static parts. The hybrid grid of

the deconvolution method allows effective reconstruction of static parts and

is suitable for sparse configuration, where LR areas also include large static

parts.

4.5 Performance Evaluation

In the performance evaluation that follows, the Iterative Back Projection (IBP)

approach [IP91] is employed for SR reconstruction. This SR reconstruction

method will be extensively discussed in Chapter 5, where its choice is jus-

tified with respect to the strict timing specifications of the real-time video

enhancement application. The IBP is an iterative SR approach, which gradu-

ally refines the reconstructed output, as the iterations of the algorithm succeed

one another. Thus, during the execution of IBP, the reconstruction error is

iteratively minimized and soon converges to a minimum value. The number

of iterations that can be executed depends on the throughput specifications,

which derive from the real-time operation requirement. Issues related to the

159

convergence properties and the number of iterations of the IBP are discussed

in detail in Chapter 5. For the purposes of the current chapter, the SR outputs

are given for 10 and 30 iterations. Typically, the algorithm converges before

30 iterations are completed.

In the deconvolution-based approach, deconvolution is implemented with

the Lucy-Richardson [Luc74] method. In both approaches, Motion Estimation

is required. In the SR-based approach, the frames at the input of the SR

block first need to be registered before the actual SR reconstruction occurs.

In the deconvolution-based approach, motion information is required for the

construction of the motion PSFs that are associated with the individual moving

objects, as discussed in Section 4.3. In the performance evaluation that follows,

motion estimation is implemented using the Lucas-Kanade optical flow [Bou02]

and the Shi-Tomasi good feature extraction [ST94] algorithms.

The evaluation of the proposed approaches is carried out using semi-synthetic

data. In this manner, the ‘ground-truth’ frame is known and can be used as

a reference to accurately evaluate the quality of the reconstructed output.

Specifically, a real image, captured with a commercial hand-held digital cam-

era, has been shifted, blurred, and downsampled, to synthetically produce the

LR sequences.

In this thesis, the Root Mean Squared Error (RMSE) is employed as the

error metric for quantification of the reconstruction quality. The RMSE is the

quadratic root of the Mean Squared Error (MSE). The MSE is calculated as

follows:

160

MSE =
1

M ×N

M,N
∑

i=1,j=1

(Ii,j −Gi,j)
2 (4.1)

where Ii,j and Gi,j denote the pixel with coordinates (i, j) in the reconstructed

and the ground-truth frame respectively, and M and N denote the frame

dimensions.

The proposed methods are evaluated on two video sequences, the junction

and ice-skating (Fig. 4.8) sequences, which involve multiple moving objects.

The HR frame size for both sequences is 480 × 640. The moving objects are

isolated from the background by hand, to exclude errors associated with the

background extraction method from the evaluation process. The LR sequences

were synthetically produced by applying temporal and spatial blur on a dense

sequence Sd, which acts as the real-world scene. The time blur of a sensor with

HR pixels spans, in both experiments, 144 frames of Sd (Fig. 4.9(b), 4.12(b)).

In the first experiment, the reconstruction quality obtained by the two meth-

ods is compared both on dynamic and static parts. In the second experiment,

the SR-based approach, which is the most suitable for extensive blur (Sec-

tion 4.4), is used to deblur a frame containing different motion magnitudes.

The performance evaluation section closes with a quantitative comparison of

the reconstruction quality of the two approaches. In particular, the two ap-

proaches are applied on a variety of video sequences. The statistical results

that are produced (i.e. average and standard deviation of the reconstruction

error) further verify the observations from the two aforementioned experiments

161

as well as the discussion of Section 4.4.

4.5.1 Comparison of the Two Approaches on Dynamic

and Static Regions

To evaluate the performance of the two approaches, we will first discuss the

reconstruction of foreground moving objects and then that of the static back-

ground.

The junction sequence includes three moving objects with similar degrees

of motion blur, as can be observed in Fig. 4.8(a). The LR sequence was

generated by applying both temporal and spatial blur on the dense sequence

Sd. The temporal blur was simulated by averaging 36 consecutive frames of

Sd, whereas a 2× 2 Gaussian was employed to simulate the spatial blur of the

sensor’s pixels. It should be noted that for size 2× 2 the Gaussian filter is the

same as a simple averaging filter.

The deconvolution-based approach (Fig. 4.9(d)) is applied assuming very

sparse configuration. Thus, a single LR area with the grid of Fig. 4.6(a) spans

the entire frame, which is tesselated creating a different cell for each moving

object. In the SR approach (Fig. 4.9(e,f)), the three motion areas are all

configured to LR pixels of size 2 × 2 HR. To increase the robustness of the

SR approach a neighborhood of 2 LR frames at each side of the integration

interval is considered.

The frames illustrated in Fig. 4.9 demonstrate the final output for different

162

(a) The ground-truth frame. This is the output of an ideal, non-realistic sensor that

combines HR spatial resolution with LR integration time.

(b) Motion blurred output produced for HR spatial resolution and thus low temporal

resolution. RMSE = 16.8

(c) Bicubic interpolation applied on the output of a LR sensor. Due to the space-time

trade-off, the sensor gives high temporal resolution. RMSE = 4.7

Figure 4.9: Reconstruction of dynamic regions.

163

(d) Output of deconvolution-based motion deblurring. RMSE = 6.92. Note: the

RMSE is a poor metric for deconvolution. However, the visual results demonstrate

increased readability of the number plates compared to bicubic interpolation.

(e) Output of SR-based deblurring after 10 iterations of the IBP. RMSE = 1.82

(f) Output of SR-based deblurring after 30 iterations of the IBP. RMSE = 0.85

Figure 4.9: Reconstruction of dynamic regions.

164

(a) Regions of the static background.

(b) HR spatial resolution gives ground-truth for static regions.

(c) Reconstruction of static background for SR-based approach. This is the output

of bicubic interpolation applied on the reference frame. RMSE = 6.9

(d) Reconstruction of static background for deconvolution-based approach.

RMSE = 4.6

Figure 4.10: Reconstructing the static regions of the scene on the HR grid.

165

scenarios. The root mean square error (RMSE) is used as a metric to quantify

the reconstruction quality. The RMSE values with respect to the ground-

truth frame, which is illustrated in Fig. 4.9(a), are given in the captions of

the individual subfigures of Fig. 4.9. The motion-blurred output of a sensor

with HR spatial resolution is presented in Fig. 4.9(b). Fig. 4.9(c) illustrates

the output of bicubic interpolation applied on a uniform LR pixel grid. The

reconstructed output that is obtained after applying the deconvolution-based

approach is shown in Fig. 4.9(d). The detail images of Fig. 4.9(d) demonstrate

the increased readability that is achieved after deconvolution-based reconstruc-

tion on the number plates of the vehicles, in particular that of the car. This is

not however reflected in the RMSE value, as the RMSE is not a good metric

for deconvolution-based reconstruction [BIRB05]. Figures 4.9(e) and 4.9(f)

illustrate the output obtained after executing 10 and 30 iterations of the IBP

SR algorithm.

A visual comparison of Fig. 4.9(d) with Fig. 4.9(f) demonstrates the in-

creased robustness of SR-based reconstruction on dynamic regions. In partic-

ular, the deconvolution-based approach achieves high readability for the first

detail image, the number plate of the car, but not for the second detail image,

which contains the number plate of the motor-cycle. This is mainly due to

the accuracy of the spline interpolation that is employed in the deconvolution-

based approach for the reconstruction of the motion PSF on the HR grid. The

reconstructed motion PSF accurately describes the underlying motion of the

car, but not of the motorcycle. In fact, for the case of the car, the achieved tem-

166

poral resolution is even higher than that of the ground-truth case, illustrated in

Fig. 4.9(a). This is due to the fact that the reconstructed motion PSF, which

describes the continuous motion within the HR integration interval, accurately

describes the subsequent intra-LR-frame motions in the sequence of LR frames.

Therefore, the LR samples are also effectively deblurred, and the reconstruction

method achieves temporal resolution higher than the LR temporal resolution.

However, the PSF reconstruction based on spline interpolation is not always

accurate, as happens for the case of the motorcycle in Fig. 4.9(d). Therefore,

the quality obtained with the deconvolution-based approach is dependent on

the underlying motion, and thus the SR-based approach is preferable in the

case of dynamic regions, as a more generic and robust solution.

If the configurations described in the previous paragraph are applied on

the entire sensor, the static background also needs to be reconstructed on the

HR grid. Considering the background of Fig. 4.10(a) without the presence of

foreground objects, the root mean square error between the reconstructed and

the ground-truth background is: (i) 4.6 after spatially enhancing the hybrid

grid of the deconvolution-based approach and (ii) 6.9 after applying bicubic

interpolation on the uniform large pixels of the SR-based approach. The lower

root mean square error of the deconvolution-based approach is due to the

higher fidelity of the output of the hybrid grid, relative to the ground-truth

image of Fig. 4.10(b). As explained in Section 4.4, this is due to the fact that

in the deconvolution-based approach 50% of the grid is covered with HR pixels.

Thus, 50% of the pixels have the actual ground-truth values.

167

The amount of real-world information that is preserved on the static re-

gions after employing the deconvolution-based approach is clearly higher than

that obtained by the SR-based approach. Thus, the readability of the text of

the first detail image is increased in Fig. 4.10(d), compared to Fig. 4.10(c).

However, when it comes to the visual inspection of the output, a certain level

of jagginess may be created on edges with strong directional properties. This

may affect the perceived quality of the output of the deconvolution-based ap-

proach (Fig. 4.10(d)). Therefore, to improve the perceived quality of the out-

put, a simple post-processing stage can be used, by employing multidirectional

filters that will improve the image smoothness.

4.5.2 SR-Based Approach with Various Motion Magni-

tudes

In the ice-skating sequence, moving objects with different blur extents are ac-

quainted, as it can be observed in Fig. 4.11(a). Clock-wise from left, these

are: Susan, Amy, and Jack (Fig. 4.11(b1), Fig. 4.11(c1), and Fig. 4.11(d1),

respectively). The pixel size of each one of the three motion regions is deter-

mined according to the local motion magnitude. The corresponding LR se-

quences are produced according to the space-time trade-off and are presented

in Fig. 4.11(b2), Fig. 4.11(c2), and Fig. 4.11(d2). In the simulation process,

these LR sequences are created independently, by applying on Sd a temporal

blur of 36, 9 and 16, and a spatial blur of 2× 2, 4× 4 and 3× 3, respectively.

168

(a) (b1) (b2)

(c1) (c2) (d1) (d2)

Figure 4.11: (a) A scene with three different motion magnitudes as captured by a

conventional sensor. (b1, c1, d1) Motion-blurred regions. (b2, c2, d2) Determining

the pixel size of each region based on the local motion magnitude, blur is reduced

to a sufficient degree in the produced LR sequences. As the LR pixel size increases,

more LR frames are produced, for the same time interval.

169

Three motion areas are formed in the SR approach, with LR pixel size

2 × 2, 4 × 4 and 3 × 3 HR, producing 4, 16 and 9 time samples during HR

integration. Fig. 4.12(a) demonstrates the ground-truth frame, which is the

output of an ideal sensor that combines HR spatial resolution with LR inte-

gration time. In reality, HR spatial resolution is associated with low temporal

resolution, rendering the motion blurred output of Fig. 4.12(b), where the blur

increases as the motion magnitudes increases. In Fig. 4.12(c), the output of

bicubic interpolation is illustrated. The interpolation is executed considering

magnification factors of 2, 4, and 3, for the independent motion regions Susan,

Amy, and Jack, respectively. Finally, Fig. 4.12(d) presents the output of SR

reconstruction, after executing 30 iterations of the Iterative Back Projection

algorithm. Super-Resolution reconstruction (Fig. 4.12(d)) clearly outperforms

bicubic interpolation (Fig. 4.12(c)) and successfully handles large degrees of

blur. This is also clear from the quantitative comparison of the RMSE values,

which are given in the captions of the individual subfigures of Fig. 4.12.

4.5.3 Quantitative Performance Evaluation

To provide generalized estimations of the reconstruction error, a variety of LR

sequences has been produced, for various sensor configurations and pixel sizes.

In particular, each LR sequence was synthetically produced by applying both

temporal and spatial blur, as described in Sections 4.5.1 and 4.5.2, on the 8

ground-truth frames of Fig. 4.13.

The statistical quantitative results, i.e. the average RMSE (ǫµ) and the

170

(a) Ground-truth frame. This is the output of an ideal sensor that combines HR

spatial resolution with LR integration time.

(b) Motion blurred output that would be produced if the sensor had HR spatial

resolution and, therefore, low temporal resolution. RMSE = 15.26

Figure 4.12: Reconstruction of dynamic regions for different motion magnitudes.

171

(c) Bicubic interpolation applied on the output of a LR sensor, where the pixel size

of each motion area is determined according to the motion magnitude. RMSE = 2.2

(d) Output of SR-based deblurring after 30 iterations of the algorithm. The recon-

struction is executed individually on the three motion regions, and the LR pixel size

is different for each region. RMSE = 0.54

Figure 4.12: Reconstruction of dynamic regions for different motion magnitudes.

172

standard deviation of the RMSE values (ǫσ), which describe the statistics of

the outputs of the above experiments, are given in Table 4.1. Results are given

both for the static and the dynamic case. For the static case, the entire sensor

is configured either with a uniform or with a hybrid pixel grid, for the SR-based

and deconvolution-based approaches respectively, with LR pixel size 2 × 2 or

3× 3, as indicated in Table 4.1. For the dynamic case, a single motion area is

considered, which spans the entire sensor. This is the case when global camera

motion occurs. The given reconstruction errors correspond to the following

scenarios: SR reconstruction after executing 10 iterations and after executing

30 iterations of the IBP, and deconvolution-based reconstruction on a hybrid

grid. Note that in the case of the SR-based approach the reconstruction for

the static case is executed by applying bicubic interpolation. Therefore, the

reconstruction error in the static case is only different when a hybrid grid is

employed, which is done when the deconvolution-based approach is used.

Table 4.1 illustrates that for the group of conducted experiments the SR-

based approach renders highly accurate reconstruction for the case of dynamic

regions, whereas the hybrid grid of the deconvolution-based approach performs

better for the static case. The above observations are in accordance with the

discussion in Section 4.4, as well as with the conclusions of Sections 4.5.1 and

4.5.2.

173

Figure 4.13: Ground-truth frames used for the generation of the test sequences.

174

LR pixel size 2× 2 3× 3

Type of region static dynamic static dynamic

Error metric ǫµ ǫσ ǫµ ǫσ ǫµ ǫσ ǫµ ǫσ

SR− based 10 7.16 0.68 1.74 0.34 10.16 1.04 1.77 0.36

SR− based 30 7.16 0.68 0.76 0.13 10.16 1.04 0.78 0.16

Deconv.− based 4.88 0.57 6.58 0.63 6.87 0.60 8.86 0.75

Table 4.1: Average (ǫµ) and standard deviation (ǫσ) of the reconstruction error for

the group of experiments that are executed on the test sequences.

4.6 Extending the Proposed Methods to Non-

Rigid Objects

The work presented in the previous sections assumes rigid moving objects.

Thus, future work related to this chapter mainly includes extending the pro-

posed methods to non-rigid objects. However, it should be noted that, for the

particular application addressed in this work, the general problem of recon-

struction using multiple frames with non-rigid motions is simplified, since the

LR frames participating in the reconstruction are neighboring frames. This

confines the inter-frame motions and reduces their non-rigidness.

Extending the deconvolution-based approach to non-rigid objects is straight-

forward in the sense that more motion PSFs will be constructed per object.

This means that a single moving object will span multiple Voronoi cells, each

associated with a particular PSF that describes the motion of a particular part

of the object.

175

The extension of the SR-based method to effectively handle non-rigid ob-

jects is less straightforward than that of the deconvolution-based approach.

The issue of extending the SR framework in order to accommodate non-rigid

motions is thoroughly discussed in [BK99].

4.7 Summary

In this chapter, two methods of configuring an adaptive image sensor are pro-

posed. These configurations aim to maximize the information collected from

the environment. For each configuration, an appropriate system is developed

to process that raw information and enhance the output. Specifically, an SR-

based and a deconvolution-based approach, that execute motion deblurring on

an adaptive sensor, are proposed, compared and evaluated. Results demon-

strate that the SR method performs better in dynamic regions and is prefer-

able when the sensor can be frequently configured. Moreover, this method

effectively manages large blur by increasing the LR pixel size. Experiments

show that the deconvolution-based approach achieves better reconstruction of

static regions and is suitable for sparse configuration, as large static parts are

included in LR areas.

As demonstrated in this chapter, the deconvolution-based approach is not

as robust as the SR-based approach for the reconstruction of dynamic regions,

in particular for cases of large motions. Therefore, in the chapters that follow,

the focus is on the SR-based approach. As for the problem of deblurring the

176

individual LR samples, which is briefly mentioned in Section 4.5.1, this is also

incorporated within the framework of the SR-based approach.

Since the resolution enhancement of dynamic regions is the main area of

interest of this thesis, the next chapters deal with the SR approach, which is

more appropriate for this type of regions. In particular, Chapter 5 deals with

the classic SR problem, where isotropic Gaussian PSFs are appropriate to

describe the blur of the LR frames, while Chapter 6 uses non-isotropic motion

PSFs to describe non-negligible intra-frame motion in the LR samples. The

latter is required for the reconstruction process to render accurate results in

the case of considerably fast motion, due to which even the high frame-rate

samples contain significant motion blur.

177

Chapter 5

Real-Time Super-Resolution

with Isotropic PSFs

In this chapter, an FPGA architecture is proposed for the implementation of

the resolution enhancement module of the SR algorithm based on the Itera-

tive Back Projection (IBP) [IP91] approach. The noise in the image samples

is taken into consideration and the SR block is modified to account for such

noise, leading to a more robust system. The proposed architecture comprises

a general-purpose SR hardware block. The reconstruction quality of the archi-

tecture is evaluated under different noise levels. Moreover, a thorough inves-

tigation is carried out on how the system performance is affected by different

decisions and parameters, such as the number of LR samples contributing in

SR, the initialization of the SR iterative scheme, and the word-length of the

data path. In particular, an investigation of the impact of the word-length of

the data path to the convergence and the reconstruction quality of the IBP

178

LR sequenceN degradation

channels

reconstructed HR frameground-truth HR frame

FORWARD MODEL (unknown degradations)
INVERSE MODEL

..
.

DC 1

DC 2

DC 3

DC N

..
. ?

motion

estimation

&

SR

Figure 5.1: The forward model consists of a series of unknown degradations re-

lated to the imaging system. The inverse model estimates those degradations to

reconstruct the missing high-resolution data.

algorithm is performed.

The structure of the chapter is as follows. Section 5.1 introduces SR, while

Section 5.3 focuses in the Iterative Back Projection SR algorithm. Section 5.4

discusses how the reconstruction algorithm can account for the presence of

noise to produce a more robust system. Section 5.5 describes the FPGA im-

plementation of the SR block. In Section 5.6, the implementation requirements

are discussed, and the system performance is evaluated, considering different

noise levels and system parameters.

Parts of the work presented in this chapter have been published in [ABCC08]

and [ABCC09].

179

5.1 Introduction to Super-Resolution

The forward model, which describes the generation of LR samples at the out-

put of an imaging system, was presented in Chapter 2. The parameters of

the forward model are estimated and used by the inverse model, which is al-

gorithmically formed to reconstruct the missing high-resolution data. In the

high-level diagram of Fig. 5.1, the forward model is succeeded by the inverse

model, since the outputs of the former are the inputs of the latter. In the

forward model, every LR sample M is produced individually after a series of

degradations, which are not known but can be estimated. These degradations

are presented by the individual LR channels, denoted by ‘DC M ’ in Fig. 5.1.

The inverse problem uses as inputs these LR samples and approximates the

related degradations, so as to apply the inverse procedure and reconstruct the

missing high-resolution data. The original frame at the input of the forward

model (Fig. 5.1) comprises the ideal high-resolution information. This ideal

frame is known as the “ground-truth” frame. Since the parameters of the for-

ward model are not known precisely and can only be approximated, it would

be naive to expect the exact “ground-truth” frame at the output of the in-

verse model. In the current section, the forward model will be mathematically

stated, and the inverse problem will be formulated. The aim of the inverse

problem is to get an HR image from the LR channels.

The forward model of generating LR pixels is shown in Fig. 5.2. Many HR

pixels are mapped on a single LR pixel, thus imitating the integration of a

180

HR input on the HR grid

HR pixel a

L
6

L
7

L
8

Computations on the HR grid

convolution &

downsampling

for

displacement

(0, 0)

reference LR grid

L
3

L
4

L
5

L
0

L
1

L
2

L'
6

L'
7

L'
8

L'
3

L'
4

L'
5

L'
0

L'
1

L'
2

PSF
Computations on the HR grid

convolution &

downsampling

for

displacement

(0.25, 0.25)

LR frame L

(reference

LR frame)

LR frame L'

Figure 5.2: The formation of the LR output presented mathematically. A 4×4 PSF

is employed. Two simulated LR frames with displacements (0, 0) and (0.25, 0.25)

are produced.

group of HR pixels on a single photodiode. The weights with which these HR

pixels contribute in the formation of the particular LR pixel form a Gaussian

kernel–the 2-D PSF shown in Fig. 5.2. The Gaussian PSF assumption is the

usual assumption for this type of problem. As mentioned in Chapter 2, the

2-D Gaussian function closely resembles the photodiode’s sensitivity, which is

high in the middle and decreases towards the borders with a Gaussian-like

decay. Every LR pixel can be thus expressed as a weighted sum of HR pixels,

and the following linear system of equations is formed:

A~h = ~l (5.1)

where ~h and ~l denote the vectors of unknown HR pixels and known LR pixels,

181

and matrix A contains the relative contribution of each HR pixel to each LR

pixel.

The aim of spatial SR is to solve the inverse problem of finding ~h. The

HR grid on which reconstruction will occur is the HR grid underlying the LR

reference grid (Fig. 5.2). Thus, ~h consists of the HR pixels of this grid. Each

LR frame adds an extra set of equations in the system, one for every LR pixel.

Spatial SR is based on subpixel shifts on the LR reference grid. If a group

of LR frames were shifted on the reference LR grid (Fig. 5.2) by integer LR

pixel units, they would all give the same set of equations since the same groups

of HR pixels would form in the same manner their LR pixels. Therefore, for

an LR frame to contribute uniquely in the system of (5.1), it should be shifted

by subpixel units on the LR reference grid compared to the other LR frames.

However, although in theory the above statements are true, in practice LR

frames with the same integer displacements may give different sets of equations.

This is partly due to additive noise present in the LR samples (Chapter 2) and

partly due to errors in the motion estimation procedure [Bou02]. Therefore, in

practice it is preferable to consider many LR frames, even if their displacements

overlap.

5.2 Related Work

The SR methods found in the literature solve the SR problem either in the

spatial or in the frequency domain [PPK03, BK02, FREM04]. In this work, a

182

spatial domain method is adopted. This avoids the transformations between

the two domains, and also removes the need to handle outputs with large dy-

namic range as produced by frequency domain analysis. Therefore, the need

for long word-lengths in hardware implementations is not required. Among the

spatial domain methods the Iterative Back Projection (IBP) [IP91] approach

was selected because of its hardware-friendly characteristics. Instead of solving

(5.1) for ~h, the IBP produces a simulated LR sequence and iteratively mini-

mizes its difference from the observed LR sequence. This iterative scheme is

suitable for hardware due to its potential for maximum parallelism and data

re-use, as it will be demonstrated in Section 5.5.

Most of the work on SR found in literature is concerned with the algorith-

mic aspects of SR [PPK03, BK02, FREM04]. The computationally demanding

nature of the SR problem renders software solutions inadequate when real-time

specifications are imposed. Surprisingly, the literature that is related to hard-

ware architectures is very limited. In [CLL+05a], SR is implemented with a

system that uses VLIW and ARM processors. In [BB08], an FPGA architec-

ture for the implementation of the SR algorithm of [FEM04] is proposed, whose

reconstruction quality is however poor and is extremely sensitive to errors from

the motion vectors. Moreover, a very large number of LR frames are required

for the reconstruction process. In particular, when 25 LR frames participate in

the reconstruction, the Root Mean Square Error (RMSE) of the reconstructed

output equals 25 when no errors are present in the motion vectors. When half

of the frames contain errors in the motion vectors, the RMSE increases to 34.

183

The architecture presented in this chapter achieves significantly higher recon-

struction quality, rendering an RMSE which is an order of magnitude smaller

than that of [BB08].

5.3 The Iterative Back Projection (IBP) Super-

Resolution Approach

The IBP employs an iterative refinement scheme on the HR grid, starting with

an initial high-resolution approximation such as the interpolation of the refer-

ence LR frame. Then, at every iteration of the algorithm the forward model

of Fig. 5.2 is applied on the current high-resolution approximation using the

displacements of the corresponding observed LR frames to produce a simu-

lated LR sequence. The aim of IBP is to minimize the difference between

the observed and the simulated LR sequence, by refining the high-resolution

estimation.

Let Lok denote the kth observed LR frame and Lsk
i denote the correspond-

ing simulated LR frame at the current iteration i. As the iterations of the IBP

algorithm succeed one another, each Lsk
i converges to the corresponding Lok.

The error function that is iteratively minimized contains the total error from

all LR frames and is the following:

e(i) =

√

√

√

√

K−1
∑

k=0

∑

(xl,yl)

(Lok(xl, yl)− Lsk
i (xl, yl))2 (5.2)

184

where (xl, yl) denote the LR coordinates, and K is the number of LR frames.

All of the observed LR pixels and the corresponding simulated LR pixels

that are influenced by a particular HR pixel contribute in the refinement of

that HR pixel. This contribution is weighted according to the relative position

of that HR pixel and the LR pair. For instance, in the refinement of HR

pixel a (Fig. 5.2), pixel L0 of frame L participates with a weight proportional

to PSF (1, 1). However, in the refinement of the same HR pixel, the weight

of pixel L′
0 of frame L′ is proportional to PSF (0, 0) (Fig. 5.2). At iteration

i, every pixel of the current high-resolution approximation Hi is refined as

follows:

Hi+1(xh, yh) = Hi(xh, yh) +
K−1
∑

k=0

∑

(xl,yl)∈Y

(Lok(xl, yl)−Lsk
i (xl, yl))×W (k, xl, yl),

(5.3)

where (xh, yh) denote the HR coordinates, Y is the set of LR coordinates of

the pixels of Lok and Lsk
i that are influenced by point (xh, yh), and W is the

weight with which Lok(xl, yl) and Lsk
i (xl, yl) contribute in the refinement of

Hi(xh, yh).

185

5.4 Increasing the System Robustness

As explained in Section 5.1, the error given by (5.2), which determines the

quality of the SR algorithm, is the error between the simulated and observed

LR sequences. In the ideal situation of noise-free LR samples, it can be proven

that if the error function of (5.2) is iteratively minimized, this is also the case

for the error between the SR output and the “ground-truth” frame. However,

in a real-world scenario, the LR outputs of the imaging system always contain a

certain level of noise. This is the additive noise factor, which comprises the final

degradation stage of the observation model and is connected to technology-

related non-idealities of the image sensor, as discussed in Chapter 2. In the

presence of such noise, the error function of (5.2) is still minimized, regardless

of the noise level. However, this is no longer true for the error between the

reconstructed output at every iteration and the “ground-truth” frame. The

reason for this is that the simulated LR frames gradually converge to the noisy

LR samples, and, therefore, the final reconstructed output is affected by the

presence of noise. As a result, the higher the noise levels in the LR samples,

the more the SR output diverges from the ideal “ground-truth” frame.

As explained in [IP91], averaging in (5.3) all LR pixels related to a given HR

pixel, already diminishes the effect of noise to a significant extent. Therefore,

increasing the number of LR frames decreases the sensitivity of the updating

process to noise. If a large number of LR frames is employed, LR pixels with

extreme values, within the LR pixel group related to a given HR pixel, can

186

be identified and not used in the reconstruction, since such outliers are most

likely due to noise. However, in the particular application of SR in motion-

deblurring, which is the main focus of this work, increasing the number of LR

frames means widening the temporal neighbourhood around the integration

interval of interest (Section 5.1). By doing the above, the correlation in time

among the two ends of the LR sequence becomes low. This may increase the

level of non-rigid deformations of the moving object, which makes in turn the

fusion of the relevant LR information more difficult.

5.4.1 Reducing the Noise Effect

To keep the number of LR frames within reasonable limits, so as to both avoid

undesirable types of changes in the scene and execute an efficient reconstruc-

tion, we propose including in the expression of (5.2) information about the

statistics of the noise. This is done in a manner inspired by the Projection

onto Convex Sets (POCS) framework [SPBDK01, SO89, YW82]. Specifically,

the standard deviation of the noise of each LR frame is taken into account.

In practice, this metric derives from the Signal to Noise Ratio (SNR) of the

corresponding frame. The standard deviation of noise determines an interval

in which the variation of LR pixel values is attributed solely to the presence

of noise. Thus, if the difference of Lok(xl, yl) and Lsk
i (xl, yl) falls within that

interval, these pixels will not contribute in the refinement of the corresponding

HR pixel Hi(xh, yh). Let ri(xh, yh, k, xl, yl) denote this difference:

187

ri(xh, yh, k, xl, yl) = Lok(xl, yl)− Lsk
i (xl, yl) (5.4)

then, (5.3) is modified as follows:

Hi+1(xh, yh) = Hi(xh, yh) +
K−1
∑

k=0

∑

(xl,yl)∈Y

ui(xh, yh, k, xl, yl) (5.5a)

ui(xh, yh, k, xl, yl) =

(ri(xh, yh, k, xl, yl)− δ0(k))×W (k, xl, yl),

if ri(xh, yh, k, xl, yl) > δ0(k)

0,

if −δ0(k) ≤ ri(xh, yh, k, xl, yl) ≤ δ0(k)

(ri(xh, yh, k, xl, yl) + δ0(k))×W (k, xl, yl),

if ri(xh, yh, k, xl, yl) < −δ0(k)

(5.5b)

where ui(xh, yh, k, xl, yl) denotes the contribution of each pair of LR frames,

Lok(xl, yl) and Lsk
i (xl, yl), in the refinement of the HR pixel Hi(xh, yh), and

δ0(k) denotes the standard deviation of the noise of Lok. In the ideal case of

noise-free LR frames, δ0(k) = 0, for k ∈ [0, K − 1], and thus (5.5) is simplified

to (5.3). Thus, (5.3) can be considered as a special case of (5.5), corresponding

to the ideal scenario of noise-free LR samples.

Apart from the additive noise, another type of error affecting the recon-

struction process is that of the motion vectors, which are generated by the mo-

tion estimation process and passed to the SR block. To deal with such errors,

188

the error information at the output of the Motion Estimation block [Bou02]

is utilized by the SR block. Thus, the different LR samples are weighted, and

the contribution of those with large error values is decreased.

To further increase the robustness of the system, neighboring LR samples

before and after the integration interval of interest contribute in SR with ad-

justable weights. This technique increases the available spatial information at

the input of the SR block, since a larger number of different subpixel displace-

ments on the underlying HR grid (Fig. 5.2) is considered, leading to a better

determined SR problem. In addition, using a larger number of LR samples

reduces both the effect of errors related to some of the motion vectors and the

effect of additive noise on the reconstruction output, as explained above.

5.5 Architecture of the SR System

Figure 5.3 shows an overview of the proposed system. For every new group

of LR frames, produced during a particular HR integration interval, an SR

stage occurs. At the beginning of each SR stage an initial high-resolution ap-

proximation is produced by applying interpolation on the reference LR frame.

Once this initial phase is completed, the iterations of the algorithm begin.

When the iterations are over, the next LR group (associated with the next HR

integration interval) is processed, and so on. The rest of the section focuses

on the description of the individual blocks of the proposed architecture. The

motion vectors, describing the displacements of each LR frame with respect to

189

HR RAM

FPGA

LR RAM

0

LR RAM

1

LR RAM

2

Extract

Processing

Window (EPW)

Interpolation

Transform

HR to LR

Buffering of

Observed

LR Frames

Buffering of

Simulated

LR Frames

HR Pixel

Refinement

MEMORY BANKS

motion vectors

Figure 5.3: High level architecture overview. The architecture has been imple-

mented on a Celoxica ADMXRC4SX board [Cel08], which hosts a Xilinx Virtex-4

FPGA and 4 Zero Bus Turnaround (ZBT) SSRAM banks.

190

the reference frame, are treated as inputs to the implemented SR system. It

should be mentioned that the target system has 4 memory banks, each with a

word-length of 4 bytes.

5.5.1 Off-chip Memory Banks

LR RAMs

The LR memory banks store the incoming LR frames. As has been mentioned,

the processing of the LR frames is performed in groups that correspond to one

HR frame. However, as explained in Section 5.4, in order to increase the

robustness of the system, a number of neighboring LR frames are used in ad-

dition to those produced during the HR integration. Fig. 5.4(a) demonstrates

how the tasks of processing LR frames and writing new frames in the memory

banks are scheduled in time, so as to include in the processing of an LR frame

neighbourhood. In Fig. 5.4(a), four LR frames are produced during the HR

integration and two pairs of neighboring frames (one pair at each side of the in-

tegration interval) are considered. To implement the scheduling of Fig. 5.4(a)

and execute on-line processing of the LR data, two memory banks need to be

read in parallel, as Fig. 5.4(b) illustrates for the case of a 2× 2 PSF and four

neighboring frames. For instance, in SR stage 1 (Fig. 5.4(b)) frames 8-11 need

to be read together with frames 4-7, which are in a different RAM bank due

to the state of SR stage 0. In order to handle this we employ a triple buffering

scheme. The access pattern of LR RAMs is shown in Fig. 5.4(b). There are

191

t

SR stage

0

1

2

3
...

new LR frames being written

LR neighboring frames being processed

LR main frames being processed

0 1 2 3

0 1 2 3 4 5 6 7

12 1314 15 16 1718 19 20 21 22 23

0 1 2 3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12 13 14 15

8 9 10 11 12 1314 1516 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11

(a)

t01 stage 1 / 10 stage 2 / 00 stage 3 /

LR
RAM 0

SR stage 0 /

LR

RAM 1

LR

RAM 2

00

6 74 5

12 13 14 15

8 9 10 11

16 17 18 19

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

...

RAM being written

LR main frames being read

LR neighboring frames being read

FSM for triple
buffering :

00

10

01

(b)

Figure 5.4: The numbers correspond to the LR frames. (a) A sliding window

indicates the group of frames processed during the current SR stage. While the

processing occurs on these frames, a new group of four frames is written in the

memory banks. (b) Triple buffering scheme applied on the LR RAMs.

three possible configurations, each corresponding to a different combination of

modes of the three LR RAMs, depending on which RAMs are being read and

which is being written during the current SR stage. As the SR stages succeed

one another, the LR frames are written and read from the LR RAMs accord-

ing to the current state of an FSM. Thus, as demonstrated in Fig. 5.4(b), a

particular configuration appears every 3 SR stages.

192

Part used during LR interpolation

Nh - S

2

S

Nh/S - 2

weight: 0.25
weight: 0.5
LR pixels

Interpolated pixels
Output HR pixels

(a) (b)

Figure 5.5: (a) Extract Proccessing Window Unit. Nh denotes the number of

columns of the HR frame, and S is the size of the PSF relating the LR to the HR

grid. (b) Interpolation Unit

HR RAM

This external memory stores the computed HR pixels. During the initial phase

of the current SR stage, data come into the HR RAM from the Interpolation

unit. Once the initial estimation is computed, data come from the HR Pixel

Refinement unit, which iteratively updates the content of the RAM until the

end of the current SR stage. Before a pixel is written in HR RAM it is rounded

to 8 bits. This allows storing HR pixels in groups of four in the 32-bit RAM,

thus increasing the available memory bandwidth.

5.5.2 Individual Processing Units

The Extract Processing Window (EPW) unit of Fig. 5.3 produces the process-

ing window for both the Interpolation and the Transform HR to LR units, at

different phases of the SR stage. Thus, it operates in two modes, indicated by

the different shades of grey in Fig. 5.5(a). In Mode 1 it returns a 2×2 window

193

to the Interpolation unit, while in Mode 2 it returns an S × S window to the

Transform HR to LR unit, with S being the size of the PSF relating the LR

to the HR grid. The EPW unit consists of S − 1 FIFOs that are connected to

S × S registers to form the processing window.

To compute the initial high-resolution estimate, the Interpolation unit ex-

ecutes bilinear interpolation. Each interpolated HR pixel is equal either to a

weighted sum of the surrounding 2× 2 LR pixels, as illustrated in Fig. 5.5(b),

or to a raw pixel of this 2×2 group of LR pixels. This depends on the position

of the interpolated HR pixel, as it is demonstrated in Fig. 5.5(b).

The Transform HR to LR unit multiplies each HR pixel of an S × S pro-

cessing window with the weight corresponding to its location in the window.

The Ls pixels of the simulated LR sequence (Section 5.1) will be produced by

subsampling the output of the convolution of the last high-resolution approx-

imation. All possible subpixel displacements should be covered, therefore the

HR pixels should ‘move’ in the FIFOs of the EPW unit one location at every

cycle. This determines the number of cycles that leads to maximum through-

put. Therefore, for maximum performance, the number of cycles per iteration

should be equal to the number of HR pixels.

The HR Pixel Refinement Unit includes parallel processing branches each

one of them associated with an LR frame, as demonstrated in Fig. 5.6. These

parallel branches meet at a final adder, which corresponds to the external

summation in (5.3) or (5.5), to produce the refined version of the HR pixel that

is currently under process. In [ABCC08], the iterative process was executed

194

+

HR Pixel

Refined HR
Pixel

(to HR RAM)

......

|

LRs
i
k+2

Apply
Weights[k+2]

|

Apply

Weights[k+1]

|

LRs
i
k

Apply

Weights[k]

0

0

0

LRok LRs
i
k+1

LRok+1

LRok+2

Figure 5.6: The HR Pixel Refinement Unit. LRok and LRsk
i denote the contribu-

tion of each pair of LR frames Lok and Lsk
i , in the refinement of the particular HR

pixel.

195

without taking into account the noise statistics related to each LR frame,

and thus (5.3) was implemented. In the current work, (5.5) is used instead.

The hardware that implemented (5.3) is modified to accommodate (5.5), by

including an extra multiplexer that executes the control logic of (5.5b), leading

to a more robust to noise algorithm, as it is demonstrated in the performance

evaluation section.

5.5.3 Data Re-use and Maximum Performance

Each HR and observed LR pixel are read from the corresponding RAM only

once and remain on-chip until they are no longer needed. Thus, data re-use

is maximized. Also, for maximum performance, one iteration requires the

number of cycles imposed by the HR convolution (Section 5.5.2). To achieve

this, the EPW unit, which produces the processing window for convolution, is

designed to produce the synchronization control signals for the entire system.

When an HR pixel is first brought on-chip it is “pushed” into the FIFOs of

the EPW. When it is no longer needed by the EPW it will be the input of the

next level of processing, that is the HR Pixel Refinement Unit unit. When

this happens, all the LR pixels influenced by the particular HR pixel, both

observed (Lo) and simulated (Ls), should be available on-chip.

Since one high-resolution pixel is processed per cycle, it would be conve-

nient to view the HR grid underlying the reference LR frame as a time-map of

the current iteration. Imagine a cursor moving along the arrow of Fig. 5.7(a)

pointing at one HR pixel at every cycle. This is the HR pixel that is currently

196

L'
0

L'
3

L'
1

L'
2

t
19

L
3

L
0

t
19

L
1

L
2

t
9

t
10

t
11

t
12

t
13

t
14

t
15

t
16

t
17

t
18

t
19

t
20

t
21

t
22

t
23

t
24

t
25

t
26

t
27

t
28

t
29

t
30

t
31 ...

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

(a) (b) (c)

Figure 5.7: Temporal Aspect of HR Grid (a) At every clock cycle the cursor moves

one position on the HR grid indicating the currently processed HR pixel. (b) The

reference LR frame (c) An LR frame with displacement (2,1)

Reset

Ml x Nl (Mh x Nh x iterations) + [Nh x (S-1) + S] 7 56

1211
10

8 4

2
1

9 3

Translational Stage
Flush Pipeline

Mode 1 Mode 2 Mode 2

Figure 5.8: Time diagram with execution cycles.

under process. Therefore, HR pixel h0 would correspond to time-slot t0 and so

on. To find when and also how much every LR pixel will contribute in the re-

finement procedure, we can superimpose the LR grids of the LR frames on the

time-map (Fig. 5.7(b, c)). For instance, at t19 pixels L0 and L′
0 will both con-

tribute to the refinement of HR pixel h19, but with different weights, depending

on their relative position with respect to h19, as explained in Section 5.1.

The time diagram with the total number of cycles required for the above

specifications is shown in Fig. 5.8. In Fig. 5.8, Mh and Nh denote the number

of rows and columns of the HR frame, Ml and Nl are the number of rows and

197

columns of the LR frame, and S denotes the size of the PSF relating the LR

to the HR grid. The two modes in Fig. 5.8 are the two operating modes of the

Extract Processing Window unit, which are described in Section 5.5.2.

5.5.4 On-chip Memory

The units Buffering of Simulated LR Frames and Buffering of Observed LR

Frames of Fig. 5.3 include the Ls-type and Lo-type groups of line-buffers,

respectively, where Ls and Lo pixels are stored. In order to achieve a through-

put of one HR pixel per cycle, at every cycle, pixels from all LR frames should

be accessed in parallel, while new data is brought in. Therefore, every group

contains a separate buffer for every LR frame. These buffers only get updated

when their content will not be used anymore at the current iteration.

Ls buffers

The width of the Ls buffers is equal to that of the LR frames. Note here

that since several LR frames might have the same subpixel displacement, the

output of the Transform HR to LR unit might be written simultaneously to

multiple Ls buffers.

Lo buffers

These buffers need to be synchronized with buffers Ls. As mentioned in the

previous paragraph, multiple Ls buffers might be written simultaneously in the

case of LR frames with identical displacements. An equivalent scenario would

198

be impossible in the case of the Lo group of buffers, as it would be accessing in

parallel multiple locations of the single-port off-chip LR RAM. The problem

increases as the number of LR frames increases, and in particular if many of

these frames have the same displacements. We cannot just “move” the request

to a later time slot, as this would probably be occupied by another LR frame.

We should, therefore, increase the size of the Lo buffers, so that they would

store more pixels than the width of the LR frames. While a particular line

is being read from the on-chip buffers, the next line, or part of the next line,

will be read from the RAM and written on-chip. In the current version of the

system polling is used, by assigning slots dedicated to each of the Lo buffers.

Also the capacity of these buffers is chosen to be twice the width of the LR

frames. An alternative would be to use requests from the Lo buffers to the

RAM, when the content of a location is no longer needed.

Since the pixels in the LR RAMs are written in groups of four, we have

used a word of 32 bits for these buffers, to store four pixels at a time.

5.6 Results

5.6.1 Implementation Requirements

The design targets a Celoxica ADMXRC4SX board [Cel08]. The DK5 Handel-

C compiler has been used, and the implementation has been placed and routed

using Xilinx ISE v.9.1. The ADMXRC4SX board hosts a Xilinx Virtex-4

FPGA [Xil08] and 4 ZBT SSRAM banks [Cel08]. The operating frequency of

199

Size 64× 64 128× 128 256× 256 240× 320 512× 512 480× 640 1024× 1024

Iter. 780 195 48 41 11 10 2

Table 5.1: Iterations for real-time performance for different HR sizes.

the design on ADMXRC4SX is 80 MHz. The critical path of the circuit lies in

the control block that implements the triple-buffering scheme that is illustrated

in Fig. 5.4. To meet real-time requirements, the system should achieve 25 fps.

As shown in Fig. 5.8, the required number of cycles for SR reconstruction is:

C = R + Ml ×Nl + Mh ×Nh × I + [Nh × (S − 1) + S] + Latency, (5.6)

where Mh (Ml) and Nh (Nl) denote the number of rows and columns of the

HR (LR) frame, I denotes the number of iterations of the SR algorithm, R

is the number of reset cycles, and S is the the size of the PSF relating the

LR to the HR grid. Thus, C depends on the frame size and on the number

of LR frames (K) that contribute to the Latency by ⌈log2(K + 1)⌉, i.e. the

latency of the final adder of the HR Pixel Refinement unit. For K ∈ [8, 15],

the number of maximum iterations of the IBP permitting 25 fps derives from

(5.6) and is given in Table 5.1.

The number of FPGA slices is mainly affected by K, i.e. the number of LR

frames, and does not significantly vary for different frame sizes, as Fig. 5.9(a)

demonstrates for 256× 256 and 480× 640 HR size. Linear least squares fitting

is applied on the samples of Fig. 5.9(a), giving the following linear equations

200

4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

K

F
P

G
A

 S
lic

es

480x640 (VGA)
256x256

(a)

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

K

B
R

A
M

s

480x640 (VGA)

(b)

Figure 5.9: The number of FPGA resources increases linearly with the number of

LR frames (K). (a) Number of FPGA slices. (b) Number of BRAMs. The number

of BRAMs is independent of the image size, for the sizes reported in Table 5.1.

for the number of FPGA slices with respect to K:

SV GA = 650 ∗K + 2546 (5.7)

S256 = 593 ∗K + 2241 (5.8)

where SV GA and S256 denote the number of slices for HR sizes 480×640 (VGA

size) and 256× 256.

The number of BRAMs equals (S−1)+K×2, as (S−1) BRAMs are used

by the EPW unit, and K are occupied by each group of LR line-buffers. The

graph of Fig. 5.9(b) demonstrates the number of BRAMs for S = 2.

The linearity of the number of slices and BRAMs with the number of frames

K, which is observed in Fig. 5.9, is due to the parallel processing of the different

201

LR frames. This has been discussed in Section 5.5. Thus, as it is demonstrated

in Fig. 5.6, every LR frame is associated to a parallel processing branch. Also,

for each additional LR frame two line-buffers are employed, one belonging to

the Ls-type and the other to the Lo-type groups of buffers. This is required in

order to access in parallel pixels from all of the LR frames and, thus, achieve

a throughput of one HR pixel per cycle, as explained in Section 5.5.4.

5.6.2 Performance Evaluation

The performance of the implemented algorithm has been investigated using

different sets of evaluation parameters. Such parameters are the level of noise

in the LR samples, the length of the LR sequence, the type of initial approxi-

mation of the iterative scheme, and the chosen word-length of the system. The

above word-length corresponds to the word-length of the output of each IBP

iteration that is propagated to the next iteration. The evaluation is done using

semi-synthetic data. In this way, the “ground-truth” frame is known and can

be used as a reference to accurately evaluate the quality of the reconstructed

output. Specifically, a real image, captured with a simple hand-held digital

camera, has been shifted, blurred, downsampled, and contaminated with white

Gaussian noise, to synthetically produce the LR sequences.

Two groups of experiments are presented. The first is concerned with the

classic SR problem, where a sequence of shifted LR frames is used to recon-

struct a high-resolution output. The second deals with the motion deblurring

of a moving object, presenting the SR results based on time samples read from

202

an LR motion area. To include motion estimation errors in the simulation, the

OpenCV Lucas & Kanade optical flow [Bou02] and Shi & Tomasi good feature

extraction [ST94] algorithms are employed in both scenarios to calculate the

motion vectors that are used by the SR block.

In all experiments, the LR frames have been contaminated with white

Gaussian noise with various SNRs, which range from 10 to 70 dB, with a step

of 10 dB.

The SNR level is defined as follows.

Definition 3. Let σf denote the standard deviation of the noise-free image,

and σn denote the noise standard deviation. Then, the SNR of the noisy image,

which is contaminated with the above noise, is:

SNR = 10 log
σ2

f

σ2
n

(5.9)

The value σn of (5.9) is the noise standard deviation δ0(k) of (5.5b).

The noise-level of the captured frames is determined by the level of illu-

mination and the sensor quality [TFG01]. Under moderate illumination, most

cameras give an SNR between 50 and 60 dB, which may decrease to 30 dB

for lower illumination levels. The SNR under moderate illumination is thus

related to the technology of the image sensor and is typically given by the

camera manufacturer in the camera datasheet. An example camera datasheet

including information about the SNR is given in Appendix A.

The evaluation process has been repeated for different numbers of LR sam-

ples. Specifically, 4, 8, and 12 LR frames are used. The output of every iter-

203

ation, which comprises the input of the next iteration, has been rounded and

truncated to different bit-widths, to investigate how this affects the reconstruc-

tion quality. The results corresponding to the 8 bit rounding and truncating

schemes derive from the FPGA implementation of the algorithm. Apart from

those, Matlab results are reported for the following scenarios: double preci-

sion floating-point version, 9 bits truncated, 9 bits rounded, 10 bits truncated,

and 10 bits rounded (the last four are bit-accurate models). As for the initial

approximation, bilinear interpolation was implemented on FPGA, whereas a

bit-accurate Matlab model has been developed for bicubic interpolation.

To demonstrate the benefits of SR, double precision floating-point bicubic

interpolation has been applied on the LR reference frame, to be compared

with the SR output. This is the most elaborate type of interpolation that

can be applied on the output of a single LR channel, using solely information

from that channel. The metric used to quantify the reconstruction quality

is the Root Mean Square Error (RMSE) between the “ground-truth” frame

and the reconstructed output. All results correspond to the implementation

of (5.5), with the exception of a comparative analysis between (5.3) and (5.5),

which is presented for the second group of experiments to prove the increased

robustness of (5.5) with respect to noise.

The Classic SR Problem

In the first group of experiments, the natural image of Fig. 5.10(a) was used to

produce a group of LR samples, the drinks LR sequence. Random displace-

204

(a) (b)

Figure 5.10: “Ground-truth” frame with HR spatial resolution and LR tempo-

ral resolution for the drinks sequence. This is the output of an ideal sensor that

combines HR spatial resolution with LR integration time.

ments were applied on the original 512× 512 image and the displaced frames

were blurred with a 2× 2 kernel, rendering LR samples of size 256× 256.

The graphs of Fig. 5.11 demonstrate the RMSE values obtained when using

8 LR frames of the drinks sequence with different word-lengths and SNR

values, after executing the number of iterations indicated in Table 5.1 for 512×

512 HR. The difference among these two graphs lies in the type of interpolation

used as the initial guess: bilinear interpolation is employed for Fig. 5.11(a) and

bicubic for Fig. 5.11(b). These graphs are very similar, which proves the good

convergence properties of the algorithm of (5.5). Bilinear interpolation is thus

preferable, as its leads to similar results with lower computational cost.

The graphs of Fig. 5.12 demonstrate the decrease in the RMSE as the iter-

205

10 20 30 40 50 60 70
3

4

5

6

7

8

9

10

11

SNR (dB)

R
M

S
E

init: bilinear, 8 LR fr

(a)

10 20 30 40 50 60 70
3

4

5

6

7

8

9

10

11

SNR (dB)

R
M

S
E

init: bicubic, 8 LR fr

bicubic interpolation
8 bit trunc SR
8 bit round SR
9 bit trunc SR
9 bit round SR
10 bit trunc SR
10 bit round SR
floating point SR

(b)

Figure 5.11: RMSE values obtained for real-time SR when using 8 LR frames of

drinks with different word-lengths and SNRs. (a) Bilinear interpolation used as

initial approximation. (b) Bicubic interpolation used as initial approximation.

0 5 10
3

4

5

6

7

8

9

10

11

iterations

R
M

S
E

8 LR fr, 8−bit−round

(a)

0 5 10
3

4

5

6

7

8

9

10

11

iterations

8 LR fr, 9−bit−round

(b)

0 5 10
3

4

5

6

7

8

9

10

11

iterations

12 LR fr, 8−bit−round

(c)

0 5 10
3

4

5

6

7

8

9

10

11

iterations

12 LR fr, 9−bit−round

SNR 10
SNR 20
SNR 30
SNR 40
SNR 50
SNR 60
SNR 70

(d)

Figure 5.12: RMSE as a function of the number of iterations of the IBP applied on

the drinks sequence. The graphs correspond to different word-lengths and number

of LR frames: (a) 8 frames and data rounded to 8 bits, (b) 8 frames and data

rounded to 9 bits, (c) 12 frames and data rounded to 8 bits, and (d) 12 frames and

data rounded to 9 bits.

206

ations of the algorithm proceed. The solid vertical line indicates the number

of iterations complying with real-time requirements. In all graphs, the SNR

covers a range from 10 up to 70 dB, with a step of 10 dB, while bilinear inter-

polation is used to initialize the algorithm. The graphs correspond to different

data bit-widths and number of LR frames, as indicated in the figure. For the

given frame size and corresponding number of iterations, the 8 bit rounding

scenario with 8 LR frames, shown in Fig. 5.12(a), gives outputs of similar

quality to both larger word-lengths and longer LR sequences (Fig. 5.12(b-d)).

In Fig. 5.13, visual results of the reconstructed output are demonstrated for

the set of parameters of Fig. 5.12(a), after executing the number of iterations

for real-time performance. Each row of Fig. 5.13 corresponds to the SNR value

indicated on the left. The part of the frame shown in Fig. 5.13 corresponds

to the “ground-truth” part of Fig. 5.10(b). The first column of Fig. 5.13

illustrates the output of floating-point bicubic interpolation applied on a single

LR frame for a magnification factor of 2. The second column shows the real-

time SR output. Using real-time FPGA-based SR, the combination of HR

spatial resolution and LR temporal resolution is achieved, leading to superior

results.

The Motion Deblurring Problem

In the second experiment, a motion area employing pixels of 2×2 Sh is consid-

ered, which produces 4 time samples during the HR integration. If very fast

motion is involved, the LR frames are blurred themselves. To incorporate this

207

20 dB

30 dB

40 dB

50 dB

60 dB

70 dB

Figure 5.13: Reconstruction of drinks for various SNRs. The first column shows

the output of floating-point bicubic interpolation using a single LR frame, while the

second one demonstrates the higher quality obtained by the real-time SR FPGA

implementation.
208

(a) (b)

Figure 5.14: “Ground-truth” frame for the car sequence, i.e. the output of an ideal

sensor combining HR spatial resolution with LR temporal resolution.

intra-LR-frame motion, we first generated a dense HR sequence, using random

HR displacements, and then created the LR motion blurred sequence in two

steps. First we averaged groups of 4 successive frames and produced sequence

A, with LR pixel temporal resolution and HR pixel spatial resolution. This

would be the output of an ideal but unrealistic sensor that combines LR tem-

poral resolution with HR spatial resolution. A 2× 2 Gaussian PSF was then

applied on sequence A (for size 2× 2, the Gaussian PSF is actually a uniform

2× 2 PSF). Then, Gaussian noise was added, to get LR sequences with SNR

levels ranging from 10 to 70 dB. The desired output belongs to sequence A

and is shown in Fig. 5.14.

The graphs of Fig. 5.15(a,b) describe exactly the same scenarios as those

of Fig. 5.11(a,b), but for the car sequence. The size of the HR frame is now

240× 320 and thus 41 iterations can be executed, according to Table 5.1. As

209

10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

SNR (dB)

R
M

S
E

init: bilinear, 8 LR fr

(a)

10 20 30 40 50 60 70
1

2

3

4

5

6

7

8

SNR (dB)

R
M

S
E

init: bicubic, 8 LR fr

bicubic interpolation
8 bit trunc SR
8 bit round SR
9 bit trunc SR
9 bit round SR
10 bit trunc SR
10 bit round SR
floating point SR

(b)

10 20 30 40 50 60 70
1

2

3

4

5

6

SNR (dB)

R
M

S
E

init: bilinear, 8−bit−round

4 LR frames
8 LR frames
12 LR frames

(c)

10 20 30 40 50 60 70
1

2

3

4

5

6

SNR (dB)

R
M

S
E

init: bilinear, 9−bit−round

4 LR frames
8 LR frames
12 LR frames

(d)

10 20 30 40 50 60 70
1

2

3

4

5

6

SNR (dB)

R
M

S
E

init: bilinear, 10−bit−round

4 LR frames
8 LR frames
12 LR frames

(e)

Figure 5.15: RMSE values for real-time SR on the cars sequence. (a, b) Employing

8 LR frames, different word-lengths and SNR values, and using (a) bilinear and

(b) bicubic interpolation as the initial guess. (c, d, e) RMSE values obtained for the

given word-lengths and the indicated numbers of LR frames.

210

in Fig. 5.11(a,b), it is also observed here that, due to the good convergence

properties of the algorithm, bilinear interpolation is preferable as its leads to

similar results to bicubic interpolation but with lower computational cost.

The graphs of Fig. 5.15(c-e) correspond to the 8-bit-round, 9-bit-round,

and 10-bit-round scenarios for different lengths of the LR sequence. For a

given word-length, as the SNR decreases, significant deviation of the RMSE

values is observed when different lengths of the LR sequence are used.

In the following subsection, the motion deblurring experiment is employed

for the comparison of (5.5) with (5.3), to demonstrate the increased robustness

of (5.5) with respect to noise.

Robust SR in the Presence of Noise

The graphs of Fig. 5.16 demonstrate a comparison between the RMSE values

obtained by (5.3) (Fig. 5.16(a-d)) and (5.5) (Fig. 5.16(e-h)), as the iterations

of the algorithm succeed one another, for the car sequence. The solid vertical

line indicates the iterations for real-time performance. In all graphs, bilinear

interpolation is used as the initial estimate. Results are demonstrated for

different data bit-widths, number of LR frames, and SNRs, as indicated in the

figure.

As explained in Section 5.4, the original IBP algorithm of (5.3) can be

considered as a special case of (5.5) corresponding to the ideal scenario of

noise-free LR samples, since in that case δ0(k) = 0, for k ∈ [0, K − 1], and

(5.5) is simplified to (5.3). The results reported in [ABCC08] indicate that in

211

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

R
M

S
E

8 LR fr, 8−bit−round

(a)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

8 LR fr, 9−bit−round

(b)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

8 LR fr, 10−bit−round

(c)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

12 LR fr, 9−bit−round

(d)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

R
M

S
E

8 LR fr, 8−bit−round

(e)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

8 LR fr, 9−bit−round

(f)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

8 LR fr, 10−bit−round

(g)

0 10 20 30 40
1

2

3

4

5

6

7

8

iterations

12 LR fr, 9−bit−round

SNR 10
SNR 20
SNR 30
SNR 40
SNR 50
SNR 60
SNR 70

(h)

Figure 5.16: Comparing the convergence properties of (5.3) (a-d) and (5.5) (e-h),

for the cars sequence. By accounting for the noise statistics in the LR frames, (5.5)

gives robustness with respect to noise.

212

the noise-free situation (5.3) minimizes the error between the “ground-truth”

frame and the reconstructed output, as the iterations proceed. Let us call

this error reconstruction error. However, in the presence of noise, (5.3) no

longer minimizes the reconstruction error, as Figures 5.16(a-d) demonstrate.

As explained in Section 5.4, this is due to the convergence of the simulated

LR frames to the noisy LR samples, which results in the minimization of the

error of (5.2) but not of the reconstruction error. For low noise levels, such

as SNR = 70 dB (Figures 5.16(a-d)), (5.3) renders a behavior close to that

reported in [ABCC08]. However, when the noise level increases, i.e. the SNR

decreases, the reconstruction error diverges more from the ideal behavior of

the noise-free case.

The above problems are resolved by employing (5.5) instead of (5.3). The

value of δ0(k) of (5.5b) is actually the noise standard deviation σn of (5.9),

and is calculated based on the given SNR and the image statistics according

to (5.9). Figures 5.16(e-h) demonstrate the good convergence properties of

the algorithm of (5.5). The reconstruction error is now always minimized,

regardless of the given system parameters. Two main trends, affecting the

rate of convergence, can be observed: (i) For a given word-length, a decrease

in the error deriving from increasing the number of LR frames, becomes larger

as the SNR level becomes lower. This is observed comparing the graph of

Fig. 5.16(f) with that of Fig. 5.16(h). (ii) For a given number of LR frames,

the decrease of the error resulting from an increase in the word-length becomes

larger as the SNR gets higher. This is obvious when comparing Fig. 5.16(e)

213

with Fig. 5.16(f).

The above observations can be interpreted as follows. For low SNRs, the

reliability of the LR samples is low. Therefore, additional LR frames further

contribute in the reconstruction on the HR grid, as long as the level of the

related non-rigid deformations remains low (Section 5.4). On the other hand,

for high SNRs, the LR frames are more reliable and, since they comprise

samples of the same scene, they tend to overlap when their number increases.

In that case, increasing the word-length affects more the reconstruction quality

than considering more frames. In other words, for low SNRs more frames are

generally more valuable than more bits, while for high SNRs it is the other

way round.

Moving from the scenario of Fig. 5.16(f) to that of Fig. 5.16(g), the de-

crease of the error is trivial, indicating that a tenth bit is redundant. Thus, 9

bits is the minimum word-length for maximal performance for the number of

iterations corresponding to the given frame size.

The output obtained for the parameters of Fig. 5.16(f), after the number

of iterations giving real-time performance, is visualized in Fig. 5.17. The part

of the frame shown in Fig. 5.17 corresponds to the “ground-truth” part of

Fig. 5.14(b). Three types of results are illustrated for each noise level. The

first column shows the motion-blurred output that would be produced by a

traditional image sensor employing a uniform static grid of HR pixels. The

second column contains the output of floating-point bicubic interpolation ap-

plied on a single LR frame. Finally, the third column illustrates the real-time

214

SNR

Motion-blurred

Output of Sensor

with HR Pixels

Bicubic Interp.

of Reference

LR frame

Real-time SR

Output

(8 Frames, 9-bit-round)

10 dB

20 dB

30 dB

40 dB

50 dB

60 dB

Figure 5.17: Reconstruction of car for different SNRs. The SR outputs visually

demonstrate the higher quality obtained by the implemented real-time algorithm,

compared to the motion-blurred output of a traditional HR sensor and the bicubic

interpolation of the output of an LR sensor.

215

SR output, where HR spatial resolution and LR temporal resolution are suc-

cessfully combined.

Conclusions of the Performance Evaluation

In the above paragraphs, multiple design options and algorithmic parameters

have been evaluated and discussed. The general conclusions deriving from this

evaluation are the following:

1. Taking into account the noise statistics in the reconstruction process

dramatically improves the convergence properties of the iterative pro-

cess in the presence of noise, resulting in a more robust reconstruction

algorithm (Fig. 5.16).

2. For low SNRs, considering more LR frames is generally more valuable

than increasing the word-length of the data path, while for high SNRs it

is the other way round.

3. The minimum word-length for maximal performance increases as the

number of iterations increases, thus as the frame size decreases (Ta-

ble 5.1). The above word-length is that of the pixels propagated from

one iteration of the IBP algorithm to the next.

4. Bilinear interpolation is preferable for initialization purposes, as its leads

to similar results to bicubic interpolation but with lower computational

cost.

216

5.7 Summary

In this chapter, the SR-based reconstruction is employed to compensate for

the low spatial resolution of LR areas. In particular, the IBP algorithm is

implemented on an FPGA, after being modified to account for the additive

noise in the LR samples. The number of FPGA resources of the proposed

architecture scales linearly with the number of LR frames that contribute in

the reconstruction process.

The system is evaluated under various noise levels, considering different

options and parameters, such as the type of initial approximation, the number

of LR samples, and the word-length of the system. Results demonstrate that

including information about the noise statistics in the algorithm dramatically

improves the convergence properties of the iterative process in the presence of

noise, leading to a more robust reconstruction scheme (Fig. 5.16).

Interesting observations derive from the evaluation process of the imple-

mented algorithm of (5.5): The low-computational-cost bilinear interpolation,

when used for initialization purposes, renders similar results as the elaborate

bicubic interpolation, due to the good convergence properties of the algorithm.

Also, for a given word-length, when more LR frames are considered, the error is

mainly affected for low SNRs, being noticeably decreased. On the other hand,

for a given number of LR frames, using larger word-lengths mainly affects the

reconstruction quality for high SNRs. The reconstructed frame is of similar

quality as the output of an ideal sensor with HR spatial resolution but LR

217

temporal resolution, thus surpassing the fundamental trade-off between space

and time.

In the current chapter, the contribution of each LR pixel in SR recon-

struction was modelled with a gaussian PSF shifted on the HR grid by the

displacement corresponding to the particular LR frame (Fig. 5.2). For large

motion magnitudes, the above model is inaccurate, since considerable extent of

motion blur also appears in the LR samples rendering the LR PSF significantly

non-isotropic. This would degrade the reconstruction quality of the SR block.

In the following chapter, blur identification is employed to reveal the intra-LR-

frame motion information, which is then incorporated in SR for the effective

reconstruction of the output. Moreover, by incorporating intra-LR-frame mo-

tion information in the reconstruction process, the temporal resolution of the

reconstructed output is no longer limited by that of the LR samples.

218

Chapter 6

Blur Identification and

Super-Resolution with

Non-Isotropic PSFs

6.1 Introduction

Super-resolution methods are largely affected by the accuracy of the estimated

PSFs that are related to the input frames [BEN04]. When the frames are

degraded by heavy motion blur, these PSFs are highly non-isotropic, which

further complicates their estimation. The ill-posed nature of blur identifica-

tion is normally addressed using the assumption of linear and uniform mo-

tion [YK97, TKW86, CY06, MJ07, CTE91, Can76]. However, in real-life sys-

tems, this may deviate significantly from the actual blur.

To address the above, this chapter proposes a joint blur identification and

219

classification scheme that classifies the underlying motion with respect to the

validity of the linear and uniform motion assumption. The proposed scheme,

which employs the autocorrelation-based blur identification framework [YK97],

evaluates the validity of the linearity and uniformity assumption, while calcu-

lating the blur parameters. The joint blur identification and classification

scheme is combined with the real-time reconfiguration property of an adaptive

image sensor. If the assumption is invalid for a given motion region, the sensor

is locally reconfigured to larger pixels that produce higher frame-rate samples

with reduced motion blur. Once the appropriate configuration that produces

a valid assumption is applied, highly accurate PSFs are estimated, improving

the SR reconstruction quality.

An efficient real-time hardware architecture of the proposed method is pre-

sented, which is implemented on Field Programmable Gate Array (FPGA).

The implementation requirements are presented for different sets of param-

eters, and the system performance is evaluated under different noise levels.

Moreover, a software evaluation of the SR reconstruction quality for various

PSF assumptions is presented for a large set of motion types.

The chapter is organized as follows. Section 6.2 introduces the blur identifi-

cation problem and its relation to subsequent restoration, to present the moti-

vation for the work presented in this chapter. Section 6.3 presents the detailed

algorithm of the proposed joint blur identification and classification scheme.

Section 6.4 explains how the scheme is effectively incorporated into a video en-

hancement system that is based on an adaptive image sensor. In Section 6.5,

220

the effect of intra-frame motion on the registration of LR frames is dealt with.

Then, Section 6.6 presents a software evaluation of the SR reconstruction qual-

ity for different PSF assumptions and various motion types, and demonstrates

that accounting for intra-frame motion significantly improves the reconstruc-

tion quality. The hardware architecture of the proposed blur identification

and classification scheme is described in Section 6.7. Section 6.8 presents the

experimental results. Specifically, Section 6.8.1 discusses the throughput and

hardware requirements of the proposed architecture for different sets of pa-

rameters. Finally, Section 6.8.2 evaluates the system performance for various

parameters and different levels of noise.

Parts of the work discussed in this chapter have been presented in [ABC09]

and [ABC].

6.2 Blur Identification and Subsequent Restora-

tion

For the image reconstruction process to be effective, the PSFs of the input

frames should be accurately estimated, since they contain information regard-

ing the contribution of each frame in the reconstruction [SPBDK01, IP91,

ABCC09]. In Chapter 5, the intra-frame motion of the LR frames is con-

sidered to be negligible. Therefore, traditional SR is employed, where the

uniqueness of the LR channel that is associated to each LR frame is based

solely on the corresponding subpixel shift. In that case, the gaussian PSF

221

assumption is adequate. Thus, once the subpixel shifts of the LR frames are

computed by the preceding registration block, all the information required for

the actual reconstruction is available.

For large motion magnitudes, considerable extent of motion blur appears

in the LR samples. Such intra-frame motions render inaccurate the gaussian

PSF assumption that is employed by the traditional approaches of [SPBDK01,

IP91, ABCC09]. In that case, the corresponding PSFs are no longer isotropic.

Thus, for different LR frames, the PSF shapes and weights vary. In that case,

the intra-frame motion information of each LR sample should be identified

and included in the reconstruction process. Therefore, apart from registra-

tion, blur identification should also precede the actual reconstruction. As will

be demonstrated in the sections that follow, the quality of the reconstructed

output is highly dependent on the accuracy of the identified blurring function.

Blur identification is a critical task when motion blur degrades the quality

of the output frames. In real-time video capturing, fast moving objects produce

heavy blur, locally on the region of the frame that the motion spans, and are

thus related to significantly non-isotropic PSFs [BEN04], whose identification

is a highly ill-posed problem [YK97]. The ill-posed nature of the blur iden-

tification problem and the required high computational cost [TKW86, CY06]

pose a bottleneck in the overall system performance, in particular when real-

time applications are targeted. In the literature, the blur identification process

is simplified by adopting the assumption that the motion PSF is linear and

uniform [YK97, TKW86, CY06, MJ07, CTE91, Can76]. This reduces the iden-

222

tification task to the estimation of two parameters, namely the direction and

the extent of the underlying motion, thus resolving the ill-posed nature of the

problem and decreasing the related computational load. However, in real-life

systems, the actual blurring function might deviate significantly from an ideal

linear and uniform PSF [BEN04], rendering the above assumption unrealistic.

Moreover, traditional software solutions are inadequate when the given system

should operate in real-time, i.e. at least 25 fps for the given image size.

The current chapter addresses the problems and limitations that are de-

scribed in the previous paragraphs by proposing a joint blur identification and

validation scheme, which both estimates the motion parameters and validates

the initial linearity and uniformity assumption. The scheme employs the sim-

ple linearity and uniformity assumption, but also identifies cases where the

initial assumption is invalid and thus the PSF estimation is inaccurate. In this

manner, the blur identification problem is tackled in a more robust manner,

while the required computational cost remains low, as will be demonstrated

in the sections that follow. The proposed system employs the autocorrelation

framework for blur identification [YK97] and is implemented on FPGA, in

order to target real-time operation. By exploiting the parallelism, pipelining,

and data reuse possibilities offered by FPGA, high throughput is achieved that

meets the strict performance constraints of real-time applications.

The proposed joint blur identification and validation scheme is independent

from the subsequent reconstruction process. Therefore, the scheme can be

used for general purpose blur identification and can be combined with any

223

restoration method [KH96, SPBDK01, IP91]. Cases of negative classification

could be tackled in various ways, such as fitting a second order polynomial

to the blurred region, which is included in the future work, or employing an

adaptive image sensor [Fov08, CDT06], which is the approach that has been

employed in this chapter.

The latter is the author’s motivation for incorporating the assumption val-

idation in the blur identification process and is, therefore, thoroughly inves-

tigated in this chapter. The interaction with the adaptive sensor is based on

the following concept. When the initial linear and uniform motion assumption

is found invalid, the adaptive image sensor is configured to larger pixel sizes

that produce higher frame-rate samples with reduced motion blur. In these

samples, the motion trajectory is broken into shorter, more linear parts. Once

the appropriate pixel size is employed, for which the assumption is found valid,

the blurring function is accurately estimated, as will be demonstrated in the

sections that follow.

By incorporating in the reconstruction process accurate estimations of the

PSFs that correspond to the LR frames, the contribution of each frame is esti-

mated with high accuracy, as will be shown in the following sections, and the

LR data are correctly fused together. Moreover, in that case, the temporal

resolution of the reconstructed output is no longer limited by that of the LR

samples, since the intra-frame motion effect is also incorporated in the recon-

struction process. This is different to the case where simple gaussian PSFs

that contain no intra-frame motion information are employed, as was the case

224

in Chapters 4 and 5.

In summary, the contributions of this chapter are the following:

1. A joint blur identification and validation method is proposed. The

method utilizes the autocorrelation-based blur identification framework

of [YK97].

2. A hardware architecture of the blur identification and validation scheme

is presented. The proposed architecture is implemented on an FPGA

and its performance is evaluated. To the best of the author’s knowledge,

this is the first hardware approach to the blur identification problem that

is reported in the literature.

3. The interaction of an adaptive image sensor with a joint blur identifica-

tion and validation scheme is proposed, which increases the accuracy in

the estimation of the PSFs related to the SR inputs.

4. The complete algorithm for real-time video restoration is presented, in-

cluding both the sensor configuration framework and the processing of

the captured data. The system performance is evaluated for linear and

non-linear motion types under various noise levels.

6.3 Description of the Algorithm

The proposed joint blur identification and validation scheme utilizes the spa-

tial domain blur identification framework of [YK97]. The decision of using

225

a spatial domain instead of a frequency domain method is based on both al-

gorithmic and hardware-related criteria. Specifically, frequency domain blur

identification methods [CTE91, Can76, MJ07] are restricted to blurring func-

tions that exhibit a periodic pattern of spectral zeros, which is not true in

various cases [YK97]. When it comes to hardware, as has been already men-

tioned in Chapter 5, a spatial method reduces the required hardware cost

by avoiding the transformations between the two domains. Moreover, spa-

tial domain analysis removes the need to handle outputs with large dynamic

range, as produced by frequency domain analysis. Therefore, the need for long

word-lengths in hardware implementations is not required. Among the spatial

blur identification methods [TKW86, YK97, CY06] the autocorrelation-based

method of [YK97] was selected due to its potential for maximum parallelism

and data reuse, as it will be demonstrated in Section 6.7.

The detailed algorithm of the proposed joint blur identification and valida-

tion scheme is presented next. The notation that is used in the presentation

of the algorithm is summarized in Table 6.1.

226

Notation Meaning

c The classification flag.

θ The estimated motion direction.

L The estimated motion extent.

f The input image.

∆φ The directional image derivative operator in direction φ.

I(φ) The normalized total intensity of ∆φ(f).

s The step in degrees for calculating ∆φ(f) and I(φ).

g The horizontal derivative of the derivative vertical to θ.

M The number of rows of g rotated by θ.

K The number of columns of g rotated by θ minus 1.

mi[n]
The ith line of g that derives after interpolation

along θ, where mi[n] = 0 for n /∈ [0, K].

Ri The discrete set of autocorrelation coefficients for mi[n].

R̄
The mean of the discrete autocorrelation coefficients

of the M lines of g along θ.

µ The mask for isolating the moving object from the background.

p1

The threshold for identifying considerably small values of L

that are due to motion nonlinearities.

P , N The number of dominant positive and negative lobes in R̄.

p2 The threshold for I(θ).

Table 6.1: The notation that is used in the proposed blur identification and valida-

tion algorithm.

227

Using the notation of Table 6.1, the proposed blur identification and vali-

dation algorithm is formulated as follows.

Inputs: f , µ, s, p1, p2

Outputs: c, θ, L

1: // ——————- blur identification: ——————- //

2: for φ = 0o : s : 180o − s do

3: calculate ∆φ(f) and I(φ)

4: find θ ∈ [0o, 180o): I(θ) = min(I)

5: g = ∆θ(∆θ+90o(f))

6: g = g · µ

7: for i = 1 : M do

8: for k = −K : K do

9: Ri[k] =
∑K

n=−K mi[n]mi[n− k]

10: R̄ = (
∑M

j=1 Rj)/M

11: find L ∈ [0, K]: R̄[L] = min(R̄)

12: // ———————- classification: ——————— //

13: if L < p1 then

14: c← 0; return c

15: else

16: count positive(P) and negative(N) dominant lobes in R̄

17: if P 6= 1 or N 6= 2 then

18: c← 0; return c

19: else if I(θ) > p2 then

228

20: c← 0; return c

21: else

22: c← 1; return c, θ, L

6.3.1 Blur Identification

The blur identification part, in the above algorithm, employs the framework

of [YK97], which is based on the calculation of the mean discrete autocorrela-

tion function (ACF) along the motion direction.

The discrete autocorrelation function is defined as follows.

Definition 4. Let xn be a discrete signal. Then the discrete autocorrelation

R for signal xn at lag j is:

R(j) =
∑

n

xnxn−j (6.1)

This subsection discusses the approach of [YK97], and how this was mod-

ified and extended to achieve local, computationally efficient, and robust to

noise blur identification.

In lines 2-11 of the blur identification and validation algorithm that is pre-

sented above, the linear motion parameters (θ, L) are identified employing the

autocorrelation-based framework of [YK97]. The method of [YK97] is based

on the fact that along the motion direction, image smoothness is higher and

pixels are correlated. As demonstrated in the algorithm, a series of filtering op-

erations precedes the autocorrelation calculations. First, the image derivatives

are calculated in various directions, and the total intensities of the derivatives

229

are computed (lines 2-3).

Definition 5. Let ∆φ(f) be the directional derivative of image f , and let U

and V denote the number of rows and columns of image ∆φ(f). Then the total

intensity I(φ) of ∆φ(f) is:

I(φ) =
U−1
∑

i=1

V −1
∑

j=1

|∆φ(f(i, j))| (6.2)

The minimum of the total intensities, along directions [0o, 180o) with step

s, indicates the motion direction θ. An optimized derivative g, which is ‘opti-

mized’ in the sense that it is, to a large extent, ‘freed’ from object properties

and thus mainly contains motion properties, is then generated as follows. First,

the derivative of the input frame is calculated in the direction vertical to θ,

which removes object-related image properties and emphasizes motion-related

properties. On this output, the derivative in direction θ is then applied (line 5),

resulting to image g. Image g is then traversed along direction θ, and the auto-

correlation coefficients are calculated on the lines of pixels that are interpolated

along that direction (lines 7-9). As will be explained in the sections that follow,

nearest-neighbor interpolation has been employed for this purpose. Finally, the

mean of these autocorrelation outputs is calculated (line 10), and the lag of

the minimum mean autocorrelation coefficient gives the motion extent along

θ (line 11).

In [YK97], the directional filters, for the calculation of ∆φ(f) and g, derive

from the [-1 1] kernel rotated and interpolated to fit each direction. The

small support of these filters renders them particularly sensitive to additive

230

noise [YK97]. This reduces the robustness of the method of [YK97]. Thus, for

SNR < 35 dB, [YK97] suggests avoiding the calculation of g and computing

the ACF directly on ∆θ(f). In that case, the ACF is significantly affected by

the object properties. To resolve the above, Sobel filters have been used in

this work for the derivative calculations, replacing the [-1 1] kernels of [YK97].

Moreover, for SNR < 40 dB, the system robustness is further increased by

applying an adaptive Wiener filter [Lim90] on the input frame.

In [YK97], the frames that are considered involve global motions, which

normally would derive from camera motion. To deal with object motion as

well, a masking stage should be included (line 6). The mask should be ap-

plied after the optimized derivative g has been calculated. In this manner,

all derivatives are computed on the unmasked object, so as to preserve the

image smoothness and avoid wrong derivative values, which would otherwise

be calculated between the border of the object and the zero pixels that would

surround it after the masking. The mask is generated by using median filtering

and by considering a pair of frames before and after the current frame. This

avoids the blending regions at the borders of the object and minimizes the

interference from the static background [BEN04].

The computational load of the blur identification process can be signifi-

cantly reduced by considering fewer directions for calculating ∆φ(f) and also

fewer ACF lags. Moreover, by rotating f by θ and then calculating g on the

rotated frame, only two filters are required for the generation of g: a vertical

and a horizontal filter. Such issues are further discussed in Section 6.7 and

231

Section 6.8.1, where different design options are evaluated with respect to sys-

tem’s area and throughput, while Section 6.8.2 discusses their impact on the

system’s performance.

6.3.2 Classification

Linear and uniform motions can be identified using two types of data: the

normalized total intensities I(φ) and the ACF coefficients, i.e. the coefficients

of R̄. In [YK97], the above data are utilized in blur identification. This section

demonstrates how these data can also be utilized for motion classification pur-

poses, with respect to whether the linearity and uniformity assumption is valid.

To demonstrate their properties for different motion types, the above data are

calculated on the motion blurred frames deriving after the application of differ-

ent motion PSFs on the 240×320 ground-truth image of Fig. 6.1. Four motion

PSFs are applied, each associated with a different motion type: (i) a linear

and uniform PSF with an extent of 15 pixels, which is applied in the vertical

direction (Fig. 6.2(a)), (ii) the nonuniform linear PSF of Fig. 6.2(b), which

is also vertically applied, (iii) the nonlinear and uniform PSF of Fig. 6.2(c),

and (iv) the nonlinear and nonuniform PSF of Fig. 6.2(d). The experiments

demonstrated in Fig. 6.3 are executed after adding Gaussian noise that results

to an SNR of 50dB, since 50dB is the typical SNR of digital cameras. The

intensities I(φ) and coefficients R̄, which are calculated for each blurred frame,

are illustrated in the graphs of Fig. 6.3.

The mean ACF along the motion direction normally has a particular shape

232

Figure 6.1: The ground-truth image.

for the case of linear and uniform motion, which is similar to that of Fig. 6.3(a).

Specifically, it contains three dominant lobes: a positive lobe at lag 0 and two

negative lobes that are symmetrical with respect to the y axis. The lag of the

minimum coefficients of the two symmetrical negative lobes indicates the mo-

tion extent. In Fig. 6.3(a), for example, the minimum ACF coefficients lie at

lag ±15. Therefore, the estimated motion extent is equal to 15. The relation

between the minimum ACF coefficients and the linear motion extent is ex-

plained in detail in [YK97]. Experiments have shown that the more the given

ACF diverges from the form that is described above, the more does the cor-

responding motion diverge from the ideal linear and uniform case. Therefore,

negative classification occurs in the following cases:

1. The total numbers of positive and negative main lobes is different than

those stated above, i.e. one positive lobe at lag 0 and two symmet-

rical negative lobes. This is the case for high-frequency temporal vi-

brations that lead to nonuniform motion, where more lobes are formed.

233

0 5 10 15
0

0.02

0.04

0.06

0.08

(a) Linear and uniform motion.

0 5 10 15
0

0.05

0.1

0.15

0.2

(b) Linear and nonuniform motion.

(c) Nonlinear and uniform motion.

(d) Nonlinear and nonuniform motion.

Figure 6.2: Various motion PSFs and the corresponding motion-blurred images.

234

Specifically, in that case, at each side of lag 0, there is a positive lobe

surrounded by two negative lobes, as can be observed in Fig. 6.3(b).

Nonlinear motions, both uniform and nonuniform, may as well generate

multiple irregular lobes, as illustrated in Fig. 6.3(c) and Fig. 6.3(d).

2. The lag of the minimum ACF coefficient, i.e. the position of the mini-

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

N
or

m
al

iz
ed

 T
ot

al
 In

te
ns

ity

−200 −100 0 100 200
−1

−0.5

0

0.5

1

1.5

2
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

0 20
−1

−0.5

0

0.5

1

1.5

2
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

(a) Linear and uniform motion.

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

N
or

m
al

iz
ed

 T
ot

al
 In

te
ns

ity

−200 −100 0 100 200
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

0 20
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

(b) Linear and nonuniform motion.

Figure 6.3: Calculated normalized total intensities I(φ) and autocorrelation coeffi-

cients R̄ for the indicated motion types. The figure continues at the next page.

235

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

N
or

m
al

iz
ed

 T
ot

al
 In

te
ns

ity

−200 −100 0 100 200
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

0 20
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

(c) Nonlinear and uniform motion.

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

N
or

m
al

iz
ed

 T
ot

al
 In

te
ns

ity

−200 −100 0 100 200
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

0 20
−1

0

1

2

3

4
x 10

11

Lag

A
ut

oc
or

re
la

tio
n

(d) Nonlinear and nonuniform motion.

Figure 6.3: Calculated normalized total intensities I(φ) and autocorrelation coeffi-

cients R̄ for the indicated motion types.

236

mum ACF coefficient on the x axis of the ACF graph, is very close to lag

0. This indicates a motion extent that is too small to reflect the actual

PSF. This is normally observed in the case of nonlinear motions, both

uniform and nonuniform, as shown in Fig. 6.3(c) and Fig. 6.3(d).

When a frame is linearly blurred along a particular direction, there is a

clear minimum in the total intensity graph, which indicates the motion direc-

tion (Fig. 6.3(a,b)). In the case of nonlinear motions, this minimum is not

clear (Fig. 6.3(c,d)). Therefore, for nonlinear motions, the minimum normal-

ized total intensity is significantly higher (Fig. 6.3(c,d)) than in the case of

linear motions (Fig. 6.3(a,b)), and this value is used in the classification.

In addition to the above, linear and uniform motions of very large extents

may as well be undesired for the given specifications, as they increase the

computational cost and required precision for the subsequent restoration block.

By setting a maximum lag in the ACF computations, only linear motions whose

extent is smaller than that lag produce negative ACF lobes. Larger motions

are automatically classified as negative.

6.3.3 Inter-frame and Intra-frame Motion

Due to the continuity of motion in subsequent frames, for a linearly mov-

ing object, the intra-frame motion PSFs are expected to be consistent, both

in extent and direction, with the inter-frame motion vectors. Thus, if the

intra-frame and inter-frame motion parameters are not consistent, the linear-

237

ity assumption is probably invalid. The above can be incorporated in the

validation scheme as a further check for motion linearity, with the extra com-

putational cost required for registration. When the subsequent reconstruction

block is SR-based, registration is executed anyway for the SR method to be

applied [SPBDK01, IP91, ABCC09], and thus the above check can be imple-

mented with no additional computational cost.

6.4 Accounting for Intra-frame Motion in a

System with an Adaptive Image Sensor

This section explains how the reconfigurability of the sensor is combined with

the blur identification and validation scheme (BIV) to improve the recon-

structed output.

The proposed system utilizes a blur detection block, which is based on the

comparison of the strongest edges of the object with those of the background,

to identify cases where the current configuration produces samples with neg-

ligible motion blur [TLZZ04]. In such cases, an isotropic Gaussian PSF can

be employed to associate each LR pixel to the HR pixels of the underlying

HR grid [ABCC09]. In all other cases, the Gaussian assumption is inadequate,

and blur identification is required to estimate the motion parameters. Thus

the BIV scheme is executed. If BIV finds the linear and uniform motion as-

sumption invalid, the pixel size increases in the next sensor reconfiguration,

to produce samples with reduced and more linear motion blur. In this man-

238

ner, the initial non-linear and/or non-uniform motion trajectory is fragmented

into shorter, more linear parts. If BIV finds the initial motion assumption

valid, accurate linear PSFs can be estimated, and the pixel size thus remains

constant.

The pixel size of the adaptive sensor depends on the outputs of blur detec-

tion and BIV blocks, as described above. These blocks comprise a classifier,

whose binary output c determines the pixel size in the next sensor reconfig-

uration: If c = 1, the pixel size remains constant, as it allows an accurate

estimation of the PSF, employing either the Gaussian or the linear and uni-

form motion assumption. If c = 0, the pixel size increases in the next recon-

figuration. A mechanism that reduces the pixel size every N frames can be

accommodated, in order to obtain high-resolution frames.

For linear motion, the non-isotropic PSFs are expected to be consistent

with the inter-frame motion vectors. In case of inconsistency, invalidity of

the initial linearity assumption is indicated. The above can be used as an

additional validity check, and is thus incorporated into the classifier that is

described above, giving c = 0 in the case of inconsistency.

Ideally, the adaptive sensor would be reconfigured at every new HR inte-

gration. In reality, reconfiguration is sparser, depending on the technology of

the given sensor. The proposed video enhancement system operates as follows.

Moving objects are detected with a rough motion estimation on the HR grid,

as indicated in Fig. 6.4. For every moving object, the control of Fig. 6.4 is

employed, where s denotes the LR pixel size, with s = 2 corresponding to the

239

blur detection

motion estimation on LR grid

SR reconstruction

object in field of view?

END of tracking for

the particular object

no

yes

blur identification & validation

s = 2, c = 1
motion estimation on HR grid & training of predictor

prediction & update

b = ?

1 0
c = ?

configure LR window with pixel size s

s = s + 1

update c

Figure 6.4: The algorithm of the system operation for a dynamic region.

240

smallest LR pixel size, and c denotes the binary output of the classifier that

determines the change in the pixel size in the next reconfiguration. Moreover,

b denotes the binary output of the blur detection block; b = 0 indicates neg-

ligible motion blur, for which the Gaussian assumption is employed and BIV

is skipped, while b = 1 indicates that BIV is required. The part of Fig. 6.4

included in the gray rectangle is executed only in those HR integration inter-

vals when the sensor is reconfigured. A Kalman filter predictor is employed

to determine the position of the object in the next HR integration. When the

sensor reconfiguration occurs, that position determines the location of the LR

area, while its pixel size depends on the validity of the linearity assumption in

the last HR integration, indicated by the value of c. For c = 0 the pixel size

increases, whereas for c = 1 it remains the same. For each LR area, an LR

sequence with reduced blur is produced, and the PSFs are estimated, based

on the outputs of the blur detection and BIV blocks, as described in the pre-

vious paragraphs. The LR samples are registered using a motion estimation

block, and the corresponding PSFs are used by the SR block that executes the

reconstruction on the HR grid [ABCC09]. This produces for each LR area an

output with high resolution both in space and time, and thus motion deblur-

ring is locally executed on the dynamic regions of the scene. At every new HR

integration, the control starts at the second block of Fig. 6.4. The loop ends

when the particular object exits the field of view.

241

6.5 Registration of Frames Blurred with Dif-

ferent PSFs

The ground-truth features are blurred in each LR frame by the frame’s PSF.

Since different frames have different PSFs, the resulting features are also dif-

ferent. This decreases the registration accuracy, and thus affects subsequent

reconstruction. The obvious solution would be to apply deconvolution on each

frame before registration. However, this would introduce deconvolution-related

errors and significantly increase the computational cost of a hardware imple-

mentation. A more efficient approach is thus proposed.

Let f1 and f2 denote two frames, related to the ground-truth g as follows:

f1 = g ⊗ r1 (6.3)

f2 = g ⊗ r2 (6.4)

where r1 and r2 denote the corresponding PSFs. If the PSFs are cross-applied

on f1 and f2 as follows:

f1
′ = f1 ⊗ r2 (6.5)

f2
′ = f2 ⊗ r1 (6.6)

then substituting in Equations 6.5 and 6.6 with Equations 6.3 and 6.4, it

242

derives that

f1
′ = g ⊗ r1 ⊗ r2 (6.7)

f2
′ = g ⊗ r2 ⊗ r1 (6.8)

Thus, both f1
′ and f2

′ are related to g with the same PSF, which equals r1⊗r2.

Therefore, instead of applying registration on f1 and f2, registration is applied

on f1
′ and f2

′ as in those frames the blurred features are the same.

6.6 The Effect of Blur Identification and Val-

idation on SR Reconstruction Quality

This subsection investigates how the quality of the reconstructed output is

affected by different sensor configurations and PSF assumptions, in order to

demonstrate the benefits from the utilization of joint blur identification and

validation prior to SR.

Different parameters are employed, including the type of PSF assumption,

the LR pixel size, and the noise level. White Gaussian noise is applied, with

SNRs ranging from 10 to 50 dB. The iterative SR approach of [ABCC09]

is used, and 30 iterations are executed for each estimation. To exclude any

evaluation errors due to the blending of the object with the background, SR

is applied on the isolated foreground objects. The number of frames produced

during HR integration for each pixel size is subject to the space-time trade-

243

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized TI

−200 0 200
−5

0

5

10x 10
12

Lag

ACF

0 20
−5

0

5

10x 10
12

Lag

 ACF

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized TI

−200 0 200
−1

0

1

2

3x 10
11

Lag

ACF

0 20
−1

0

1

2

3x 10
11

Lag

 ACF

Figure 6.5: TI and ACF for carousel (top) and ambulance (bottom row). On the

right, a detail of the ACF is presented, for lags 0 to 33.

off [ABC08]. If this number is k for the current configuration, k additional

neighboring frames are used in SR, for increased robustness [ABCC09].

Fig. 6.5 shows the TI and ACF outputs of BIV for two moving objects with

non-negligible motion blur (b = 1). Both cases employ 2 × 2 configuration

and 256 × 256 LR resolution. The frame on the left is one of the 4 samples

generated during HR integration at 50 dB SNR. According to the validation

criteria described in Sect. 6.3, the TI and ACF outputs of Fig. 6.5 indicate that

for the 2× 2 configuration the linearity and uniformity assumption is valid for

ambulance, and invalid for carousel. Indeed, the actual motion of carousel,

is not sufficiently linear for a 2 × 2 configuration, as the trajectory shows in

244

1x1

2x2

3x3

Figure 6.6: The intra-frame motion of the time samples for the three configurations.

1× 1
50 dB

Figure 6.7: The blurred output for configuration 1× 1.

245

2× 2
50 dB

Bicubic Interp. SR Gaussian SR Linear

3× 3
50 dB

3× 3
20 dB

Figure 6.8: The reconstructed outputs for the SNR values and reconstruction meth-

ods that are indicated in the figure.

246

(a) (b)

Figure 6.9: The ground-truth frames for the two sets of experiments.

Fig. 6.6. Thus a 3× 3 configuration is employed next.

The detailed images of Fig. 6.8 show the SR reconstructed output for

carousel, for 2 × 2 and 3 × 3 configurations. For reference purposes, bicu-

bic interpolation is applied on a single LR frame, with magnification factors 2

and 3, respectively. The SR output is given both for Gaussian PSF approx-

imations, whose support corresponds to the LR pixel size [IP91, ABCC09],

and linear PSFs estimated by BIV. The system output is that of the 3 × 3

configuration with SR that uses linear PSFs (Fig. 6.8).

The last row of Fig. 6.8 demonstrates the system robustness, presenting

the reconstructed outputs for significantly noisy LR samples (SNR = 20 dB).

Fig. 6.10(a) quantifies the evaluation giving the RMSE values with respect to

the ground-truth, for the above scenarios and SNR from 10 to 50 dB.

247

10 20 30 40 50 60
15

20

25

30

35

40

45

50

55

60

SNR (dB)

R
M

S
E

bicubic interp 2x2
SR assume gaussian 2x2
SR assume linear 2x2
bicubic interp 3x3
SR assume gaussian 3x3
SR assume linear 3x3

(a)

10 20 30 40 50 60
15

20

25

30

35

40

45

50

55

SNR (dB)

R
M

S
E

(b)

Figure 6.10: Errors for the two sets of experiments, for various SNRs. The legend

applies to both graphs, with (b) containing only the 2× 2 configuration values.

248

2× 2
50 dB

Bicubic Interp. SR Gaussian SR Linear

2× 2
20 dB

Figure 6.11: Reconstructed outputs for ambulance.

Contrary to carousel, ambulance passes the validity check for 2× 2 config-

uration (Fig. 6.5); thus the pixel size remains at 2× 2. Fig. 6.11 presents the

indicated outputs for 50 and 20 dB. The system output is that of SR with the

linear PSF approximation. The ground-truth is illustrated in Fig. 6.9(b), and

the RMSE values with respect to the ground-truth are given in Fig. 6.10(b).

The above software evaluation demonstrates that when the linear PSF is

estimated, the SR output improves dramatically, compared to the use of a

Gaussian PSF. In the remainder of the chapter, the hardware architecture of

the proposed blur identification and classification scheme will be presented and

evaluated.

249

6.7 Hardware Architecture

The block diagram of the proposed FPGA-based architecture, which imple-

ments the proposed algorithm, as presented in Section 6.3, is presented in

Fig. 6.12. The proposed architecture is fully pipelined and optimized with

respect to throughput, area, and data reuse. The input frames and the cor-

responding binary mask are read from a single-port off-chip RAM, the Im-

age Memory. The processing is mainly divided in two stages, each associated

with certain system blocks and input stream, as explained in the following

subsections. The first processing stage identifies the motion direction θ, and

the second stage both calculates the motion extent L and implements the

validation scheme.

6.7.1 Directional Filters and Minimum Total Intensity

Block

During the first processing stage, the input frame is horizontally traversed,

and the directional image derivatives ∆φ(f) and corresponding total intensi-

ties I(φ) are calculated (Section 6.3). To maximize data reuse, an Extract

Processing Window block, produces a processing window in every clock cycle.

In every cycle, the current processing window is fed in parallel to the direc-

tional filters, for the computation of the directional image derivatives, thus

maximizing the parallelism in the derivative calculations.

The Sobel approximation to the derivative is employed, which is in 0◦ the

250

FPGA

Extract

Processing

Window Min

TI

0

Construct

ACF

Classi-

fication

Wr

...

ClassMotion Extent Motion Direction

Rotation

Block

Horizontal Raster Scan

addr

mask2

Directional Filters

Image

Memory

mask1

Calculate

Derivative

Figure 6.12: An overview of the joint blur identification and validation system, as

implemented on FPGA.

251

following:

S0◦ =

+1 0 −1

+2 0 −2

+1 0 −1

(6.9)

In directions other than the horizontal and vertical, the Sobel approximation

requires 5× 5 coefficients, to accommodate the corresponding rotations of the

derivative kernel.

As explained in Section 6.3, the image derivatives should be calculated on

the umasked frames. After the derivatives have been calculated, the Minimum

Total Intensity (MinTI) block computes for each derivative the sum of absolute

intensities only of pixels with mask bit 1. In this manner, the static background

is excluded from the intensity calculations. The MinTI block finally returns

the direction θ corresponding to the minimum total intensity. This does not

necessarily coincide with a filter’s direction. That is, if the difference between

the minimum total intensity and the total intensity corresponding to an ad-

jacent filtering angle are similar, then the block returns a weighted average

direction. The ACF will then be computed by the subsequent blocks along

that direction.

Only the motion line matters in the above computations, and not which

way the object moves along that line. Therefore, the rotation angles included

in the filter-bank need to span only half of the cartesian plane. Fig. 6.12

demonstrates a filter-bank employing eight different angles, thus a step of

22.5◦ is used for the filter formation.

252

Raster Scan ImageRotated Image

mask2 mask1 Window to Directional Filters

Optimized Image Derivative

EPW
Block

Figure 6.13: The Extract Processing Window (EPW) block operates in two different

modes, which are distinguished in the figure with the black and white shades. Each

mode is associated with a processing stage.

6.7.2 The Rotation Block

The mean ACF should be computed on the optimized derivative g in direction

θ (Section 6.3). To do this, instead of combining horizontal scanning with

non-horizontal processing, it is computationally more efficient to do the op-

posite: traverse the frame along θ, thus horizontally scan the rotated frame,

and process the corresponding rows. In addition, by doing the above, only

two directional filters are required for the generation of g: a vertical and a

horizontal filter.

The rotation is implemented using the nearest-neighbor interpolation scheme,

253

...

...

...

...

...

...

Group Ra Group Rb

WrPixel

...

Figure 6.14: The Construct ACF block. The number of registers comprising groups

Ra and Rb equals the number of lags under consideration.

which transforms the rotation problem to the simpler problem of generating

the corresponding stream of RAM addresses. Thus, the Rotation Block takes

the angle θ as its input, and generates the streaming addresses for the horizon-

tal raster scan of the rotated by θ frame. Lookup tables return the sine and

cosine values corresponding to θ, for the formation of the cartesian rotation

equations:

x′

y′

 =

cosθ −sinθ

sinθ cosθ

x

y

 (6.10)

6.7.3 The Extract Processing Window Block

This block increases data reuse by producing in every cycle a convolution

window. The block employs FIFOs and registers in the circular buffering

scheme demonstrated in Fig. 6.13. FIFOs are implemented with on-chip dual-

254

port BRAMs. The block operates in two modes, associated with the two main

processing stages, thus saving hardware resources.

The first mode, Mode 1, which is denoted in Fig. 6.13 with black shade,

is associated with the generation of the directional image derivatives ∆φ(f),

as has been mentioned in Section 6.7.1. In Mode 1 the input frame f is

read into the buffers in horizontal raster scan order. Thus, the active length

of the FIFOs equals the length of the rows of f . All four FIFOs feed the

same window of registers, whose size is 5 × 5, i.e. the maximum required

filter size (Section 6.7.1). As mentioned in Section 6.7.1, in every cycle, the

processing window is read in parallel by the directional filters of Fig. 6.12.

The second mode, Mode 2, is associated with the calculation of the opti-

mized image derivative g. Therefore, in Mode 2, the buffers of Fig. 6.13 are

fed with f rotated by θ, and an active FIFO width equal to the diagonal of

frame f is required to accommodate the longest possible row. Two indepen-

dent buffering structures, related to different filtering operations, are formed.

Each includes a FIFO pair and a separate window, denoted in Fig. 6.13 with

a white shade. The first filter feeds a vertical Sobel filter that calculates the

vertical image derivative ∆θ+90o(f), to remove object edges as explained in Sec-

tion 6.3. The vertical derivative is directly consumed by the second buffering

structure, which feeds a horizontal Sobel filter, and the optimized derivative

g is produced. Therefore, only 0◦ and 90◦ derivatives are involved in Mode 2,

and a 3× 3 window size suffices for the Sobel approximation.

As mentioned in Section 6.7.1, the derivatives are applied on the unmasked

255

Ra[0] a

0 1 2 3 4 t

b c d e

a b c d

a b c

Ra[1]

Ra[2]

Rb[0] a2 b2 c2 d2 e2

ab bc cd de

ac bd ce

Rb[1]

Rb[2]

f

f2

ef

df

e

d

5

Ra[3] a b c

ad be cfRb[3]

Figure 6.15: Time diagram of the ACF computation for a hypothetical 6-pixel row

“abcdef”. The t axis indicates the clock cycles.

frame, thus the mask bits are propagated to the next processing levels along

with the corresponding pixels.

6.7.4 The Construct ACF and Classification Blocks

The ACF calculations are executed on the rows of the optimized image deriva-

tive, which are generated in a streaming manner–1 pixel/cycle–by the structure

of Fig. 6.13. The current pixel is propagated to the Construct ACF block only

if the accompanying mask bit is 1, i.e. the pixel belongs to the unrotated input

frame f and is also a part of the moving object. To minimize the latency and

resources, redundancies involved in the ACF computation are removed. There-

fore, the ACF coefficients are computed only for half of the cartesian plane,

since the ACF is symmetrical with respect to axis y (Fig. 6.3). In addition,

since the expected intra-frame motion extent is smaller than the row length,

256

only ACF coefficients up to a predefined maximum lag are calculated.

The Construct ACF block of Fig. 6.14 consumes 1 pixel/cycle. To clarify

its functionality, Fig. 6.15 demonstrates the dataflow for a hypothetical 6-pixel

row, using a maximum lag 3. Each register of the two groups of Fig. 6.14 cor-

responds to a particular lag (0 to 3), as indicated by the indexing of Fig. 6.15.

The upper rectangle displays the contents of registers Ra at every cycle, while

the lower rectangle shows the values that are added to each Rb register. To

obtain the mean ACF, the block processes in this manner the entire image,

accumulating information from all rows in registers Rb. Thus, at the begin-

ning of a new row only the Ra, and not the Rb registers, are reset. Each row

contributes in the mean ACF with weight Wr, which is proportional to the

number of non-zero mask bits of the particular row. In this manner, rows con-

taining insignificant part of the moving object do not bias the output. The Wr

weights should be available at the beginning of each row’s processing; thus, for

their calculation, part of the pipeline is circumvented to fetch from an earlier

level the corresponding mask bits. At the end, registers Rb, each related to a

particular lag, contain the coefficients of the mean ACF.

The validity of the linear and uniform motion assumption is decided by the

Classification block. This control block takes the mean ACF coefficients as

its input, implements the control logic described in Section 6.3, and renders a

classification bit that indicates if the assumption is valid or not.

257

6.8 Experimental Results

The current section presents an evaluation of the proposed blur identification

and validation scheme, within the context of the system of Fig. 6.4. The section

is mainly divided in two parts:

1. The first part presents a hardware-oriented evaluation for the FPGA-

based blur identification and validation block. Specifically, Section 6.8.1

discusses the throughput and hardware requirements of the proposed ar-

chitecture for different sets of parameters. Then, Section 6.8.2 evaluates

the blur identification and validation performance of the proposed hard-

ware block for various system parameters and different levels of noise.

2. The second part of the section includes a software-oriented evaluation of

the overall reconstruction process. Specifically, Section 6.6 investigates

how incorporating the above scheme into the SR-based video enhance-

ment system of Fig. 6.4 affects the final output. The SR reconstruction

quality is evaluated for different configurations of the adaptive sensor

and types of PSF approximation.

6.8.1 Implementation Requirements

The design targets a Celoxica ADMXRC4SX board [Cel08], which hosts a

Xilinx Virtex-4 FPGA [Xil08] and 4 ZBT SSRAM banks [Cel08]. The DK5

Handel-C compiler [Cel08] has been used, and the implementation has been

placed and routed using Xilinx ISE v.9.2.01i [Xil08]. The operating frequency

258

−67.5 −45 −22.5 0 22.5 45 67.5 90
10

1

10
2

10
3

10
4

10
5

θ

fr
am

es
/s

ec

64×64

128×128

256×256

512×512

1024×1024

Figure 6.16: System throughput for different frame sizes and motion directions.

The vertical axis is in logarithmic scale.

of the design on ADMXRC4SX is 120 MHz. The critical path of the circuit

lies in the control logic of the Rotation Block (Section 6.7).

The total number of clock cycles required to process a single frame is as

follows:

Cycles = 80 + (V × U) + (Vr × Ur) + (2×G) (6.11)

259

where V and U denote the number of rows and columns of the original frame,

Vr and Ur denote those of the rotated frame (which depend on θ for given V

and U), and G is the number of lags that are considered in the ACF calcula-

tions. Also, a constant equal to 80 is the sum of the reset and latency cycles

of the circuit. Thus, the total number of cycles is mainly affected by the frame

size and the motion direction (indicated by θ). Specifically, the term V × U

corresponds to the first processing stage when the original frame is horizon-

tally scanned, while the term Vr × Ur is related to the second stage, when

horizontal scanning is applied on the rotated frame. The number of lags also

contributes in a small extent in Eq. 6.11, determining the number of cycles for

the Construct ACF and Classification blocks. On the contrary, the number of

directional filters does not affect the number of cycles, as these filters operate

in parallel.

The system throughput is plotted in Fig. 6.16, with respect to the frame

size and the motion direction. The vertical axis of Fig. 6.16 is in logarithmic

scale. To meet real-time requirements, the system should achieve at least 25

fps. All throughput values in Fig. 6.16 keep a large ‘safety margin’ above that

minimum, the smallest being 38 fps for frame size 1024× 1024 and ±45◦. Due

to its high throughput, the proposed architecture is extremely appropriate for

low power applications, as it can be operated in lower frame-rates. The number

of external memory accesses is 2× V × U per frame, since each frame is read

twice from the off-chip RAM (the Image Memory in Fig. 6.12), once for every

processing stage, according to the raster scan order that corresponds to that

260

64x64 128x128 256x256 512x512 1024x1024
2000

3000

4000

5000

6000

7000

8000

9000

frame size

F
P

G
A

 s
lic

es

12 filters
10 filters
8 filters
6 filters
4 filters

Figure 6.17: Number of FPGA slices for different number of directional filters and

frame sizes. The number of considered ACF coefficients equals 30.

stage.

The number of FPGA slices mainly depends on the number of directional

filters and is slightly affected by the frame size, as Fig. 6.17 demonstrates for

G = 30. The effect of variations of G on the number of slices is relatively

insignificant.

The number of BRAMs depends on the size of the derivative kernel that

is used. For a 3 × 3 derivative filter, whose rotated version requires up to

5× 5 coefficients, the required number of BRAMs equals 4, for the frame sizes

reported in Fig. 6.17, as for these sizes, the maximum required length of line

261

buffers does not surpass the BRAM length.

6.8.2 Performance Evaluation for the Blur Identifica-

tion and Validation System

The performance evaluation is done using semi-synthetic data. That is, a real

image, captured with a simple hand-held digital camera, has been convolved

with a motion PSF and contaminated with noise, to synthetically produce the

blurred frames. In this way, the system performance is accurately evaluated,

since the actual validation class and motion parameters are known, and are

thus compared with the validation output and estimated parameters. The

input frames have been contaminated with white Gaussian noise with various

SNRs, which range from 10 to 70 dB.

In Fig. 6.18, a ROC curve is used to evaluate the performance of the classi-

fier under different noise levels and employing different numbers of directional

filters for the image derivative computations. The input frames used for the

generation of the ROC were produced after applying various linear, nonlinear,

uniform and nonuniform motion PSFs on the ground-truth frames of Fig. 6.19.

Specifically, 50 different motion PSFs of varying spatio-temporal shapes and

magnitudes were applied on each ground-truth, locally on the foreground ob-

jects of the four leftmost images and globally on the entire rightmost image.

Therefore, in the last case the associated binary mask has ones on the entire

area of the unrotated frame f . The two first images of Fig. 6.19 have reso-

262

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

full search fl. point 50 dB
8 filters HW 50 dB
8 filters HW 20 dB
6 filters HW 50 dB
6 filters HW 20 dB
4 filters HW 50 dB
4 filters HW 20 dB

Figure 6.18: ROC curves for the indicated number of filters and noise level.

Figure 6.19: Ground-truth frames used for the generation of the test sequences.

263

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−5

0

5

10

15

20
x 10

9

Lag

ACF

(a)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−2

0

2

4

6

8
x 10

12

Lag

ACF

(b)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−2

−1

0

1

2

3

4

5
x 10

10

Lag

ACF

(c)

−100 0 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized TI

0 20
−5

0

5

10x 10
12

Lag

 ACF

(d)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−4

−2

0

2

4

6

8

10
x 10

10

Lag

ACF

(e)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−5

0

5

10

15
x 10

10

Lag

ACF

(f)

Figure 6.20: The linear and uniform motion assumption is valid for the blurred

frames on the left (a,c,e), but not for those on the right (b,d,f). In particular, the

motion is nonlinear for (b,d) and linear but nonuniform in (f). For each experiment,

the calculated total intensity graph and the mean autocorrelation coefficients are

demonstrated in the figure.

264

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−2

0

2

4

6

8
x 10

9

Lag

ACF

(a)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−5

0

5

10

15

20
x 10

11

Lag

ACF

(b)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 20
−0.5

0

0.5

1

1.5

2

2.5
x 10

10

Lag

ACF

(c)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−1

0

1

2

3

4
x 10

12

Lag

ACF

(d)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 20
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

10

Lag

ACF

(e)

−100 −50 0 50 100
0.5

0.6

0.7

0.8

0.9

1

Angle (degrees)

Normalized Total Intensity

0 10 20 30
−1

0

1

2

3

4
x 10

10

Lag

ACF

(f)

Figure 6.21: The same scenarios as Fig. 6.20, but under significant noise: SNR =

20 dB.

265

lution 256 × 256, while the last three have 512 × 512 resolution. The entire

experiment has been repeated considering 4, 6 and 8 directional filters and

with SNR 50 and 20 dB. In all experiments, 33 lags have been considered for

the autocorrelation calculations, fully accommodating the maximum extent of

linear motion that has been used, which is 27 pixels.

The dotted curve in Fig. 6.18 presents the output of floating point vali-

dation, employing full search for the minimum total intensity, thus a step of

1o and 180 directions. The floating point scenario is implemented in Matlab.

The rest of the curves present the outputs of the hardware implementation for

numbers of directional filters and noise levels that are indicated in the legend.

As can be observed in Fig. 6.18, the classifier’s performance significantly im-

proves when the number of filters increases from 4 to 6, and from 6 to 8. For

8 directions or more, the achieved performance is similar to the best possible

floating point full search scenario. As demonstrated in Fig. 6.18, the variation

of performance for a given number of filters under different SNRs is not sig-

nificant, which proves the increased robustness of the classifier with respect to

noise.

Six representative examples, taken from the set of experiments used in the

above evaluation, are demonstrated in Fig. 6.20. The scenarios of Fig. 6.20

involve 50 dB SNR and 8 directional filters, while six different motion types

are employed: three that are linear and uniform, in Figures 6.20(a,c,e), and

three that are not, in Figures 6.20(b,d,f). In particular, Figures 6.20(b,d)

contain nonlinear sinusoidal motion, whereas Fig. 6.20(f) contains nonuniform

266

motion resulting from high frequency temporal vibrations (Section 6.3). The

blurred frames are correctly classified; thus, for Figures 6.20(a,c,e), the vali-

dation output is positive, whereas for Figures 6.20(b,d,f) it is negative. For

positive validation, the linear motion parameters are also accurately identified.

The actual motion parameters of Figures 6.20(a,c,e) are: extents of 11, 8, and

20 pixels, and directions of −25o, 0o and 45o, respectively. As observed in

Fig. 6.20, these parameters are accurately identified with the lag of the mini-

mum autocorrelation coefficient and the minimum total intensity, respectively.

Fig. 6.21 presents the outputs of the system for the same scenarios as

Fig. 6.20, but under a high level of noise. In particular, an SNR of 20 dB is

employed, and the corresponding noisy frames are shown in Fig. 6.21. For the

examples of Fig. 6.21, both the classification outputs and the estimated motion

direction are unaffected by the heavy noise. A few very small divergences are

observed for the estimated motion extents in the case of positive classification.

Specifically, for Fig. 6.21(a), the estimated motion extent is now 10 pixels

instead of 11, which is the actual value and which was accurately identified

at 50 dB. In Fig. 6.21(c), the extent of 8 pixels is identified. However the

high level of noise makes the negative lobe of the ACF less steep and thus

the minimum less clear. A more systematic evaluation of the accuracy of the

identified linear parameters with respect to the level of noise is presented in

Figures 6.22 and 6.23, where a large test set is considered.

In Figures 6.22 and 6.23, the accuracy of the identified linear parameters

is evaluated with respect to the number of directional filters and the level of

267

70 60 50 40 30 20 10

 18016141210864
0

5

10

SNR (dB)

Direction Tolerance − Average

Number of Filters

T
ol

er
an

ce
 (

de
gr

ee
s)

2

4

6

8

10

(a)

70 60 50 40 30 20 10

 18016141210864
0

5

10

SNR (dB)

Direction Tolerance − Standard Deviation

Number of Filters

T
ol

er
an

ce
 (

de
gr

ee
s)

2

4

6

8

10

(b)

Figure 6.22: The average and standard deviation values of the errors between the

actual and estimated motion direction, for linear and uniform motion.

268

70 60 50 40 30 20 10

 18016141210864
0

5

10

SNR (dB)

Length Tolerance − Average

Number of Filters

T
ol

er
an

ce
 (

pi
xe

ls
)

2

4

6

8

(c)

70 60 50 40 30 20 10

 18016141210864
0

5

10

SNR (dB)

Length Tolerance − Standard Deviation

Number of Filters

T
ol

er
an

ce
 (

pi
xe

ls
)

2

3

4

5

6

7

8

(d)

Figure 6.23: The average and standard deviation values of the errors between the

actual and estimated motion extent, for linear and uniform motion.

269

noise, for a set of linearly blurred frames. To produce this set, 50 different linear

motions, of random angles and extents between 7 and 27 pixels, were applied

on the ground-truth frames of frames of Fig. 6.19. The graphs of Fig. 6.22

present the average and standard deviation values of the errors between the

actual and estimated motion direction, whereas the graphs of Fig. 6.23 present

the same values for the estimated motion extent. The value 180 on the axis

with the numbers of filters indicates the output for the full-search, floating

point scenario, where a step of 1o covers all integer directions, calculating

180 derivatives. Contrary to the validation block, which achieves maximal

performance with 8 directional filters (Fig. 6.18), for the identification block

to obtain accuracy similar to the full-search floating point scenario, more than

8 filters need to be used. This is expected, since validation is a binary problem,

but blur identification is not. Therefore, the choice of the number of filters

for joint blur identification and validation depends on the required accuracy in

the estimation of motion direction and extent, which is imposed by the given

application and mainly the subsequent reconstruction block that utilizes these

parameters.

6.9 Summary

This chapter proposes a joint blur identification and validation scheme, which

not only estimates linear blur, but also validates the initial linearity and uni-

formity assumption. This keeps the computational cost of blur identification

270

low, while identifying cases where the assumption is invalid and thus the PSF

estimation is inaccurate.

To tackle cases of invalid initial assumption, this chapter proposes com-

bining the blur identification and validation scheme with the reconfiguration

property of an adaptive image sensor. The sensor grid is adapted to the lo-

cal motions depending on the validity of the linear motion assumption. Once

the appropriate configuration is applied, the appropriate PSF approximation,

which is optimal for the given type of blur, is employed to reconstruct the final

output.

The proposed joint blur identification and validation system is implemented

on an FPGA and is evaluated for different sets of parameters. The system

throughput, which mainly depends on the frame size, is significantly higher

than the 25 fps real-time requirement. The area of the circuit mainly depends

on the number of directional filters used for the derivative calculations, while

the required number of on-chip Block RAMs is determined by the size of the

derivative kernel. The proposed method is robust to noise, and accurately

validates the initial assumption with 8 directional filters.

Experimental results show that when applied to a SR-based video enhance-

ment system, the proposed scheme surpasses limits related to traditional SR,

demonstrating the significance of adapting the sensor grid to the given motion

for the efficient processing of the raw samples.

271

Chapter 7

Conclusions and Future Work

7.1 Summary of the Thesis

This thesis proposes an FPGA-based real-time video enhancement system that

targets an adaptive image sensor, that is, a sensor whose grid can be recon-

figured in real-time to form larger pixels where and when it is needed. The

proposed system belongs to the broad area of computational photography and

video. The blocks of the system implement functions, such as super-resolution,

blur identification, and multi-resolution image decomposition, which are key

operations in the general area of image and video processing, and can also be

seen as stand-alone processing blocks for general-purpose applications. The

work presented in this thesis spans both the algorithmic and the hardware

design domains. In the algorithmic domain, robust to noise methods have

been developed to execute super-resolution and blur identification. The data

intensive nature of the system’s processing blocks and the strict real-time con-

272

straints impose the requirement for fast and effective video processing. Thus,

in the hardware level, the architectures have been designed to allow for high

throughput and high data reuse.

An important step in multiframe fusion is registration, whose robustness is

achieved by employing a multiresolution decomposition. Thus, the discussion

of the work presented in this thesis started with Chapter 3, by presenting the

FPGA implementation of the major 2-D DWT computation schedules that

compute the discrete wavelet pyramidal decomposition. The performance of

the architectures was evaluated with respect to issues such as throughput, area,

and energy dissipation. Experiments showed that the Line-Based (LB) compu-

tation schedule achieves the highest throughput and lowest energy dissipation.

The Block-Based (BB) approach, which has the same memory access locality

as LB, is however associated with the highest control complexity, which re-

sults in the lowest throughput and the highest energy dissipation. As for the

Row-Column (RC) approach, it has the lowest hardware cost.

The main discussion of the proposed video enhancement system started

with an exploration of the configuration space of an adaptive image sensor

in Chapter 4. Two approaches were proposed, namely an SR-based and a

deconvolution-based approach. Experiments showed that the SR-based ap-

proach outperforms the deconvolution-based approach on dynamic regions.

Therefore, the rest of the thesis focused in the SR-based multiframe fusion

approach, being the most suitable option for handling highly motion intense

regions, since motion-deblurring is the main problem that this work targets.

273

In the SR-based approach, motion areas are locally treated, by configuring

motion regions to LR areas that produce high-frame-rate samples of reduced

blur, whereas areas of no motion or very small motion are configured to ele-

mentary pixels. The high-frame-rate samples of the LR areas are fused under

the SR framework, to construct an output of high resolution both in space and

time. Super-resolution reconstruction was then investigated, in Chapters 5

and 6, with respect to both algorithmic and hardware performance. Specifi-

cally, in Chapter 5, the traditional Iterative Back Projection SR approach was

modified to account for noise statistics, and its implementation was evaluated

under different noise levels. To handle large motion magnitudes, non-isotropic

PSFs should be incorporated in the SR fusion to allow for accurate SR recon-

struction. Thus a blur identification and validation scheme has been proposed

in Chapter 6 for the estimation of the non-isotropic intra-frame PSFs. The

above scheme validates the initial linear and uniform motion assumption while

calculating the blur parameters. Whenever the initial assumption is found in-

valid, the blur identification and validation block interacts with the adaptive

image sensor by increasing the pixel size in the next sensor reconfiguration cy-

cle. Larger pixels require faster integration times and therefore produce more

linear and uniform motion PSFs. This increases the accuracy in the blur iden-

tification process and improves the reconstruction quality of the subsequent

SR block.

274

7.2 Conclusions

The general conclusion that derives from the presented work is that in the con-

text of the video enhancement system that utilizes an adaptive image sensor,

which is proposed in this thesis, FPGA technology offers a flexible processing

platform that allows real-time performance, while having several advantages

that are not provided by ASIC technology. These are mainly the reconfigura-

bility and ease of prototyping.

More specific conclusions are associated with the individual chapters of the

thesis and are the following.

• The comparison of the major 2-D DWT computation schedules, which

is presented in Chapter 3, demonstrates that the choice of a partic-

ular architecture for the execution of the 2-D DWT depends on the

given specifications. These are related to the targeted throughput, area,

and power consumption. The Line-Based (LB) approach achieves the

highest throughput and the lowest energy consumption, while the Row-

Column (RC) approach is related to the lowest area.

• Chapter 4 explored the configuration space of the adaptive image sensor

with respect to the spatio-temporal resolution that can be achieved after

processing the captured data. An SR-based approach and a deconvolution-

based approach were proposed, each related with a particular sensor

configuration. The evaluation of the approaches demonstrated that the

SR-based outperforms the deconvolution-based scheme on dynamic re-

275

gions.

• Chapter 5 tackles the problem of robust to noise, real-time SR-based

reconstruction. The chapter demonstrates that incorporating the noise

statistics into the traditional SR framework of the Iterative Back Pro-

jection (IBP) SR approach results in a robust to noise system with high

reconstruction quality under noise levels in the range of 10 to 70 dB.

A high-throughput architecture of the above scheme is proposed and is

implemented on an FPGA achieving real-time performance.

• Chapter 6 aims at improving the reconstruction quality of the SR block

by employing blur identification prior to the actual reconstruction stage.

In this manner, the temporal resolution of the output is no longer lim-

ited by the temporal resolution of the frames that are fused (as was the

case in Chapter 5). To further improve the final reconstruction quality,

Chapter 6 aims to increase the accuracy of blur identification by incor-

porating assumption validation in the linear blur identification process.

The blur identification and validation block that is proposed identifies

cases where the initial linearity and uniformity assumption is invalid, as

it has been demonstrated in the performance evaluation of Chapter 6.

The proposed scheme interacts with the adaptive sensor in the manner

that is proposed in Chapter 6, and once the appropriate pixel size is

employed that gives rise to a valid motion assumption, highly accurate

PSFs can be estimated. As has been demonstrated in the performance

276

evaluation of Chapter 6, this improves the quality of subsequent SR re-

construction. To target real-time performance, an efficient FPGA-based

architecture is proposed that implements BIV in real-time.

7.3 Future Work

The work presented in this thesis could be expanded in various ways both in

the algorithmic and in the hardware level. The current section discusses some

suggestions and possibilities for future work, presenting both the short term

plans and the long term goals that are related to this work.

7.3.1 Short Term

As explained in Chapter 6, the proposed blur identification and validation

scheme interacts with the adaptive sensor to increase the accuracy of blur

identification by adapting the pixel size of the sensor to the given motion. As

a result, the accuracy of blur identification and the subsequent reconstruction

quality depend on the configuration frequency of the sensor. Therefore, the

short term plans for future work include the investigation of the reconfiguration

rate of an adaptive image sensor, where the reconfiguration is executed in order

to address the problem of non-linear motion, as stated in Chapter 6. The effect

of this reconfiguration rate on SR reconstruction will be evaluated.

As stated above, the configuration rate of an adaptive sensor is limited

by the sensor technology. On the other hand, as discussed in Chapter 4,

277

the LR motion region should be configured on the region of the scene where

the moving object is expected to move until the next sensor reconfiguration

occurs. It may thus be effective to determine the direction of expansion of the

LR area, with respect to the direction of motion. Specifically, this direction

will be perpendicular to the object motion, and the LR region will span the

area of the sensor, which lies ahead of the moving object, being expanded

towards that direction.

The linear blur identification and validation system that is proposed in

Chapter 6 is based on the linear, i.e. first order polynomial, motion assump-

tion. The proposed scheme interacts with the adaptive sensor by configuring

it, so as to achieve linear and uniform intra-frame motion. As stated above,

the configuration frequency of the sensor is a limiting factor for the proposed

system, and therefore, for a slow reconfiguration rate adaptive image sensor,

it may be preferable to employ a second order, instead of a first order motion

blur approximations. The exploration of this is included in the short term

plans for future work. In particular, the effect of using second order approxi-

mation will be investigated with respect to the SR reconstruction quality, and

the HW requirements for the blur identification block and the SR block will

be evaluated.

The investigation of the 2-D DWT on FPGA, which is presented in Chap-

ter 3, was performed by considering a single-port image memory and a single

filter-bank which is shared among all levels and stages of the transform. This

choice was made based on the fact that the off-chip memory is usually single-

278

port and also based on the aim of employing the minimum hardware for the

main 1-D DWT processing, that is a single filter-bank. The importance of this

work is due to the wide range of image and video processing applications that

are based on the execution of the 2-D DWT, such as video compression and

image registration. The investigation of the 2-D DWT computation schedules

can act as an insight on which schedule is most suitable for the specifications

imposed by the given application. As future work, this investigation will be

broadened by extending the range of system parameters, such as the number

of ports of the off-chip image memory or the number of filters that execute the

1-D DWT.

7.3.2 Long Term

Throughout the thesis, the assumption of rigid moving objects has been used.

Extending the system to handle as well non-rigid object deformations is a

challenging task. Several approaches for handling non-rigid deformations have

been proposed [BK99]. Tailoring the methods to the particular video enhance-

ment application could produce a better determined problem and simplify the

processing. Specifically, since the computations are applied on adjacent video

frames, the non-rigidness of the related motions is somewhat confined, due to

the proximity of the temporal samples of the continuous motion. Therefore,

when extending the system to non-rigid object motions, additional motion

constraints can be employed, to decrease the set of possible motions and re-

duce the complexity of non-rigid reconstruction. Moreover, the system can be

279

extended so as to focus on a particular type of moving objects, such as cars

or human faces. This would require a training and a detection stage for the

particular class of objects [ACS08, JLD06, LB08], but would improve the re-

construction quality, due to the additional constraints imposed by the object

class.

In the work presented in this thesis, it has been assumed that no mo-

tion irregularities, such as motion discontinuities and occlusions are present

in the captured video sequence. However, in real-life video sequences, the

presence of motion discontinuities and occlusions may affect the final system

performance. Such irregularities were out of the scope of this thesis, but have

been addressed in the literature with various methods that have been pro-

posed [PHZ08, PVW06, ZWYF08]. Identifying and incorporating the appro-

priate method in the proposed system, so as to handle such irregularities and

maintain the high reconstruction quality under such circumstances, is a part

of the future work. Moreover, the HW requirements associated with the above

will be investigated.

The reconfiguration property of the grid of an adaptive sensor has been em-

ployed to reduce motion blur, locally for object motion and globally for camera

motion. The blocks of the proposed system have been endowed with robust

to noise mechanisms and tested under different noise levels. However, the re-

configurability of the sensor has not been exploited to address high dynamic

range applications. In fact, a reconfigurable sensor is extremely appropriate

for increasing the dynamic range of a camera [Fov08, RBS99, Gos05]. This

280

is due to the fact that larger pixels can be formed under low illumination

conditions, in order to integrate faster the incident light. On the other hand,

saturated frames can be avoided by decreasing the pixel size. When employing

an adaptive image sensor, the sensor reconfiguration property can be locally

utilized to increase the dynamic range of certain regions, that are either too

dark or too bright (saturated). Combining the motion deblurring capability

with high dynamic range functionality seems to be a promising idea that may

render a significantly competent video enhancement system. Dealing with the

motion deblurring problem and the dynamic range problem at the same time,

will inevitably result in some conflict. If, for instance, a fast moving object is

located in a saturated region, the motion criterion requires a decrease in the

pixel size, while the dynamic range criterion demands the opposite. It is thus

important to address such trade-offs, in order to employ the best pixel size for

the given conditions and application requirements. Determining the pixel size

requires an evaluation based on the reconstruction quality of the final output

under various illuminations, varying both globally and locally in the scene, in

addition to the various motions, such as those employed in this thesis.

The sensor reconfiguration scheme that is presented in this thesis is limited

to the formation of square pixels. Employing other shapes for the sensor’s

pixels and investigating the impact of different shapes on the system’s output

is part of the future work. The use of hexagonal pixels has recently been

proven to be a viable alternative to the traditional grid of square pixels in

various image processing applications [TGP02, Jia08]. This is mainly due to

281

the fact that hexagonal pixels provide high rotational symmetry and a closely

packed structure [TGP02]. The latter signifies that the sampling of the real-

world scene by the camera’s sensor will be denser and thus more accurate.

This may further increase the reconstruction quality of the final output.

To conclude, while this thesis has provided a thorough framework for the

real-time enhancement of the spatio-temporal resolution of video, a wide vari-

ety of possibilities exist for future work, to stimulate further research in various

directions and levels of application.

282

Appendix A

Example Camera Datasheet

The typical camera datasheet given by the camera manufacturer includes in-

formation regarding the image sensor, such as the sensor size, the number of

pixels in the horizontal and the vertical direction, and the Signal to Noise

Ratio (SNR) of the output frames.

An example camera datasheet is given in Fig. A.1, which describes the spec-

ifications of the GE DI-XR2-VF3 camera model [Gen09]. As can be observed

in Fig. A.1, the SNR of the particular camera is 50 dB, which is a typical value

for digital cameras.

283

Figure A.1: An example camera datasheet.

284

Bibliography

[ABC] M. E. Angelopoulou, C.-S. Bouganis, and P. Y. K. Cheung. Blur

Identification with Assumption Validation for Sensor-Based Video

Reconstruction and its Implementation on FPGA. IET Comput-

ers & Digital Techniques, submitted June 2009.

[ABC08] M. E. Angelopoulou, C.-S. Bouganis, and P. Y. K. Cheung. Video

Enhancement on an Adaptive Image Sensor. In IEEE Interna-

tional Conference on Image Processing (ICIP), pages 681–684,

October 2008.

[ABC09] M. E. Angelopoulou, C.-S. Bouganis, and P. Y. K. Cheung.

A Sensor-Based Approach to Blur Identification and Super-

Resolution for Real-Time Video Restoration. In IEEE Interna-

tional Conference on Image Processing (ICIP), to appear, Novem-

ber 2009.

[ABCC08] M. E. Angelopoulou, C.-S. Bouganis, P. Y. K. Cheung, and G. A.

Constantinides. FPGA-based Real-time Super-Resolution on an

285

Adaptive Image Sensor. In International Workshop on Applied

Reconfigurable Computing (ARC), pages 125–136, March 2008.

[ABCC09] M. E. Angelopoulou, C.-S. Bouganis, P. Y. K. Cheung, and G. A.

Constantinides. Robust Real-Time Super-Resolution on FPGA

and an Application to Video Enhancement. ACM Transactions

on Reconfigurable Technology and Systems, to appear, 2009.

[ACA02] K. Andra, C. Chakrabarti, and T. Acharya. A VLSI architecture

for lifting-based forward and inverse wavelet transform. IEEE

Transactions on Signal Processing, 50(4):966977, April 2002.

[ACS08] N. Alt, C. Claus, and W. Stechele. Hardware/software architec-

ture of an algorithm for vision-based real-time vehicle detection

in dark environments. In Design, Automation and Test in Eu-

rope (DATE), pages 176–181, March 2008.

[AK00] M. D. Adams and F. Kossentini. Reversible integer-to-integer

wavelet transforms for image compression: performance evalu-

ation and analysis. IEEE Transactions on Image Processing,

9(6):1010–1024, June 2000.

[Alt08] Altera Corporation, San Jose. http://www.altera.com, December

2008.

[AMCA06] M. Angelopoulou, K. Masselos, P. Cheung, and Y. Andreopoulos.

A Comparison of 2-D Discrete Wavelet Transform Computation

286

Schedules on FPGAs. In IEEE International Conference on Field

Programmable Technology, pages 181–188, December 2006.

[AMCA08] M. E. Angelopoulou, K. Masselos, P. Y. K. Cheung, and Y. An-

dreopoulos. Implementation and Comparison of the 5/3 Lifting

2D Discrete Wavelet Transform Computation Schedules on FP-

GAs. Journal of Signal Processing Systems, 51(1):3–21, April

2008.

[Amp08] Amphion Semiconductor, Ltd. http://www.amphion.com, De-

cember 2008.

[Ash95] P. J. Ashenden. The Designer’s Guide to VHDL. Morgan Kauf-

mann Publishers, December 1995.

[ASL+03] Y. Andreopoulos, P. Schelkens, G. Lafruit, K. Masselos, and

J. Cornelis. High-level cache modeling for 2-D discrete wavelet

transform implementations. VLSI Signal Processing (special is-

sue on Signal Processing Systems), 34(3):209–226, July 2003.

[Avi04] S. Avidan. Support vector tracking. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 26(8):1064–1072, August

2004.

[Avi07] S. Avidan. Ensemble tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(2):261–271, February 2007.

287

[BB04] C.-S. Bouganis and M. Brookes. Multiple Light Source Detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(4):509–514, April 2004.

[BB08] O. Bowen and C. S. Bouganis. Real-time image super resolu-

tion using an FPGA. In International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 89–94, Septem-

ber 2008.

[BEN04] M. Ben-Ezra and S. K. Nayar. Motion-based motion deblurring.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(6):689–698, June 2004.

[BEZN04] M. Ben-Ezra, A. Zomet, and S.K. Nayar. Jitter Camera: High

Resolution Video from a Low Resolution Detector. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

volume 2, pages 135–142, June 2004.

[BEZN05] M. Ben-Ezra, A. Zomet, and S.K. Nayar. Video Super-Resolution

Using Controlled Subpixel Detector Shifts. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 27(6):977–987, June

2005.

[BHNC05] A. Burchardt, E. Hekstra-Nowacka, and A. Chauhan. A real-time

streaming memory controller. In Design, Automation and Test in

Europe (DATE), volume 3, pages 20–25, March 2005.

288

[BIRB05] M. Balasubramanian, S.S. Iyengar, J. Reynaud, and R.W. Beuer-

man. A ringing metric to evaluate the quality of images restored

using iterative deconvolution algorithms. In International Con-

ference on on Systems Engineering (ICSEng), 2005.

[BK99] S. Baker and T. Kanade. Super resolution optical flow. Technical

Report CMU-RI-TR-99-36, Robotics Institute, Carnegie Mellon

University, October 1999.

[BK02] S. Baker and T. Kanade. Limits on Super-Resolution and How

to Break Them. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24(9):1167–1183, September 2002.

[BL03] M. Brown and D.G. Lowe. Recognising Panoramas. In IEEE

International Conference on Computer Vision (ICCV), volume 2,

pages 1218–1225, October 2003.

[BMC09] V. Bonato, E. Marques, and G. A. Constantinides. A floating-

point extended kalman filter implementation for autonomous mo-

bile robots. Journal of Signal Processing Systems, 56(1):41–50,

July 2009.

[Bou02] J.-Y. Bouguet. Pyramidal Implementation of the Lucas Kanade

Feature Tracker: Description of the algorithm. Microprocessor

Research Labs, Intel Corporation, 2002.

289

[Bro92] L. G. Brown. A Survey of Image Registration Techniques. ACM

Computing Surveys (CSUR), 24(4):325–376, December 1992.

[BW05] A. Bruhn and J. Weickert. Towards ultimate motion estimation:

combining highest accuracy with real-time performance. In IEEE

International Conference on Computer Vision (ICCV), volume 1,

pages 749–755, October 2005.

[Can76] M. Cannon. Blind deconvolution of spatially invariant image blurs

with phase. IEEE Transactions on Acoustics, Speech and Signal

Processing, 24(1):58–63, February 1976.

[Cas08] Cast, Inc., Woodcliff Lake, NJ. http://www.cast-inc.com, Decem-

ber 2008.

[CCA+07] M. Cagnazzo, F. Castaldo, T. Andre, M. Antonini, and M. Bar-

laud. Optimal motion estimation for wavelet motion compensated

video coding. IEEE Transactions on Circuits and Systems for

Video Technology, 17(7):907–911, July 2007.

[CCGW00] T. Chen, P. Catrysse, A. E. Gamal, and B. Wandell. How Small

Should Pixel Size Be? In SPIE Sensors and Camera Systems

for Scientific, Industrial and Digital Photography Applications,

volume 3965, pages 451–459, January 2000.

[CCLW05] B. Cope, P. Y. K. Cheung, W. Luk, and S. Witt. Have GPUs

made FPGAs redundant in the field of video processing? In

290

IEEE International Conference on Field-Programmable Technol-

ogy (FPT), pages 111–118, December 2005.

[CCSS01] Y.-Y. Chuang, B. Curless, D.H. Salesin, and R. Szeliski. A

Bayesian approach to digital matting. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), volume 2,

pages 264–271, December 2001.

[CDSY98] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo.

Wavelet Transforms that Map Integers to Integers. Journal of

Applied Computational Harmonics Analysis, 5(3):332–369, July

1998.

[CDT06] T. G. Constandinou, P. Degenaar, and C. Toumazou. An Adapt-

able Foveating Vision Chip. In IEEE International Symposium

on Circuits and Systems (ISCAS), pages 3566–3569, May 2006.

[Cel05] Celoxica. Handel-C Language Reference Manual. 2005.

[Cel08] Celoxica. http://www.celoxica.com, December 2008.

[CHK+07] J. Choi, S.-W. Han, S.-J. Kim, S.-I. Chang, and E. Yoon. A

spatial-temporal multi-resolution cmos image sensor with adap-

tive frame rates for moving objects in the region-of-interest.

In IEEE International Solid-State Circuits Conference (ISSCC),

pages 502–618, February 2007.

291

[CLL+05a] G. M. Callico, S. Lopez, J. F. Lopez, R. Sarmiento, and A. Nunez.

Low-cost implementation of a super-resolution algorithm for real-

time video applications. In IEEE International Symposium on

Circuits and Systems (ISCAS), 2005.

[CLL05b] R. T. Collins, Y. Liu, and M. Leordeanu. Online selection of

discriminative tracking features. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(10):1631–1643, October

2005.

[CLS+08] G. Callico, S. Lopez, O. Sosa, J. F. Lopez, and R. Sarmiento.

Analysis of fast block matching motion estimation algorithms for

video super-resolution systems. IEEE Transactions on Consumer

Electronics, 54(3):1430–1438, August 2008.

[CO00] C. Chrysafis and A. Ortega. Line-based, reduced memory, wavelet

image compression. IEEE Transactions on Image Processing,

9(3):378–389, March 2000.

[Con01] G. A. Constantinides. High Level Synthesis and Word Length

Optimization of Digital Signal Processing Systems. PhD thesis,

Imperial College of Science, Technology and Medicine, University

of London, September 2001.

[CTE91] M. M. Chang, A. M. Tekalp, and A. T. Erdem. Blur identification

using the bispectrum. IEEE Transactions on Signal Processing,

292

39(10):2323–2325, October 1991.

[CTHC05] P.-C. Tseng C.-T. Huang and L.-G. Chen. Analysis and VLSI

Architecture for 1-D and 2-D Discrete Wavelet Transform. IEEE

Transactions on Signal Processing, 53(4):1575–1586, April 2005.

[CVO96] C. Chakrabarti, M. Vishwanath, and R. M. Owens. Architec-

tures for wavelet transforms: A survey. Journal of VLSI Signal

Processing, 14(2):171–192, November 1996.

[CY06] L. Chen and K.-H. Yap. Efficient Discrete Spatial Techniques for

Blur Support Identification in Blind Image Deconvolution. IEEE

Transactions on Signal Processing, 54(4):1557–1562, April 2006.

[dBNS96] A. del Bimbo, P. Nesi, and J. L. C. Sanz. Optical flow compu-

tation using extended constraints. IEEE Transactions on Image

Processing, 5(5):720–739, May 1996.

[DC97] S. Dewitte and J. Cornelis. Lossless Integer Wavelet Transform.

IEEE Signal Processing Letters, 4(6):158–160, June 1997.

[DGLC03] G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau. Combined

Line-Based Architecture for the 5-3 and 9-7 Wavelet Transform

of JPEG2000. IEEE Transactions on Circuits and Systems for

Video Technology, 13(9):944–950, September 2003.

[DHT+00] P. Debevec, T. Hawkins, C. Tchou, H.-P. Duiker, W. Sarokin,

and M. Sagar. Acquiring the reflectance field of a human face. In

293

Annual Conference on Computer Graphics and Interactive Tech-

niques (SIGGRAPH), pages 145–156, July 2000.

[DMBS98] S. J. Decker, R. D. McGrath, K. Brehmer, and C. G. Sodini. A

256x256 CMOS imaging array with wide dynamic range pixels

and column-paralleldigital output. IEEE Journal of Solid-State

Circuits, 33(12):2081–2091, December 1998.

[DRP+06] J. Diaz, E. Ros, F. Pelayo, E. M. Ortigosa, and S. Mota. FPGA-

based real-time optical-flow system. IEEE Transactions on Cir-

cuits and Systems for Video Technology, 16(2):274–279, February

2006.

[DS98] I. Daubechies and W. Sweldens. Factoring wavelet transforms

into lifting steps. Journal of Fourier Analysis and Applications,

4(3):247–269, May 1998.

[DS07] O. Dandekar and R. Shekhar. FPGA-Accelerated Deformable

Image Registration for Improved Target-Delineation During CT-

Guided Interventions. IEEE Transactions on Biomedical Circuits

and Systems, 1(2):116–127, June 2007.

[ED04] E. Eisemann and F. Durand. Flash photography enhancement

via intrinsic relighting. ACM Transactions on Graphics (TOG),

23(3):673–678, August 2004.

294

[FEM04] S. Farsiu, M. Elad, and P. Milanfar. Fast and robust multi-

frame super resolution. IEEE Transactions on Image Processing,

13(10):1327–1344, October 2004.

[Fov08] Foveon, Inc. Foveon X3 Image Sensor. http://www.foveon.com,

December 2008.

[FREM04] S. Farsiu, D. Robinson, M. Elad, and P. Milanfar. Advances and

Challenges in Super-Resolution. International Journal of Imaging

Systems and Technology, 14(2):47–57, August 2004.

[FXK06] J. Farrell, F. Xiao, and S. Kavusi. Resolution and Light Sensi-

tivity Tradeoff with Pixel Size. In SPIE Electronic Imaging ’06

Conference, volume 6069, pages 211–218, February 2006.

[GE05] A. E. Gamal and H. Eltoukhy. CMOS image sensors. IEEE

Circuits & Devices Magazine, 21(3):6–20, May-June 2005.

[Gen09] General Electric, Brussels, Belgium. http://www.gesecurity.net/,

July 2009.

[GNVV04] Z. Guo, W. Najjar, F. Vahid, and K. Vissers. A quantitative anal-

ysis of the speedup factors of fpgas over processors. In Interna-

tional Symposium on Field Programmable Gate Arrays (FPGA),

pages 162–170, February 2004.

[Gos05] A. A. Goshtasby. Fusion of multi-exposure images. Image and

Vision Computing, 23(6):611–618, June 2005.

295

[GS03] D. Gibson and M. Spann. Robust optical flow estimation based

on a sparse motion trajectory set. IEEE Transactions on Image

Processing, 12(4):431–445, April 2003.

[GYB04] S.B. Gokturk, H. Yalcin, and C. Bamji. A Time-Of-Flight Depth

Sensor - System Description, Issues and Solutions. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

pages 35–43, June 2004.

[Hay08] B. Hayes. Computational Photography. American Scientist,

96(2):94–99, March-April 2008.

[HCHT04] W.-J. Hwang, J.-F. Chen, Y.-C. Huang, and T.-Y. Tsai. Layered

video coding based on displaced frame difference prediction and

multiresolution block matching. IEEE Transactions on Commu-

nications, 52(9):1504–1513, September 2004.

[Ini03] Open SystemC Initiative. SystemC 2.0.1 Language Reference

Manual. 2003.

[IP91] M. Irani and S. Peleg. Improving Resolution by Image Registra-

tion. CVGIP: Graphical Models and Image Proc, 53(3):231–239,

May 1991.

[ISO98] ISO/IEC JTC1/SC29/WG11, FCD 14496-1. Coding of moving

pictures and audio, May 1998.

296

[ISO00] ISO/IEC FCD15444-1: 2000. JPEG 2000 image coding system,

May 2000.

[ITU08] ITU-T Recommentation T.800. JPEG2000 Image Coding

System Part I, ITU Std, July 2002. [Available from]

http://www.itu.int/ITU-T/, December 2008.

[Jia08] Q. Jiang. FIR Filter Banks for Hexagonal Data Processing. IEEE

Transactions on Image Processing, 17(9):1512–1521, September

2008.

[JLD06] H. Jiang, Z.-N. Li, and M. S. Drew. Detecting human action in

active video. In IEEE International Conference on Multimedia

and Expo, pages 1497–1500, July 2006.

[JLR03] J. Jiang, W. Luk, and D. Rueckert. FPGA-based computa-

tion of free-form deformations in medical image registration. In

IEEE International Conference on Field-Programmable Technol-

ogy (FPT), pages 234–241, December 2003.

[KDS+00] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts,

and J. Bogaerts. A logarithmic response CMOS image sensor

with on-chip calibration. IEEE Journal of Solid-State Circuits,

35(8):1146–1152, August 2000.

[KH96] D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE

Signal Processing Magazine, 13(3):43–64, May 1996.

297

[KHDO06] E. J. Kelmelis, J. R. Humphrey, J. P. Durbano, and F. E. Or-

tiz. High-performance computing with desktop workstations. In

WSEAS International Conference on Applied Mathematics, pages

83–88, November 2006.

[KN06] S. Kuthirummal and S. K. Nayar. Multiview Radial Catadiop-

tric Imaging for Scene Capture. ACM Transactions on Graph-

ics (TOG), 25(3):916–923, July 2006.

[Lat06] Lattice Semiconductor Corporation. Developping High-Speed

Memory Interfaces. February 2006.

[LB08] T. H. Le and L. T. Bui. A hybrid approach of adaboost and

artificial neural network for detecting human faces. In IEEE In-

ternational Conference on Research, Innovation and Vision for

the Future (RIVF), pages 79–85, July 2008.

[LCT+08] S. Lopez, G. Callico, F. Tobajas, J. Lopez, and R. Sarmiento.

A flexible template for h.264/avc block matching motion estima-

tion architectures. IEEE Transactions on Consumer Electronics,

54(2):845–851, May 2008.

[Lim90] J. S. Lim. Two-Dimensional Signal and Image Processing, page

548. Prentice Hall, 1990.

298

[LLW08] A. Levin, D. Lischinski, and Y. Weiss. A Closed-Form Solution to

Natural Image Matting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 30(2):228–242, February 2008.

[LNB+99] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and

I. Bolsens. Optimal Memory Organization for Scalable Texture

Codecs in MPEG-4. IEEE Transactions on Circuits and Systems

for Video Technology, 9(2):218–243, March 1999.

[Low04] D. G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. International Journal of Computer Vision, 60(2):91–110,

January 2004.

[LRAL08] A. Levin, A. Rav-Acha, and D. Lischinski. Spectral Matting.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

30(10):1–14, October 2008.

[Luc74] L. B. Lucy. An iterative technique for the rectification of observed

distributions. Astronomical Journal, 79(6):745–754, June 1974.

[Mal89] S. Mallat. A theory for multiresolution signal decomposition: The

wavelet representation. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2(7):674–693, July 1989.

[MAS06] K. Masselos, Y. Andreopoulos, and T. Stouraitis. Performance

comparison of two-dimensional discrete wavelet transform compu-

tation schedules on a VLIW digital signal processor. IEE Proceed-

299

ings Vision, Image and Signal Processing, 153(2):173–180, April

2006.

[McE06] M. McErlean. An FPGA Implementation of Hierarchical Motion

Estimation for Embedded Object Tracking. In IEEE Interna-

tional Symposium on Signal Processing and Information Technol-

ogy, pages 242–247, August 2006.

[McI01] L. G. McIlrath. A low-power low-noise ultrawide-dynamic-range

CMOS imager with pixel-parallel A/D conversion. IEEE Journal

of Solid-State Circuits, 36(5):846–853, May 2001.

[MCL02] W. J. C. Melis, P. Y. K. Cheung, and W. Luk. Image Registration

of Real-Time Video Data Using the SONIC Reconfigurable Com-

puter Platform. In IEEE Symposium on Field-Programmable Cus-

tom Computing Machines (FCCM), pages 1148–1151, September

2002.

[Mic08] Micron Technology, Inc. SDRAM System-

Power Calculator. [Available from]

http://www.micron.com/support/designsupport/tools/, De-

cember 2008.

[MJ07] M. E. Moghaddam and M. Jamzad. Motion blur identification in

noisy images using mathematical models and statistical measures.

Pattern Recognition, 40(7):1946–1957, July 2007.

300

[MK98] J. Magarey and N. Kingsbury. Motion estimation using a

complex-valued wavelet transform. IEEE Transactions on Sig-

nal Processing, 46(4):1069–1084, April 1998.

[MKG+97] S. Mendis, S. Kemeny, R. Gee, B. Pain, C. Staller, Q. Kim, and

E. Fossum. CMOS Active Pixel Image Sensors for Highly Inte-

grated Imaging Systems. IEEE Journal of Solid-State Circuits,

32(2):187–197, February 1997.

[MP94] S. Mann and R.W. Picard. Virtual bellows: constructing high

quality stills from video. In IEEE International Conference on

Image Processing (ICIP), volume 1, pages 363–367, November

1994.

[MV98] J. B. A. Maintz and M. A. Viergever. A survey of medical image

registration. Medical Image Analysis, 2(1):1–36, March 1998.

[Nay06] S. K. Nayar. Computational Cameras: Redefining the Image.

Computer, 39(8):30–38, August 2006.

[New82] B. Newhall. History of Photography. Bulfinch, 1982.

[NM00] S. K. Nayar and T. Mitsunaga. High dynamic range imaging:

spatially varying pixel exposures. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), volume 1, pages

472–479, June 2000.

301

[NP99] S. K. Nayar and V. Peri. Folded catadioptric cameras. In IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR), volume 2, pages 217–223, May 1999.

[NRBC04] C. Niclass, A. Rochas, P.-A. Besse, and E. Charbon. A CMOS

single photon avalanche diode array for 3D imaging. In IEEE In-

ternational Solid-State Circuits Conference, volume 1, pages 120–

129, February 2004.

[OBSC00] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tes-

sellations: Concepts and Applications of Voronoi Diagrams. John

Wiley and Sons, 2000.

[PHZ08] J. Pan, B. Hu, and J. Q. Zhang. Robust and Accurate Object

Tracking Under Various Types of Occlusions. IEEE Transactions

on Circuits and Systems for Video Technology, 18(2):223–236,

February 2008.

[PO06] E. Polat and M. Ozden. A nonparametric adaptive tracking algo-

rithm based on multiple feature distributions. IEEE Transactions

on Multimedia, 8(6):1156–1163, December 2006.

[PPK03] S. C. Park, M. K. Park, and M. G. Kang. Super-Resolution Image

Reconstruction: A Technical Overview. IEEE Signal Processing

Magazine, 20(3):21–36, May 2003.

302

[PSA+04] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe,

and K. Toyama. Digital photography with flash and no-flash im-

age pairs. ACM Transactions on Graphics (TOG), 23(3):664–672,

August 2004.

[PVW06] P. Peursum, S. Venkatesh, and G. West. Observation-switching

linear dynamic systems for tracking humans through unexpected

partial occlusions by scene objects. In International Conference

on Pattern Recognition (ICPR), volume 4, pages 929–934, August

2006.

[RBS99] M. A. Robertson, S. Borman, and R. L. Stevenson. Dynamic range

improvement through multiple exposures. In IEEE Conference on

Image Processing (ICIP), volume 3, pages 159–163, October 1999.

[RT00] M. A. Ruzon and C. Tomasi. Alpha estimation in natural images.

In IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), volume 1, pages 18–25, May 2000.

[RTM+06] R. Raskar, J. Tumblin, A. Mohan, A. Agrawal, and Y. Li. EURO-

GRAPHICS 2006 STAR State of the Art Report Computational

Photography, 2006.

[SCI05] E. Shechtman, Y. Caspi, and M. Irani. Space-Time Super-

Resolution. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 27(4):531–545, April 2005.

303

[SO89] H. Stark and P. Oskoui. High-resolution image recovery from

image-plane arrays, using convex projections. Journal of the Op-

tical Society of America A, 6(11):1715–1726, November 1989.

[SPBDK01] A. Stern, Y. Porat, A. Ben-Dor, and N. S. Kopeika. Enhanced-

resolution image restoration from a sequence of low-frequency

vibrated images by use of convex projections. Applied Optics,

40(26):4706–4715, September 2001.

[ST94] J. Shi and C. Tomasi. Good Features to Track. In IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR),

pages 593–600, June 1994.

[TAR05] J. Tumblin, A. Agrawal, and R. Raskar. Why i want a gradient

camera. In IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR), volume 1, pages 103–110,

June 2005.

[TFG01] H. Tian, B. Fowler, and A. E. Gamal. Analysis of Temporal

Noise in CMOS Photodiode Active Pixel Sensor. IEEE Journal

of Solid-State Circuits, 36(1):92–101, January 2001.

[TGP02] G. Tirunelveli, R. Gordon, and S. Pistorius. Comparison of

square-pixel and hexagonal-pixel resolution in image processing.

In IEEE Canadian Conference on Electrical and Computer Engi-

neering (CCECE), 2002.

304

[TKW86] A. Tekalp, H. Kaufman, and J. Woods. Identification of im-

age and blur parameters for the restoration of noncausal blurs.

IEEE Transactions on Acoustics, Speech and Signal Processing,

34(4):963–972, August 1986.

[TLZZ04] H. Tong, M. Li, H. Zhang, and C. Zhang. Blur detection for

digital images using wavelet transform. In IEEE International

Conference on Multimedia and Expo (ICME), volume 1, pages

17–20, June 2004.

[VH92] M. Vetterli and C. Herley. Wavelets and filter banks: theory

and design. IEEE Transactions on Signal Processing, 40(9):2207–

2232, September 1992.

[WB] G. Welch and G. Bishop. An introduction to

the Kalman filter, July 2006. [Available from]

http://www.cs.unc.edu/ welch/media/pdf/kalman intro.pdf,

December 2008.

[WB03] M. Weeks and M. Bayoumi. Discrete Wavelet Transform: Archi-

tectures, Design and Performance Issues. Journal of VLSI Signal

Processing, 35(2):155178, September 2003.

[WGT+05] A. Wenger, A. Gardner, C. Tchou, J. Unger, T. Hawkins, and

P. Debevec. Performance relighting and reflectance transforma-

305

tion with time-multiplexed illumination. ACM Transactions on

Graphics (TOG), 24(3):756–764, July 2005.

[WJV+05] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez,

A. Barth, A. Adams, M. Horowitz, and M. Levoy. High per-

formance imaging using large camera arrays. ACM Transactions

on Graphics (TOG), 24(3):765–776, July 2005.

[Xil] Xilinx, Inc. Virtex-4 FPGA User Guide.

[Xil04] Xilinx, Inc. Celebrating 20 Years of Innovation. Xilinx Xcell

Journal, 48:14–16, 2004.

[Xil08] Xilinx, Inc., San Jose. http://www.xilinx.com, December 2008.

[YJS06] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey.

ACM Computing Surveys, 38(4):1–45, December 2006.

[YK97] Y. Yitzhaky and N. S. Kopeika. Identification of Blur Parame-

ters from Motion Blurred Images. Graphical Models and Image

Processing, 59(5):310–320, September 1997.

[YW82] D. C. Youla and H. Webb. Image Restoration by the Method

of Convex Projections: Part 1-Theory. IEEE Transactions on

Medical Imaging, MI-1(2):81–94, October 1982.

[ZAS+01] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y. An-

dreopoulos, and C. E. Goutis. Evaluation of design alternatives for

306

the 2-D-discrete wavelet transform. IEEE Transactions on Cir-

cuits and Systems for Video Technology, 11(12):1246–1262, De-

cember 2001.

[ZAS06] J. Zan, M. O. Ahmad, and M. N. S. Swamy. Comparison of

wavelets for multiresolution motion estimation. IEEE Transac-

tions on Circuits and Systems for Video Technology, 16(3):439–

446, March 2006.

[ZF03] B. Zitova and J. Flusser. Image registration methods: a survey.

Image and Vision Computing, 21(11):977–1000, October 2003.

[ZSA01] J. Zan, M. N. S. Swamy, and M. O. Ahmad. Wavelet filters in

multi-resolution motion estimation. In Canadian Conference on

Electrical and Computer Engineering, volume 2, pages 1321–1326,

May 2001.

[ZTCS99] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from

Shading: A Survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(8):690–706, August 1999.

[ZWYF08] W. Zhang, Q. M. J. Wu, X. Yang, and X. Fang. Multilevel Frame-

work to Detect and Handle Vehicle Occlusion. IEEE Transactions

on Intelligent Transportation Systems, 9(1):161–174, March 2008.

[ZZ92] Y.-Q. Zhang and S. Zafar. Motion-compensated wavelet transform

coding for color video compression. IEEE Transactions on Cir-

307

cuits and Systems for Video Technology, 2(3):285–296, September

1992.

308

