
Journal of Signal Processing Systems 51, 3–21, 2008
) 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0139-5

Implementation and Comparison of the 5/3 Lifting 2D Discrete Wavelet
Transform Computation Schedules on FPGAs

MARIA E. ANGELOPOULOU AND PETER Y. K. CHEUNG
Department of Electrical and Electronic Engineering, Imperial College London,

Exhibition Road, London, SW7 2BT, UK

KONSTANTINOS MASSELOS
Department of Computer Science and Technology, University of Peloponnese, Tripolis, 22100, Greece

YIANNIS ANDREOPOULOS
Department of Electronic Engineering, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

Received: 14 April 2007; Revised: 23 July 2007; Accepted: 9 August 2007

Abstract. The suitability of the 2D Discrete Wavelet Transform (DWT) as a tool in image and video compression
is nowadays indisputable. For the execution of the multilevel 2D DWT, several computation schedules based on
different input traversal patterns have been proposed. Among these, the most commonly used in practical designs
are: the row–column, the line-based and the block-based. In this work, these schedules are implemented on FPGA-
based platforms for the forward 2D DWT by using a lifting-based filter-bank implementation. Our designs were
realized in VHDL and optimized in terms of throughput and memory requirements, in accordance with the
principles of both the schedules and the lifting decomposition. The implementations are fully parameterized with
respect to the size of the input image and the number of decomposition levels. We provide detailed experimental
results concerning the throughput, the area, the memory requirements and the energy dissipation, associated with
every point of the parameter space. These results demonstrate that the choice of the suitable schedule is a decision
that should be dependent on the given algorithmic specifications.

Keywords: discrete wavelet transform, FPGA, implementation, lifting scheme, 5/3 lifting filter-pair,
row-column, line-based, block-based, comparison

1. Introduction

The two-dimensional Discrete Wavelet Transform
(2D DWT) is nowadays established as a key
operation in image processing. In the area of image
compression, the 2D DWT has clearly prevailed
against its predecessor, the 2D Discrete Cosine
Transform. This is mainly because it achieves higher
compression ratios, due to the subband decomposi-
tion it involves, while it eliminates the `blocking’
artifacts that deprive the reconstructed image of the

desired smoothness and continuity. The high algo-
rithmic performance of the 2D DWT in image
compression justifies its use as the kernel of both
the JPEG-2000 still image compression standard [1]
and the MPEG-4 texture coding standard [2].

1.1. The Dyadic Decomposition

The 2D DWT can be considered as a `chain’ of suc-
cessive levels of decomposition as depicted in Fig. 1.
Because the 2D DWT is a separable transform, it

can be computed by applying the 1D DWT along
the rows and columns of the input image of each
level during the horizontal and vertical filtering
stages. Every time the 1D DWT is applied on a signal,
it decomposes that signal in two sets of coefficients: a
low-frequency and a high-frequency set. The low-
frequency set is an approximation of the input signal at
a coarser resolution, while the high-frequency set
includes the details that will be used at a later stage
during the reconstruction phase.
This procedure, presented in Fig. 1, is known as

the dyadic decomposition of the image, and its
impact upon the image’s pixels can be presented by
the diagram of Fig. 2, for the case of three de-
composition levels. The shaded areas in Fig. 2
represent the low-frequency coefficients that com-
prise the coarse image at the input of each level.
Let us briefly describe the steps of this decomposition.

The input of level j is the low-frequency 2D subband
LLj, which is actually the coarse image at the resolution
of that level. In the first level, the image itself
constitutes the LL image block (LL0). The coefficients
L (H), produced after the horizontal filtering at a given
level, are vertically filtered to produce subbands LL and
LH (HL and HH). The LL subband will either be the
input of the horizontal filtering stage of the next level, if
there is one, or will be stored, if the current level is also
the last one. All LH, HL and HH subbands are stored, to
contribute later in the reconstruction of the original
image from the LL subband.

1.2. The 1D DWT

In Fig. 1, the units that implement the 1D DWT are
depicted as black boxes. These are now considered in

detail. Twomain options exist for the implementation of
1D DWT: the traditional convolution-based implemen-
tation [3] and the lifting-based implementation [4, 5].

The convolution-based 1D DWT The conventional
convolution-based 1D DWT of [3] is presented in
Fig. 3a. As shown in Fig. 3a, this consists of two
analysis filters, h (low-pass) and g (high-pass),
followed by subsampling units. The signal x½n� is
decomposed into the approximation (low-frequency)
signal lp½n� and the detail (high-frequency) signal
hp½n� . Note that in the structure of Fig. 3a the
downsampling is performed after the filtering has
been completed. This is clearly inefficient since, in
this case, half of the calculated coefficients are
redundant, and the filtering is realized at full
sampling rate.

horizontal filtering stage

vertical filtering stage

h.f. :
v.f. :

H0

L0

HH1

HL1

LH1

LL1

HH2

HL2

LH2

LL2

H2

L2

HH3

HL3
LH3

LL3

IN
(LL0)

H1

L1

level 0 level 1 level 2

unit that implements the forward 1D-DWT

...

h.f. h.f.h.f.v.f. v.f.v.f.

Figure 1. The 2D DWT decomposition as a ‘chain’ of
successive levels.

L
E

V
E

L
 1

L
E

V
E

L
 0

L
E

V
E

L
 2

L
E

V
E

L
 3 ...

h.f. v.f.

h.f. v.f.

v.f.h.f.

h.f.

horizontal filtering stage
vertical filtering stage

h.f. :
v.f. :

HH1

HL1

LH1

HH2

HL2

LH2

HH3

HL3

LH3

HH1

HL1

LH1

HH2

HL2

LH2

H2L2

HH1

HL1

LH1

HH2

HL2

LH2

HH1

HL1

LH1

H1L1

HH1

HL1

LH1

H0L0LL0

LL1

LL2

LL3

Figure 2. Diagrammatic representation of the dyadic decompo-
sition for three decomposition levels.

4 Angelopoulou et al.

Early research on filter-bank design proved that
the execution of 1D DWT can be accelerated by
using the polyphase matrix of the filter-bank, instead
of the conventional filtering-and-downsampling
structure of Fig. 3a. As Fig. 3b shows, the signal is
split into two signals (polyphase components) at half
of the original sampling rate. The downsampling is
now performed prior to the actual filtering, thereby
avoiding the calculation of coefficients that will later
be discarded. The polyphase components of the signal
are filtered in parallel by the corresponding filter
coefficients, producing the same result as if the
downsampling was performed as described in [3].
The analysis polyphase matrix for Fig. 3b is

defined (in the Z-domain) as:

E0ðzÞ ¼ HeðzÞHoðzÞ
GeðzÞGoðzÞ

� �
ð1Þ

where HeðzÞ and HoðzÞ denote the Type-I even and
odd polyphase components of the corresponding
low-pass analysis filter, and GeðzÞ and GoðzÞ denote
the Type-I even and odd polyphase components of
the corresponding high-pass analysis filter.
Using the analysis polyphase matrix of (1), the

wavelet decomposition can be written (in the Z-
domain) as:

LPðzÞ
HPðzÞ

� �
¼ E0ðzÞ XeðzÞ

XoðzÞ
� �

; ð2Þ

where LPðzÞ denotes the approximation at the coarser
resolution, HPðzÞ denotes the detail signal, and XeðzÞ
and XoðzÞ denote the Type-I even and odd polyphase
components of the signal X ðzÞ.
The convolution-based 1-D DWT suffers from high

computational complexity and high memory utiliza-
tion requirements.

The lifting-based 1D DWT The lifting scheme
reduces the transform computational requirements

by factorizing the polyphase matrix of the DWT into
elementary matrices.
We will briefly discuss the principles of the

forward lifting. More information on the lifting
scheme can be found in [4, 5]. As it is proven in
[4], if (H , G) is a perfect-reconstruction filter-pair,
the following factorization of matrix E0ðzÞ of (1),
into lifting steps, is feasible:

EðzÞ ¼ K 0
0 1=K

� �Ym
i¼1

1 UiðzÞ
0 1

� �
1 0
�PiðzÞ 1

� �
ð3Þ

where K is a constant and m is the number of predict-
and-update steps. They both depend on the type of
filter-pair that is used.
Note that the lifting factorization of (3) is not unique.

That is, for a given wavelet transform we can often find
multiple ways of factorizing its polyphase matrix.
The numerical factorization of (3) is represented by

the schematic diagram of Fig. 4. The forward lifting
scheme consists of the following steps:

1. The splitting step, where the signal is separated
into even and odd samples.

2. The prediction steps, associated with the predict
operator PiðzÞ.

3. The update steps, associated with the update
operator UiðzÞ.

4. The scaling step, indicated by the scaling factors
1=K and K.

The inverse transform is realized by traversing the
schematic of Fig. 3b from right to left (reverse signal
flow) and switching the signs of the predict and
update operators as well as the scaling factors.
Because of the complete reversibility of the lifting
scheme even if non-linear predict and update oper-
ators are used in the schematic of Fig. 3b, we can use
a rounding operator to ensure integer form for all the
data produced, throughout the execution of the 2D
DWT. In this case, the 2D DWT is completely
reversible, and, therefore, lossless. Such transforms
are known as integer-to-integer transforms and are
extremely useful in lossless coding. To build an
integer version of a given wavelet transform, if
scaling is present, then the scaling step should be
either split further [6, 7] or omitted. In fact, the
scaling performed at the end of each decomposition
level in the conventional decomposition can be

h[n] 2

g[n] 2
x[n]

lp[n]

hp[n]

2

z-1 2
X(z)

LP(z)

HP(z)
E0(z)

(a) (b)

Figure. 3. The convolution-based implementation of the forward
1D DWT. The conventional filtering-and-downsampling structure
(a). Using the polyphase matrix of the analysis filter-bank (b).

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 5

skipped altogether [8], or incorporated into the
subsequent encoding or processing stage of each
bitplane and as a result it is not explicitly considered
in this paper.
Due to the lower computational cost, the flexibility

offered in the transform factorization, and the perfect
reconstruction property, the lifting-based imple-
mentation is generally preferable for the design of
optimized systems.

1.3. The 2D DWT

Several computation schedules have been proposed, to
implement the 2D DWT. In practical designs, the most
commonly used computation schedules are: the row–
column (RC) [3], the line-based (LB) [9] and the
block-based (BB) [10]. The simplest of these is RC,
which adopts the level-by-level logic of Fig. 1. How-
ever, such an approach necessitates the use of large
off-chip memory blocks as the only source of the
filter’s inputs. Contrary to RC, both LB and BB in-
volve an on-chip memory structure that operates as a
cache for the original image, minimizing the accesses
of the large memory blocks. Thus, memory utilization
and memory-access locality are improved. The main
difference among LB and BB concerns the way the
original image is traversed. Specifically, in LB, non-
overlapping groups of lines are processed, whereas, BB
operates using non-overlapping blocks of the image.

Related work Implementations of 2D DWT compu-
tation schedules can be found in [11] and [12]. In [13]
a combined lifting line-based FPGA implementation
for the single-level 5/3 and 9/7 2D DWT is presented.
In [14, 15] and [16], 2D DWT computation

schedules have been compared on a theoretical basis.
In [17] and [18], they are compared on programmable
architectures and on a VLIW DSP, respectively. Even

though the above comparisons are particularly en-
lightening, none of them is based upon hardware
implementations. Thus, the implementations involved
do not take advantage of the implementation efficien-
cy and the parallelism in data processing that
hardware could offer. In addition, the vast majority
of comparisons of the different alternatives focuses
on convolution-based realizations and lifting is not
considered. A discussion of VLSI architectures which
also considers lifting-based DWT modules is pre-
sented in [19]. However, very few performance
figures are presented for the multilevel lifting 2D
DWT, which is the case of interest in image coding
applications. Hence this important case remains
largely unexplored so far in the relevant literature.
Our initial results reported in [20] present some initial
performance figures, however in this paper we extend
these results and present energy performance figures
for the transform realization.

Contribution of this paper In this paper, the three
major 2D DWT lifting-based computation schedules
are implemented on FPGA-based platforms and
compared in terms of performance, area and energy
requirements. The computation schedules are com-
pared for different image sizes (M�M) and number of
levels (L) of the transform. To the best of our
knowledge no detailed comparisons of hardware
implementations of the three major lifting-based 2D
DWT computation schedules exist in the literature.
This comparison will give significant insight on
which schedule is most suitable for given values of
the relevant algorithmic parameters.

Structure of this paper Section 2 presents decisions
we made that are, for comparison reasons, common
in all our FPGA implementations. Sections 3.1, 3.2
and 3.3 describe how we implemented RC, LB and
BB, respectively. In Section 4, we discuss the results

2

2

X(z)

z-1

~P1(z) U1(z) P2(z) U2(z)

HP

LP

1/K

K...

...

Pm(z) Um(z)

-
+

-
+

-
+

+
+

+
+

+
+

Figure 4. The lifting-based implementation of the forward 1D DWT.

6 Angelopoulou et al.

of the three FPGA implementations, concerning the
throughput, the number of FPGA slices, and the
memory and energy requirements. In Section 5 we
briefly discuss what type of optimizations would be
more appropriate for each schedule. Finally, Section 6
offers our conclusions.

2. Common Implementation Decisions
and Assumptions

The comparison of the main 2D DWT computation
schedules is performed on the basis of some common
implementation decisions and assumptions. These are
concerned with the memory architecture used to store
the image (image memory) and the filtering structure
used to compute the DWT.

2.1. Image Memory

In this comparison, a single-port image memory is
considered. The image memory is usually off-chip.
However, it may also be on-chip, if we are dealing
with small frames and/or using large FPGA devices.
Considering the fact that the image memory can
sometimes be on-chip, we made our comparison as
generic as possible by using a common clock for the
image memory and the rest of the system.
Employing a single-port image memory in our

analysis adds flexibility as far as the available memory
is concerned, as many boards do not include multi-port
large memory blocks. Also, since the image memory is
usually off-chip, the fact that single-port off-chip
RAMs consume less energy per access than multi-port
ones is definitely something to consider [14, 19]. In
data-intensive algorithms, such as the 2D DWT,
memory accesses are highly frequent. Thus, when
the image memory is off-chip, from an energy
perspective single-port RAMs are ideal, trading off
the higher performance of multi-port RAMs [19].
Traditionally, two memory blocks are used in

image processing systems: one to store the original
image, and one for the outputs. To avoid the second
block, we used the in-place mapping scheme: the
filter’s outputs are written over memory contents that
are already consumed and no longer needed. To adopt
this scheme, each memory location should have the
same bit-width as the outputs of the transform.
The in-place mapping scheme is illustrated in Fig. 5.

The dyadic decomposition is applied on a hypothet-

ical 8� 8 original image and the outputs of each
stage are written in memory locations that have
already been read and filtered. The shaded areas, in
Fig. 5, represent the pixels of the coarse image at
the input of each level. It might be interesting for the
reader to compare Fig. 5 with Fig. 2, to see how
the pixels of the different 2D subbands, of the dyadic
decomposition diagram, are distributed over the
memory array. Note that in Fig. 5 every distinct
square represents one pixel and bares the name of the
2D subband in which it belongs. The decomposition
of the hypothetical 8� 8 original image cannot go
beyond level 2, as there are not enough pixels in the
LL2 subband to proceed with the filtering operations.

2.2. Filter Implementation

A single filter is used in all three implementations,
introducing the minimum hardware cost. That is, the
same single filter is shared among all levels and also
among the vertical and the horizontal filtering stages
within each level. The choice of using a single filter is
mostly appropriate for an RC architecture that uses a
single-port RAM.

L
E

V
E

L
 1

L
E

V
E

L
 0

L
E

V
E

L
 2

h.f. v.f.

h.f. v.f.

horizontal filtering stage
vertical filtering stage

h.f. :
v.f. :

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

LL0 LL0 LL0 LL0 LL0 LL0 LL0 LL0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

L0 H0

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

LL1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

L1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

H1 HL1

LH1 HH1

HL2 HL1

LH1 HH1

HH2 HL1

LH1 HH1

HL2 HL1

LH1 HH1

HH2 HL1

LH1 HH1

LL2 HL1

LH1 HH1

LH2 HL1

LH1 HH1

LL2 HL1

LH1 HH1

LH2 HL1

LH1 HH1

LL2 HL1

LH1 HH1

LH2 HL1

LH1 HH1

LL2 HL1

LH1 HH1

LH2 HL1

LH1 HH1

HL2 HL1

LH1 HH1

HH2 HL1

LH1 HH1

HL2 HL1

LH1 HH1

HH2 HL1

LH1 HHv

Figure 5. The in-place mapping scheme. The dyadic decompo-
sition is applied on a hypothetical 8� 8 original image.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 7

The 5/3 lifting-based filter-pair As for the type of
filter, considering the advantages that the lifting
scheme offers, we used a lifting-based filter, instead
of a traditional convolution-based filter. Two types of
lifting-based filter sets are mainly used in implemen-
tations of the DWT, the 5/3 lifting filter-pair [5] and
the 9/7 lifting filter-pair [4]. We used the 5/3 lifting
filter-bank, as it is more hardware efficient: for the same
number of pipeline stages, it has a significantly smaller
critical path than the 9/7 lifting filter-bank, while
occupying significantly smaller area. This is due not only
to the smaller number of lifting steps required, but also to
the simplicity of the multiplying units: only two simple
multiplications are involved (by (1/2) and by (1/4)), that
can be implemented with simple shifters.
For the conventional 5/3 filter-pair, the analysis low-

pass filter h (Fig. 3) has 5 coefficients, while the analysis
high-pass filter g (Fig. 3) has 3 coefficients. The filter
coefficients are the following:

– Low-pass filter h: f�1=8; 2=8; 6=8; 2=8;�1=8g
– High-pass filter g: f�1=2; 1;�1=2g

The factorization of the polyphase matrix of the
conventional 5/3 filter-bank renders two elementary
matrices. Therefore, the lifting version of the 5/3
filter-bank will include only one predict-and-update
step, or equivalently m will equal 1 (see Section 1.2).
For each pair of input samples, 2n and 2nþ 1 , the
lifting equations of this filter-bank are the following:

HP½2nþ 1� ¼ X ½2nþ 1� � b X ½2n� þ X ½2nþ 2�
2

c ð4Þ

LP½2n� ¼ X ½2n� þ b HP½2n� 1� þ HP½2nþ 1� þ 2

4
c
ð5Þ

where X are the signal samples, HP is the high-
frequency output coefficient, LP is the low-frequency
output coefficient, and b:c represents the floor
operator. The floor operator ensures an integer-to-
integer lossless transform.

Hardware implementation of the 5/3 lifting filter-pair In
our hardware implementation of the filter, a three-
word FIFO stores inputs X ½2nþ 1�, X ½2n�, X ½2nþ 2�,
and a register stores HP½2n� 1�, which was calculat-

ed in the previous lifting step. According to the above
equations, for a new pair of output coefficients to be
computed, two (and not one) new filter inputs are
needed. Thus, a filtering operation will take place,
and a pair of output coefficients will be produced,
every two cycles.
Our hardware implementation of the 5/3 lifting

filter-pair is shown in Fig. 7. Registers r1, r2 and r3
constitute the FIFO. Observing Fig. 8, one concludes
that the filter’s behavior is determined according to
whether the initialization phase is over. The initiali-
zation_signal controls multiplexers m1 and m2,
which determine if the data flows with a step of one
or a step of two. Thus, the filter-bank might behave in
one of the two following ways:

1. The initialization mode, where the data flows with
a step of one. During the initialization phase, two
samples are mirrored around the first sample, and
a simple shifting takes place in the FIFO, as
shown in Fig. 6.

2. The normal mode, where the data flows with a step
of two. After the initialization phase has been over,
the we_NormalMode signal will be forced to high
when the FIFO should be written. Since the filtering
operation should take place every two cycles, the
we_NormalMode signal gets high every second
cycle. Thus, the pattern shown in Fig. 7 is achieved.
The same pattern applies for the finalization mirror-
ing to be executed (Fig. 6), but the source of r1’s
input is now the FIFO itself, eliminating the need
to access memory during this step.

In RC, only one input enters the filter-bank per
cycle, since the single-port image memory is the only
source of input coefficients. Thus, for RC, the filter-
bank of Fig. 8 is ideal. On the contrary, as we will see
in the following sections, both LB and BB involve

0 1 212 3 4 5 6 7 6

in
iti

al
iz

at
io

n
m

irr
or

in
g

fin
al

iz
at

io
n

m
irr

or
in

g

line to be filtered

Figure 6. Mirroring at the borders of an 8-pixel incoming line,
for a 5/3 lifting filter-bank.

8 Angelopoulou et al.

multi-port on-chip buffers, that can supply the filter-bank
with more than one inputs per cycle. In order to make the
best possible use of the parallelism offered, we made a
few small changes to the filter-bank of Fig. 8, to
incorporate a multiple-input function (Fig. 9). Now,
two or three inputs can be inserted in the filter-bank at a
single cycle. However, during the horizontal filtering at
level 0, the samples will be drawn from the single-port
memory, just like in the case of RC. Thus, during the
horizontal filtering at level 0, the new filter-bank behaves
in a single-input mode, apart from the multiple-input
mode in which it functions in any other case.

3. Implementing the Computation Schedules

In this section we will describe how we implemented
the RC, LB and BB 2D DWT computation schedules.
Fig. 10 presents a generic block diagram of a 2D
DWT FPGA-based system that uses an off-chip
image memory (which is the most common case).
The dashed line indicates that on-chip buffers are not
used in all of the three schedules.

3.1. Row–Column Implementation

The RC is implemented by applying the forward 1D
DWT in both the horizontal and the vertical direction

of the image, for a chosen number of levels, in the
way shown in Fig. 2. Specifically, in any given level,
in order to proceed to the vertical filtering, of the
current level’s LL image block, the horizontal filtering
should be complete. In addition, in order to proceed
to the next level, the filtering at the previous level
should be finished. Figures 11 and 12 present the
flowchart and the block-diagram of RC, as imple-
mented. Related to the generic block-diagram of
Fig. 10, in the block diagram of RC (Fig. 12) the
on-chip buffering block is omitted.
The RC architecture is the one with the simplest

control path. The parallelism achieved during the
filtering operations depends on the number of ports of
the image memory. Its major disadvantage is the lack

t

2

21

210

101

012

234

456

initialization

finalization

normal mode

LP[0], HP[0]

LP[1], HP[1]

LP[2], HP[2]

LP[3], HP[3]

new samples in the FIFO, coming directly from the filter's input

samples already in the FIFO

new samples in the FIFO, coming from r6

012

234

676
46 5

3

5

7

new content of r6 that will be written in the FIFO at the next
clock cycle

Figure 7. The contents of the FIFO in respect to time for the
filtering of an 8-pixel line.

register without write enable input

we
neg

neg unit that gives negative value of input
HP

pipeline

r1 r2 r3

filter input
r6

>>1

>>2

in
iti

al
iz

at
io

n_
si

gn
al

w
e_

N
or

m
al

M
od

e
r4 r5

m1

m2

+ 2

LP

register with write enable input

Figure 8. Hardware implementation of the 5/3 lifting filter-pair,
designed to perform the 1D DWT. The write enable signal (we)
determines if the registers with write enable inputs will be written.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 9

of locality, due to the use of off-chip large memory
blocks. This decreases the performance and increases
the power consumption.

3.2. Line-Based Implementation

Figure 13 presents the flowchart of the low-level LB
algorithm, as implemented. In Fig. 13 r denotes the
current row of the original image and j denotes the
current level of processing. The counter COUNTðjÞ
determines (a) if there exists sufficient information
for a vertical filtering to occur at level jþ 1 and (b)
which is the filtering mode of the next vertical
filtering at level jþ 1. Specifically, if COUNTðjÞ ¼ 4,
a vertical filtering will occur at level jþ 1 in
initialization mode, whereas if COUNTðjÞ ¼ 2 , it
will occur in normal mode. If COUNTðjÞ ¼ 3 or
COUNTðjÞ ¼ 1 , there is not sufficient information
for a vertical filtering to occur at the current stage,
but as soon as enough coefficients are produced a
vertical filtering will occur in initialization or normal
mode, respectively.
Figure 14 shows the block diagram of the LB

architecture. Contrary to the RC, the LB uses on-chip

buffers. The on-chip buffers used in all of the levels
are included in the shaded area of Fig. 14. In Fig. 15
the buffers of level j are isolated. The LB uses these
on-chip buffers, to store coefficients of intermediate
levels which will be used at subsequent levels. This
improves the memory-access locality compared to
RC, and, hence, improves the performance. More-
over, contrary to RC where the single-port image
memory imposes a serial nature to the filtering
operations, these buffers may be multi-port to
increase parallelism.

 din

dout

 we
 addr

 IMAGE
 MEMORY

FILTER

LP
HP

FSM ON-CHIP
BUFFERS

. . .

FPGA

Figure 10. Generic block diagram of a system which executes the
2D DWT using an off-chip image memory.

horizontal filtering

j = 0
r = 0
c = 0

r = M - step?

r = 0
c = 0

TF

r = r + step

vertical filtering

c = M - step?F T

c = c + step j = L - 1?
T F

j = j + 1
r = 0
c = 0

TERMINATE

step = 2j

Figure 11. Flowchart of the RC algorithm as implemented (r/c=
current row/column, j=current level).

neg

r1 r2 r3

>>1

in
iti

al
iz

at
io

n_
2n

d_
st

ep

(a

ct
iv

e
lo

w
 s

ig
na

l)
w

e

r4 r5

mb mc

...

m4

...

ma

...

...

Figure 9. This filter-bank derives from that of Fig. 7, by applying
a few changes (the shaded areas), to incorporate a multiple-input
function. The lower part is not shown, as it remains the same.

10 Angelopoulou et al.

A group of lines is processed up to the final level,
and a filter’s output is stored in image memory only if
it will be used as it is during reconstruction and never
again during decomposition. Thus, LH , HL and HH
coefficients are stored after the vertical filtering at any
level, whereas the LL coefficients are stored only at
the last level (Fig. 13).
After the completion of a vertical filtering at level

j� 1, the resulting LLj coefficients are written in R(j).
Buffer R(j) will then be horizontally filtered and the
resulting coefficients will be written, depending on
the current stage of level j’s vertical filtering, in one
of the following: C(j), R(j) (implementing the in-
place mapping scheme) or buf1(j) (only during the
initialization phase of the vertical filtering at level j,
when buf1(j) is still empty).
Using the still empty buf1(j) during vertical initializa-

tion, we eliminate the extra line buffer that would store
the extra information needed for the initialization
mirroring to occur. When initialization is over, that is
during the normal-mode vertical filtering, the value of the
FIFO’s first register (r1) and the high-frequency output of
the current lifting step, are stored in buf1(j) and buf2(j),
respectively. Thus, the coefficients of the preceding
lifting step are retrieved at the current step from buf1(j)
and buf2(j). In this way, a continuity in the vertical
filtering of each column is created, since in LB the
vertical filtering, contrary to the horizontal filtering, is not
inherently continuous. During vertical finalization, the
values of buf1(j) are also the samples that are mirrored.
The filter used in LB, is that of Fig. 9, which

incorporates a multiple-input mode to take advantage
of themulti-port nature of the on-chip RAMs. Figures 16
and 17 depict how the initialization and normal mode
vertical filtering of each column is executed, and also
show the multi-port filter’s behavior.

3.3. Block-Based Implementation

The BB is implemented bringing on chip blocks of
the original image. Traditionally, the size of these
blocks is equal to 2L � 2L, to allow the generation of
either an LLL=LHL or an HLL=HHL pair, L denoting
the final level. Thus, an on-chip memory of equal size
should be used, where blocks are temporally stored.
This memory is known as Inter-Pass Memory (IPM)
[10]. The RC algorithm is then applied on the block,
up to the last level, the decomposition of the block is
written back to image memory, and the next block is
brought on chip. The traditional version of BB
demands complicated control and addressing [14], is
not effective in streaming applications and imposes
high memory requirements (for six levels of decom-
position the size of the IPM would be 4096 words).
The BB version that we implemented is the one

that requires the minimum size of local buffers and,
also, simplifies as much as possible the control and
the addressing. Each level has its own IPM, where
coefficients LL are stored to be filtered horizontally.
The size of IPM(j) is such that allows the generation
of an Lj=Hj pair at level j. As we have seen, for a new
Lj=Hj pair to be generated, two new input coefficients
should enter the filter-bank. Thus, the size of IPM(j),
where j ¼ 1; 2; :::; L� 1 , will be only 2 words. No
IPM is needed for level 0, as the filter’s inputs come
straight from image memory.
In the previous section, we saw that the vertical

filtering is not inherently continuous in LB. In order
for the vertical filtering to be executed correctly, a group
of line-buffers was used. In BB, the horizontal—and
not only the vertical—filtering is also deprived of
inherent continuity. Therefore, apart from line buffers
that will be used to create vertical continuity, in order to
create continuity in the horizontal filtering, two double-
word registers will now be used in each level.
Specifically, IPM(j) will store the input samples, that
will enter the filter’s FIFO, and bufH(j) will be needed
to store the two intermediate results of horizontal
filtering. So, the total storage place needed to create
horizontal continuity is much smaller than that needed
for the vertical filtering to be continuous. This is
because we traverse the input image first horizontally
and then vertically.
In vertical filtering, line-buffers buf1(j) and buf2(j)

will be used in exactly the same way as in LB.
An Lj=Hj pair, produced after the horizontal

filtering of IPM(j), is either stored in a line-buffer

din
dout

we
addr

IMAGE MEMORY FILTER

LP

HP

din

finaliz_value

FSM we_Img_Mem
addr_Img_Mem

mux_ctrl

we_NormalMode
init_sig

we_NormalMode
init_sig

finaliz_sig

Figure 12. Block diagram of the RC architecture.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 11

(for the odd rows of level j) or consumed at once (for
the even rows of level j) to produce either an
LLjþ1=LHjþ1 or an HLjþ1=HHjþ1 pair (Fig. 18).
Hence, in the case of even rows, a vertical filtering
action is undertaken after the generation of every
Lj=Hj pair, and no supplementary line-buffer is
needed. On the contrary, in Fig. 17, in the even rows

of vertical filtering, a whole row of Lj and Hj

coefficients had to be written in R(j), so that
continuous horizontal filtering would be applied on
it. Only after the completion of the horizontal filtering
of the even row of level j, the vertical filtering would
begin. As a result, the number of line buffers of BB is
reduced by one, compared to that of LB.

Vertical filtering at level j in normal mode.
LLj+1 coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

Horizontal filtering at level j+1.
Output coefficients stored on chip.

COUNT(j) = COUNT(j) + 2
j = 0

Vertical filtering at level j in initialization mode.
LLj+1 coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

j = L-1?

NO

Horizontal filtering at j+1.
Outputs stored on chip.

COUNT(j) = COUNT(j) + 1

COUNT(j)=?

1 / 3

j = 0

2 4

COUNT(j)=0
j = j + 1

COUNT(j)=0
j = j + 1

Vertical filtering at level j in normal mode.
All outputs stored in image memory.

j = 0

r = M-1?

COUNT(0) = 0

Horizontal filtering of image's last row.
Output coefficients stored on chip.

Vertical filtering at level j in finalization mode.
LLj+1 coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

 j = L-1?

Vertical filtering at level j in finalization mode.
All outputs stored in image memory.

FT

TF

TERMINATE

ve
rt

ic
al

 fi
na

liz
at

io
n

TF

j = 0, r = 0
COUNT(j) = 0 (j = 0,1,...,L-2)

Horizontal filtering of 3 first rows of the original image.
Outputs stored on chip.

r = 3

Horizontal filtering of 2 next rows of the original image.
Outputs stored on chip.

r = r + 2

Horizontal filtering at level j +1.
Output coefficients stored on chip.

j = j + 1

Figure 13. Flowchart of the LB algorithm as implemented (r=current row, j=current level).

12 Angelopoulou et al.

The block diagram of the BB architecture is shown in
Fig. 19. The on-chip memory needed for level j is
illustrated in Fig. 20. The control logic, implemented
with the FSM, is a lot more complicated in the case of
BB, compared to that of LB. Mainly, it differs from the
control logic presented in Fig. 13 in the following:

1. Successive columns of Lj and Hj coefficients are
no longer filtered vertically in a successive
manner. After a vertical filtering of an even
column occurs, if the current level is not also the
final one, LLjþ1 is either written in bufH(j+1) or in
IPM(j+1), depending on the current stage of
horizontal filtering at level jþ 1. A single step of
horizontal filtering at level jþ 1 may occur
(depending on the horizontal filtering stage)
interrupting the vertical filtering of level j.

2. The horizontal filtering is no longer continuous.
After a discrete step of horizontal filtering at level
jþ 1, it should be decided if a vertical filtering at
level jþ 1 can occur. If it does occur, a single step
of horizontal filtering at level jþ 2 might follow,
and so on. This domino effect in the worst case
reaches the final level, imposing highly frequent
interchanges between successive levels, that com-
plicate the control logic.

As in LB, the filter-bank used in BB should make
full use of the parallelism multi-port buffers offer.
Thus, the version of Fig. 9 is used, so that the filter-
bank operates in a single-input mode during the
horizontal filtering at level 0 and functions in a
multiple-input mode in any other case.

4. Results and Comparisons

The architectures were implemented in VHDL,
synthesized with Synplify Pro 7.7, and placed and
routed on Xilinx Virtex 4 XC4VLX15 FPGA, using
Xilinx ISE v.8.1. In all of the implementations, the
image memory shares the same clock with the rest of
the system. This simplification renders our compari-

din

dout

we
addr

IMAGE
MEMORY

FILTER

LP
HP

r1_content

FSM

R(0)

R(1)

R(2)...

C(0)

C(1)

C(2)...

buf1(0)

buf1(1)

buf1(2)...

buf2(0)

buf2(1)

buf2(2)...

...
...

Figure 14. Block diagram of the LB architecture. The shaded
area includes the on-chip buffers used in the architecture.

buf1(j)

buf2(j)

C(j)

M/2j

R(j)

Figure 15. On-chip line buffers of level j, used in LB.

buf1(j)

C(j)

R(j)

Lj(0)

Lj(0)

Lj(0)

Hj(0)

Hj(0)

Hj(0)

Lj(1)

Lj(1)

Lj(1)

Hj(1)

Hj(1)

Hj(1)

Lj(M/2j+1-1) Hj(M/2j+1-1)

Lj(M/2j+1-1)

Lj(M/2j+1-1)

Hj(M/2j+1-1)

Hj(M/2j+1-1)

 0col # : 1 2 3 M/2j-2 M/2j-1

...

...

...

...

LLj+1(0),
LHj+1(0)

HLj+1(0),
HHj+1(0)

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

LLj+1(M/2j+1-1),
LHj+1(M/2j+1-1)

... HLj+1(M/2j+1-1),
HHj+1(M/2j+1-1)

R(j+1) LLj+1(0) LLj+1(M/2j+1-1)...LLj+1(1)

buf1(j)

R(j)
r1

r1
1st step of
initialization

2nd step of
initialization

C(j)

C(j)
r2

r2

R(j)

buf1(j)
r3

r3

Figure 16. Vertical filtering in initialization mode in the LB
architecture. The second step of initialization can be simplified
avoiding the overwriting of r2 with the same value it already has,
by forcing its we input to low. Also at the second step, r3 will be
written with the previous value of r1.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 13

son as generic as possible, since the image memory is
sometimes on-chip (e.g. in large FPGA devices). Under
this assumption, it should be noted that the computation

schedules with larger traffic towards the image memory
are favored, and no interface circuit is needed.
The current section presents a comparative analysis of

the implementations, in terms of throughput, number of
FPGA slices, memory requirements and energy con-
sumption. These measurements are relative to the image
size (M) and the number of decomposition levels (L).

4.1. Throughput

The RC, the LB and the BB operate on the
XC4VLX15 device at 172.4, 113.6 and 117.6 MHz
respectively. The three schemes have similar data
paths: 174.6 MHz for the RC, 171.3 MHz for the LB
and 170.9 MHz for the BB. However, the frequency
varies because the critical path lies in the control path.
The LB obtains the highest throughput among the

three schedules. This is due to the small number of
clock cycles it requires to complete the 2D DWT
(Table 1); it starts from 150,024 cycles (M=256, L=3),
and reaches 2,374,740 cycles (M=1024, L=6). The
throughput of LB reaches 757 frames/second (M=256,
L=3) and drops to 47 frames/second (M=1024, L=6).
There is no great difference between the number of

cycles needed for RC and BB. Specifically, RC needs
347,651–5,607,174 (Table 1), while BB requires
354,827–5,767,246 clock cycles (Table 1). However,

buf1(j)

linebuf(j) Lj(0)

Lj(0)

Hj(0)

Hj(0)

Lj(1)

Lj(1)

Hj(1)

Hj(1)

 0col # : 1 2 3

...

...

...

LLj+1(0),
LHj+1(0)

HLj+1(0),
HHj+1(0)

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

...

bufH(j+1)(0)LLj+1(0) LLj+1(1)

Lj(0) Hj(0) Lj(1) Hj(1)buf2(j) ...

Lj(2)

Hj(2)

Hj(2)

4

Lj(2) Hj(2)

Lj(2)

5

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

LLj+1(2) IPM(j+1)

Lj(0) Hj(0) Lj(1) Hj(1) Lj(2) Hj(2)

Lj+1(0) ...

*

**
buf1(j+1)

*

**

r1 r2 r3

linebuf(j) buf1(j)Lj(0)/Hj(0)
m4

buf2(j)

r1 r2 r3
1st step of
initialization

2nd step of
initialization

bufH(j+1)(0) IPM(j+1)(0) IPM(j+1)(1)

r1 r2 r3

bufH(j+1)(0)IPM(j+1)(0)IPM(j+1)(1)

...

Lj(M/2j+1-1) Hj(M/2j+1-1)

Lj(M/2j+1-1)

Lj(M/2j+1-1)

Hj(M/2j+1-1)

Hj(M/2j+1-1)

M/2j-2 M/2j-1

Figure 18. The normal-mode vertical filtering at level j, in BB, is
followed by initialization-mode horizontal filtering at level jþ 1 .
Being at the beginning of the vertical initialization stage at level
jþ 1, Ljþ1 is written in buf1(j+1).

buf1(j)

C(j)

R(j)

Lj(0)

Lj(0)

Lj(0)

Hj(0)

Hj(0)

Hj(0)

Lj(1)

Lj(1)

Lj(1)

Hj(1)

Hj(1)

Hj(1)

Lj(M/2j+1-1) Hj(M/2j+1-1)

Lj(M/2j+1-1)

Lj(M/2j+1-1)

Hj(M/2j+1-1)

Hj(M/2j+1-1)

 0col # : 1 2 3 M/2j-2 M/2j-1

...

...

...

...

LLj+1(0),
LHj+1(0)

HLj+1(0),
HHj+1(0)

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

LLj+1(M/2j+1-1),
LHj+1(M/2j+1-1)

... HLj+1(M/2j+1-1),
HHj+1(M/2j+1-1)

R(j+1) LLj+1(0) LLj+1(M/2j+1-1)...LLj+1(1)

Lj(0) Hj(0) Lj(1) Hj(1) Lj(M/2j+1-1) Hj(M/2j+1-1)buf2(j) ...

r1 r2 r3

R(j) C(j) buf1(j)
m4

buf2(j)

Figure 17. Vertical filtering in normal mode in the LB architec-
ture. Three inputs are loaded in parallel into the FIFO, while buf2(j)
passes through multiplexer m4 of the filter-bank.

FILTER

LP
HP

r1_content

FSM

linebuf(0)

linebuf(1)

linebuf(2)...

buf1(0)

buf1(1)

buf1(2)...

buf2(0)

buf2(1)

buf2(2)

...

...
...

IPM(1)

...
...din

dout

we
addr

IMAGE
MEMORY

IPM(2)

bufH(0)

bufH(1)

bufH(2)

Figure. 19. Block diagram of the BB architecture. The shaded
area includes the on-chip buffers used in the architecture.

14 Angelopoulou et al.

because the RC operates in higher frequency, its
throughput is improved, resulting in the difference
observed in Table 2. If the image memory operates in
a smaller frequency than the rest of the system, BB
will outperform RC.
The larger number of cycles in RC, compared to

LB, is due to the fact that a single-port memory is
used as the only source of inputs for RC. Thus, inputs
enter the filter-bank in a serial manner and no
parallelism is involved in the filtering operations. On
the contrary, in LB and BB, two or three inputs might
enter the filter-bank in parallel. Also, in RC the filter’s
output pair cannot be written in image memory in a
single cycle; one of the outputs should be buffered to
be written at the next cycle. The results that we got
prove that using multi-port buffers, even with a single
filter-bank, halves the number of cycles for the LB
architecture. But this is not the case for the BB, even if
multi-port buffers are also used to increase memory-
access locality. This is due to the streaming nature of
the operations taking part in LB, which is no longer the
case for BB. Thanks to that, in LB at many points the
next action is predetermined, for example the horizon-
tal filtering is continuous and successive columns are
successively filtered. As a result, many low level
actions can occur in parallel, as it is pre-decided that
they would not affect each other. Things are different
for BB, since the control is deprived of such a
streaming behavior and many options should be
considered at a specific point, instead of following a
predetermined route. As a result, in the case of BB, the
number of cycles is increased, compared to LB.
Observing Table 2, one concludes that all three

architectures can handle efficiently the image pro-

cessing of still images, with minimal hardware cost—
just one filter-bank with only one pipeline stage for
the whole structure.
In order for a system to carry out video processing,

the whole video-processing chain should operate at a
speed of 30 frames/second. Therefore, a safety
margin should be considered, to judge the video-
processing capability of a system based on the results
of Table 2. Observing Table 2, we can safely
conclude that all three architectures can handle the
video-processing of image sizes 256 and 512. The
high throughput for such images would also allow an
efficient operation of all three systems in a low-power
mode. However, when it comes to image size 1,024,
even though the throughput of the LB architecture
still allows video-processing, this is no longer the case
for the other two.

4.2. FPGA Slices

The FPGA slices used in RC are much fewer than in
LB and BB (Table 3). This is due to the simplicity of
the control associated with the RC algorithm. The
number of slices for RC covers a range from 280
(M=256, L=3) up to 329 slices (M=1024, L=6). For
LB and BB this range is 2,659–3,001 and 2,646–
3,597 slices, respectively.

4.3. Memory Issues

The RC does not involve any on-chip buffers,
contrary to LB and BB. Thus, in RC the image
memory is the only source of inputs for the filter-
bank. As a result, the number of image memory
accesses is significantly larger in the RC case
(Table 4). In the cases of LB and BB this number is
the same, and does not vary when the number of
levels varies, as it is, in both cases, equal to 2�M2.
In LB and BB, the on-chip local memory of each

level is accommodated in BRAMs (Fig. 21), gener-

buf1(j)

buf2(j)

linebuf(j)

M/2j

IPM(j)

bufH(j)

2

Figure 20. On-chip memory of level j, used in BB.

Table 1. Number of clock cycles.

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 347,651 352,004 353,157 353,478 1,383,427 1,400,324 1,404,677 1,405,830 5,519,363 5,585,924 5,602,821 5,607,174

LB 150,024 150,988 151,280 151,380 592,904 596,364 597,328 597,620 2,357,256 2,370,316 2,373,776 2,374,740

BB 354,827 359,372 360,493 360,766 1,418,251 1,436,556 1,441,101 1,442,222 5,670,923 5,744,396 5,762,701 5,767,246

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 15

ated by the Xilinx ISE Coregenerator, and registers.
The bit-width used is 16 bits. The Virtex-4 BRAMs
used are 18 K dual-port BRAMs.
To obtain maximum throughput, the buffers of the

same type and of different levels can be grouped together
in a single BRAM, if the space provided is enough. This
way, during the vertical filtering of successive columns,
R(j), C(j), buf1(j) and buf2(j) can feed the filter-bank
simultaneously. At the same time, locations of buf1(j)
and buf2(j), that have already been read, are overwritten
with the new intermediate results, to be read at the next
lifting step. Moreover, R(j) can be read while R(j+1) is
written with the output of a previous column’s vertical
filtering. Therefore, four dual-port BRAMs should be
used in the cases of image sizes 256 and 512. Four
additional dual-port BRAMs will be needed for size
1,024, to accommodate the larger buffers of level 0. The
number of BRAMs remains the same for 3, 4, 5 and 6
levels, to guarantee high throughput and enough space
for the larger buffers of the lower levels.
In BB, buffers IPM and bufH of each level are

implemented as two-word registers. Contrary to LB, the
vertical filtering of successive columns is no longer
successive. Thus, the constraints that guarantee maxi-
mum throughput are not so strict for BB. During vertical
filtering, three filter inputs should be read simultaneous-
ly, thus, at least two dual-port BRAMs should be used.
To provide enough memory space, 2, 3 and 6 BRAMs
should be used for image sizes 256, 512 and 1,024,
respectively. These choices, which also respect the
minimum of two BRAMs, remain the same for 3, 4, 5

and 6 levels, since the larger buffers of the lower levels
are the ones that determine the memory space needed.

5. Energy

In this section, we provide energy measurements for
the implementations. First, we provide on-chip energy
results, excluding the image memory. Afterwards,
assuming an off-chip image memory and considering
off-chip power estimates, we calculate the total energy
required for the completion of the transform.

5.1. On-Chip Energy

To estimate the on-chip power consumption of each
schedule, we have used the XPower tool offered by
Xilinx ISE v.8.1. The estimated on-chip power
dissipation of the RC is 214 mW, which does not
notably alter as M or L vary. This is due to two
factors: (a) the RC does not involve on-chip buffers,
whose number would depend on the given parameters
M and L, and (b) the variation in the number of slices
for different pairs of these parameters is trivial
(Table 3). This is no longer the case for the other
two, where BRAMs are used, their number being
directly dependent on M (Fig. 21), and where the
number of slices varies to a larger extent, relative to
the given parameters (Table 3). Thus, in the case of
BB, the power consumption starts at 241 mW (M=
256) and stretches to 268 mW (M=1024). The power
consumption of LB is at relatively higher levels,

Table 2. Throughput (in frames/second).

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 495 489 488 487 124 123 122 122 31 30 30 30

LB 757 752 751 750 191 190 190 190 48 47 47 47

BB 331 327 326 326 82 81 81 81 20 20 20 20

Table 3. Number of FPGA slices.

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 280 293 309 327 286 293 316 327 296 301 320 329

LB 2,659 2,792 2,805 2,881 2,851 2,860 2,901 2,967 2,962 2,965 2,970 3,001

BB 2,646 2,972 3,145 3,503 2,728 2,989 3,146 3,510 2,781 3,013 3,207 3,597

16 Angelopoulou et al.

starting at 264 mW (M=256) and reaching 289 mW
(M=1024). The smaller number of slices the LB uses,
compared to BB, is overshadowed by the requirement
for more BRAMs, and, therefore, the LB ends up
with a higher power consumption.
The on-chip energy consumed for the execution of

the transform, relative to M and L, is presented in
Table 5. At a first glance, one notices the consider-
ably larger amount of energy related to the BB,
compared to the other two. This is due to the large
number of cycles associated with the BB (Table 1).
The number of cycles is once more the dominant
factor in the energy calculations for the LB. That is,
the significantly smaller number of cycles related to
LB (Table 1) results in lower energy than RC, even
though the RC is the less power-hungry of all.

5.2. Total Energy

We have presented power and energy results without
considering the power associated with the image
memory accesses. This power depends on whether
the memory is on-chip or off-chip. Using an off-chip
image memory is normally the only option, especially
when working with large images or/and not very large
FPGA devices. In that case, the power cost per memory
access is significantly high, and depends on technolo-
gy-related characteristics of the given memory.
We will consider a Synchronous DRAM as the

off-chip image memory. Note here that the energy
consumed at the off-chip interconnect is not included
in our calculations of total energy. The energy of the
off-chip interconnect would normally be propor-
tional to the distance between the SDRAM and the
FPGA device.
We have used the SDRAM system power calcu-

lator available from Micron Technologies [21], to
calculate the off-chip power associated with a
Micron 64 Mb x16 SDRAM. This tool bases the
power calculation on a combination of SDRAM
device specifications and usage conditions in the

system environment. It, therefore, considers reliable
estimates of the static and dynamic power, to
calculate the total power dissipation of the memory.
The choice of SDRAM with respect to its clock

frequency is based on the following two assumptions.
Firstly, we have assumed that the image memory will
operate at the same frequency as the rest of the
system. As we have already mentioned, we have done
this in order to make our comparison as generic as
possible, since the image memory is sometimes on-
chip. Secondly, we will operate the entire system at
the frequency dictated by the on-chip design. There-
fore, we can use an available SDRAM with clock
frequency that is greater or equal to the frequency of
the on-chip system.
As we have stated in Section 4.1, the RC, the LB

and the BB have frequencies of 172.4, 113.6 and
117.6 MHz respectively. We have, therefore, con-
sidered SDRAM of clock frequency 183 MHz (speed
grade=−55) for the case of RC, and 133 MHz (speed
grade=−75) for LB and BB.
According to the estimates of the system power

calculator, the off-chip power varies from 715.7 mW

Table 4. Total number of accesses (contains both read and write accesses) of the image memory.

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 344,064 348,160 349,184 349,440 1,376,256 1,392,640 1,396,736 1,397,760 5,505,024 5,570,560 5,586,944 5,591,040

LB/BB 131,072 131,072 131,072 131,072 524,288 524,288 524,288 524,288 2,097,152 2,097,152 2,097,152 2,097,152

For LB and BB this number is the same, and does not vary as L varies, since it is, in both cases, equal to 2�M2.

256 512 1024
0

1

2

3

4

5

6

7

8

M

of

 B
R

A
M

s

Number of FPGA block RAMs

LB

BB

Figure 21. Number of BRAMs.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 17

to 720.3 mW for the case of RC, as the percentage of
memory write/read cycles vary, for different values of
L and M. Note that the variation is not as large, for
different values of M, as one would expect observing
Table 4. This is because, as M increases, the total
number of cycles increases as well (Table 1), so the
above percentages are maintained at similar levels.
Due to the high cost per memory access that
characterizes the off-chip case, the large number of
accesses of the RC (Table 4), renders this schedule
extremely demanding in terms of power.
Compared to the RC, the off-chip power of the LB

and the BB is expected to be at lower levels, due to the
lower number of memory accesses (Table 4). The off-
chip power estimates vary between 549.7 mW and
559.7 mW for LB, and between 346 mW and
348.8 mW for BB. The lower off-chip power associ-
ated with the BB, compared to LB, is due to the higher
percentage of memory write/read cycles over the total
execution cycles. This is due to the fact that the number
of clock cycles is much larger for BB (Table 1), while
both the BB and the LB need M2 read memory
accesses and M2 write memory accesses. Therefore
the distribution of memory accesses is rather dense in
LB, compared to BB. However, due to the signifi-
cantly smaller number of clock cycles, required for its
completion, the LB maintains the smallest energy
when it comes to total consumption, as Table 6 shows.
The large number of memory accesses of the BB

will keep the total energy consumption of BB at high

levels, as it was the case with the on-chip energy. As
a result, the total energy required for the BB to be
executed is very close to that of the RC (Table 6),
even though the power is significantly lower in BB.
Using an on-chip image memory would be in favor

of the RC, since the power associated with every
memory access will be much less. In this case, the
BB will most certainly consume a lot more total
energy than RC, as was the trend in Table 5. The LB
will still maintain the lowest total energy.

5.3. Appropriate Optimizations

We have investigated the performance of the three
schedules under the assumption of using a single-port
image memory and a single filter-bank which is
shared among all levels and stages of the transform.
We will now briefly discuss which optimizations
would be appropriate for each schedule to further
improve its performance. Specifically, the objectives
would be to increase (a) parallelism in data process-
ing and (b) locality of data accesses.
In RC, as we have already stated, the lack of

parallelism is due to the fact that the single-port
image memory is the one and only source of the
filter-bank’s inputs. Therefore, using a multi-port
image memory would multiply the performance by
a factor equal to the number of memory ports. On the
contrary, just increasing the number of filter-banks
while sticking with a single-port memory would not

Table 6. Total energy consumption (in mJ).

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 1.876 1.899 1.904 1.906 7.486 7.576 7.599 7.604 29.908 30.266 30.356 30.379

LB 1.079 1.082 1.084 1.084 4.286 4.300 4.304 4.305 17.606 17.661 17.675 17.679

BB 1.778 1.795 1.799 1.800 7.206 7.274 7.291 7.295 29.733 30.018 30.089 30.106

An off-chip SDRAM is considered.

Table 5. On-chip energy consumption (in mJ).

M 256 512 1,024

L 3 4 5 6 3 4 5 6 3 4 5 6

RC 0.432 0.437 0.438 0.439 1.717 1.738 1.743 1.745 6.850 6.933 6.954 6.959

LB 0.349 0.351 0.351 0.352 1.377 1.385 1.388 1.388 5.995 6.028 6.037 6.039

BB 0.727 0.736 0.738 0.739 3.002 3.040 3.050 3.052 12.918 13.09 13.127 13.138

18 Angelopoulou et al.

help, since there would not be enough on-chip in-
formation to process. As far as the locality of data
accesses in RC is concerned, it could be improved by
incorporating in the traditional bufferless architecture of
Fig. 12 a single on-chip line-buffer. The inputs of the
filter-bank would be read from this line-buffer in all
levels. Therefore, its size should be equal to the largest
dimension of the original image, to accommodate the
large number of coefficients of the first level.
In the cases of LB and BB, the locality of data

accesses is already satisfactory since image memory
accesses are restricted to reading the original image
and writing the final outputs. As far as the parallelism
is concerned, since so much information exists in the
on-chip buffers, the more filter-banks available to
process it, the better. Thus, in this case increasing the
number of filter-banks would vastly increase the
parallelism in data processing, even if the image
memory remains single-port.

6. Conclusion

The three major 5/3 lifting 2D DWT computation
schedules have been compared in terms of through-
put, area, memory and energy requirements on the
Virtex-4 FPGA family. The conclusions of this work
are the following.
The RC has by far the lowest hardware cost. Not only

does it involve no on-chip buffering, but also the FPGA
slices used are significantly fewer than in the cases of
the other two. Due to its simplicity, it enjoys the highest
frequency. However, the insufficient level of parallel-
ism, associated with RC, increases the number of cycles
required for the schedule to be completed. As a result,
when it comes to throughput, it is outperformed by LB.
Moreover, the reduced memory access locality, offered
by RC, increases the number of memory accesses and
the total energy to the highest level.
The LB requires the lowest number of cycles among

the three schedules, thanks to, not only the parallelism
achieved by using multi-port on-chip buffers, but also
its streaming behavior. Due to the small number of
cycles, this schedule also enjoys the highest throughput
and the lowest on-chip and total energy consumption.
Due to the use of on-chip buffers, the LB increases the
memory-access locality, compared to RC, minimizing
the number of image memory accesses.
The BB increases the memory-access locality,

compared to RC, and achieves the same number of
memory accesses as LB. To do this, the BB uses a

smaller number of BRAMs than LB. However, it
consumes more FPGA slices than LB for most sets of
parameters. The BB is associated with the highest
complexity, due to the lack of streaming behavior in
the filtering operations. As a result, a significantly
larger number of clock cycles is needed for the BB
schedule to be completed. The large number of cycles
results in high energy requirements: it is by far the
most expensive when it comes to on-chip energy, and
it is almost as expensive as RC when the total energy
is considered, even though the memory accesses of
BB are considerably fewer. The BB has the lowest
throughput, due to control complexity, as well as to
the frequency in which it operates, which is not as
high as in the RC case.
Future work would involve extending the current

comparative analysis by broadening the range of the
comparison parameters. For instance, using dual-port
image memory and more filters would be considered.

References

1. ISO/IEC FCD15444-1: 2000, “JPEG 2000 image coding
system,” 2000.

2. ISO/IEC JTC1/SC29/WG11, FCD 14496-1, “Coding of mov-
ing pictures and audio,” 1998.

3. S. Mallat, “A theory for multiresolution signal decomposition:
The wavelet representation,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 11, no. 7, 1989, pp.
674–693.

4. I. Daubechies and W. Sweldens, “Factoring wavelet transforms
into lifting steps,” Journal of Fourier Analysis and Applica-
tions, vol. 4, no. 3, 1998, pp. 247–269.

5. K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architec-
ture for lifting-based forward and inverse wavelet transform,”
IEEE Transactions on Signal Processing, vol. 50, no. 4, 2002,
pp. 966–977.

6. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo,
“Wavelet Transforms That Map Integers To Integers,” Journal
of Applied Computational Harmonics Analysis, vol. 5, no. 3,
1998, pp. 332–369.

7. S. Dewitte and J. Cornelis, “Lossless Integer Wavelet Trans-
form,” IEEE Signal Processing Letters, vol. 4, no. 6, 1997, pp.
158–160.

8. M. D. Adams and F. Kossentini, “Reversible integer-to-integer
wavelet transforms for image compression: performance
evaluation and analysis,” IEEE Transanctions on Image
Processing, vol. 9, no. 6, 2000, pp. 1010-1024.

9. C. Chrysafis and A. Ortega, “Line-based, reduced memory,
wavelet image compression,” IEEE Transactions on Image
Processing, vol. 9, no. 3, 2000, pp. 378–389.

10. G. Lafruit, L. Nachtergaele, B. Vanhoof, and F. Catthoor, “The
Local Wavelet Transform: a memory-efficient, high-speed
architecture optimized to a Region-Oriented Zero-Tree coder,”

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 19

Integrated Computer-Aided Engineering, vol. 7, no. 2, 2000,
pp. 89–103.

11. Cast, Inc., http://www.cast-inc.com.
12. Amphion Semiconductor, Ltd., http://www.amphion.com.
13. G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau,

“Combined Line-Based Architecture for the 5–3 and 9–7
Wavelet Transform of JPEG2000,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, no. 9,
2003, pp. 944–950.

14. N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y.
Andreopoulos, and C. E. Goutis, “Evaluation of design
alternatives for the 2-D-discrete wavelet transform,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 12, 2001, pp. 1246–1262.

15. M. Weeks and M. Bayoumi, “Discrete Wavelet Transform:
Architectures, Design and Performance Issues,” Journal of
VLSI Signal Processing, vol. 35, no. 2, 2003, pp. 155–178.

16. C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architec-
tures for wavelet transforms: A survey,” Journal of VLSI Signal
Processing, vol. 14, no. 2, 1996, pp. 171–192.

17. Y. Andreopoulos, P. Schelkens, G. Lafruit, K. Masselos, and J.
Cornelis, “High-level cache modeling for 2-D discrete wavelet
transform implementations,” Journal of VLSI Signal Process-
ing (special issue on Signal Processing Systems), vol. 34, no. 3,
2003, pp. 209–226.

18. K. Masselos, Y. Andreopoulos, and T. Stouraitis, “Performance
comparison of two-dimensional discrete wavelet transform
computation schedules on a VLIW digital signal processor,”
in IEE Proceedings Vision, Image & Signal Processing, vol.
153, no. 2, 2006, pp. 173–180.

19. C.-T. Huang, P.-C. Tseng, and L.-G. Chen, “Analysis and VLSI
Architecture for 1-D and 2-D Discrete Wavelet Transform,”
IEEE Transactions on Signal Processing, vol. 53, no. 4, 2005,
pp. 1575–1586.

20. M. Angelopoulou, K. Masselos, P. Cheung, and Y. Andreo-
poulos, “A Comparison of 2-D Discrete Wavelet Transform
Computation Schedules on FPGAs,” in IEEE International
Conference on Field Programmable Technology, 2006, pp.
181-188.

21. Micron Technologies, “SDRAM System-Power Calculator,”
http://www.micron.com/support/designsupport/tools.

Maria E. Angelopoulou received the M.Eng. degree from the
Department of Electrical and Computer Engineering, University
of Patras, Greece in 2005. Since October 2005, she has been a
PhD student in the Department of Electrical and Electronic
Engineering, Imperial College London, UK. Her research

interests include reconfigurable architectures, image and video
processing. She received several awards from the Greek State
Scholarships’ Foundation and the Technical Chamber of Greece
during her undergraduate studies. She is a member of the IEEE
and of the Technical Chamber of Greece.

Konstantinos Masselos received a first degree in Electrical
Engineering from University of Patras, Greece in 1994 and an
MSc degree in VLSI Systems Engineering from University of
Manchester Institute of Science and Technology, United
Kingdom in 1996. In April 2000, he got a PhD degree in
Electrical and Computer Engineering from University of
Patras, Greece. His Ph.D research was related to high level
low power design methodologies for multimedia applications
realized on different architectural platforms. From 1997 until
1999 he was associated as a visiting researcher with the Inter-
university Micro Electronics Centre (IMEC) in Leuven,
Belgium, where he was involved in research related to the
ACROPOLIS multimedia pre-compiler. Until 2004, he was
with INTRACOM S.A, Greece where he was involved in the
realization of wireless communication systems. In 2005, he
joined as a lecturer the Department of Electrical Engineering
and Electronics of Imperial College London. Since 2006, he is
an Assistant Professor in the Department of Computer Science
and Technology of University of Peloponnese, Greece and a
visiting lecturer at Imperial College. His main interests include
compiler optimizations, high level power optimization, FPGAS
and reconfigurable hardware, and efficient implementations of
DSP algorithms. He is a member of the IEEE.

Peter Y. K. Cheung (M'85SM'04) received the B.S. degree
with first class honors from Imperial College of Science and
Technology, University of London, London, U.K. in 1973.
Since 1980, he has been with the Department of Electrical
Electronic Engineering, Imperial College, where he is currently
a Professor of digital systems and deputy head of the

20 Angelopoulou et al.

http://www.cast-inc.com
http://www.amphion.com
http://www.micron.com/support/designsupport/tools

department. He runs an active research group in digital design,
attracting support from many industrial partners. Before joining
Imperial College he worked for Hewlett Packard. His research
interests include VLSI architectures for signal processing,
asynchronous systems, reconfigurable computing using FPGA,
and architectural synthesis. He was elected as one of the first
Imperial College Teaching Fellows in 1994 in recognition of
his innovation in teaching.

Yiannis Andreopoulos (M '00) obtained the Electrical Engi-
neering Diploma and the MSc in Signal Processing Systems

from the University of Patras, Greece in 1999 and 2000,
respectively. He obtained the PhD in Applied Sciences from
the University of Brussels (Belgium) in May 2005, where he
defended a thesis on scalable video coding and complexity
modeling for multimedia systems. During his thesis work he
participated and was supported by the EU IST-project
MASCOT, a Future and Emerging Technologies (FET) project.
During his post-doctoral work at the University of California
Los Angeles (US) he performed research on cross-layer
optimization of wireless media systems, video streaming, and
theoretical aspects of rate-distortion-complexity modeling for
multimedia systems. Since Oct. 2006, he is a Lecturer at the
Queen Mary University of London (UK). During 2002-2003,
he made several decisive contributions to the ISO/IEC JTC1/
SC29/WG11 (Motion Picture Experts Group – MPEG)
committee in the early exploration on scalable video coding,
which has now moved into the standardization phase. In 2007,
he won the “Most-Cited Paper” award from the Elsevier
EURASIP Journal Signal Processing: Image Communication,
based on the number of citations his 2004 article “In-band
motion compensated temporal filtering” received within a
three-year period.

Implementation of the 5/3 Lifting 2D DWT Computation Schedules 21

	Implementation and Comparison of the 5/3 Lifting 2D Discrete Wavelet Transform Computation Schedules on FPGAs
	Abstract
	Introduction
	The Dyadic Decomposition
	The 1D DWT
	The 2D DWT

	Common Implementation Decisions and Assumptions
	Image Memory
	Filter Implementation

	Implementing the Computation Schedules
	Row–Column Implementation
	Line-Based Implementation
	Block-Based Implementation

	Results and Comparisons
	Throughput
	FPGA Slices
	Memory Issues

	Energy
	On-Chip Energy
	Total Energy
	Appropriate Optimizations

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

