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Abstract: Restoration methods, such as super-resolution (SR), largely depend on the accuracy of the point spread function (PSF).
PSF estimation is an ill-posed problem, and a linear and uniform motion is often assumed. In real-life systems, this may deviate
significantly from the actual motion, impairing subsequent restoration. To address the above, this work proposes a dynamically
configurable imaging system that combines algorithmic video enhancement, field programmable gate array (FPGA)-based video
processing and adaptive image sensor technology. Specifically, a joint blur identification and validation (BIV) scheme is
proposed, which validates the initial linear and uniform motion assumption. For the cases that significantly deviate from that
assumption, the real-time reconfiguration property of an adaptive image sensor is utilised, and the sensor is locally
reconfigured to larger pixels that produce higher frame-rate samples with reduced blur. Results demonstrate that once the
sensor reconfiguration gives rise to a valid motion assumption, highly accurate PSFs are estimated, resulting in improved SR
reconstruction quality. To enable real-time reconstruction, an FPGA-based BIV architecture is proposed. The system’s
throughput is significantly higher than 25 fps, for frame sizes up to 1024 × 1024, and its performance is robust to noise for
signal-to-noise ratio (SNR) as low as 20 dB.
1 Introduction

The work presented in this paper lies in the area of real-time
video processing and focuses on the problem of enhancing in
real time the spatio-temporal resolution of the captured video
sequence [1]. To achieve the above, this work explores,
proposes and brings together into a novel imaging system
appropriate imaging techniques related to different levels of
processing: a high-level video enhancement algorithm, low-
level implementation on reconfigurable hardware, field
programmable gate arrays (FPGAs) in particular and state-
of-the-art image sensor technology [2, 3]. Contrary to
traditional cameras, which are passive, the proposed
imaging system is dynamically configured in real time
according to the captured video data, based on the real-time
interaction of an adaptive image sensor with an FPGA-
based processing unit. The FPGA both configures the
adaptive image sensor in a manner that maximises the
captured information and further processes these raw data to
render outputs of high resolution both in space and in time.
Therefore, this work proposes a sensor configuration
scheme and an appropriate processing method for video
enhancement under real-time constraints. This method is
based on a blur identification and validation technique that
improves the reconstruction quality of the final output, and
a hardware architecture of the method is proposed and
implemented on FPGA. The throughput that is achieved is
significantly higher than the 25 fps real-time requirement,
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for frame sizes up to 1024 × 1024, and the system’s
performance is robust to noise for signal-to-noise ratio
(SNR) as low as 20 dB.

Blur identification is a critical task when motion blur degrades
the quality of the captured video sequence. The ill-posed nature
of the identification problem and the required high
computational cost pose a bottleneck in the overall system
performance, in particular when real-time applications are
targeted. In the literature, motion blur identification is
simplified by employing a linear and uniform assumption for
the motion point spread function (PSF) [4–9], where ‘linear’
implies a motion trajectory that is accurately approximated
with a first-order polynomial and ‘uniform’ indicates identical
PSF weights. This reduces the identification task to the
estimation of two parameters, namely the direction and the
extent of the underlying motion, thus resolving the ill-posed
nature of the problem and decreasing the related
computational load. However, in real-life systems, the actual
blurring function might deviate significantly from an ideal
linear and uniform PSF [1], producing inaccurate blur
estimates that directly affect subsequent restoration.

In [2], a video enhancement system based on an adaptive
image sensor [3, 10] is proposed. Possible sensor
configurations that maximise the captured raw information are
explored and are combined with processing methods that
increase the spatio-temporal resolution of the output. Two
approaches are presented, a deconvolution-based and a super-
resolution (SR)-based approach. For highly dynamic regions,
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the SR-based approach is shown to be more appropriate. In this
approach, each motion region is locally configured to a uniform
grid of large pixels, rendering high frame-rate samples with
reduced motion blur, whereas areas with slow motion or no
motion are configured to the elementary pixels of the sensor.
The spatial resolution of the motion areas is increased by
fusing the high frame-rate samples with SR techniques.
However, for very fast motion, these samples are inevitably
blurred themselves, and the fidelity of the SR output is
bounded by the blur effect.

This work addresses the above shortcomings by proposing
an interaction of a joint blur identification and validation
(BIV) scheme with an adaptive image sensor. Contrary to
existing blur identification methods, which estimate linear
motion parameters without validating the linearity and
uniformity assumption [4–9], the proposed BIV block also
identifies cases that significantly deviate from the initial
assumption. This keeps the blur identification process
simple, since linear and uniform motion is assumed, while
identifying cases where the assumption is invalid and thus
the PSF estimation is inaccurate. Such cases are resolved by
configuring the adaptive sensor to larger pixels that produce
samples with reduced blur. Once the appropriate pixel size
is employed for which the linear motion assumption is
valid, accurate PSFs are estimated, increasing the SR
reconstruction quality.

The BIV block employs the autocorrelation framework for
blur identification [4], which is extended so as to perform
assumption validation in addition to blur identification. To
target real-time restoration, the BIV block is implemented
on reconfigurable hardware, an FPGA in particular. By
exploiting the parallelism, pipelining and data reuse
possibilities offered by an FPGA, high throughput is
achieved, which meets the strict performance constraints of
real-time applications.

In summary, the major contribution of this work is the
proposal of a unifying approach that brings together imaging
techniques related to different levels of processing:
algorithmic video enhancement, FPGA-based video
processing and adaptive image sensor technology. Contrary to
the traditional passive cameras, the proposed imaging system
is dynamically configurable and thus able to adapt optimally
to the given video data. More specific contributions of this
work are as follows:

1. A method that performs BIV is proposed. The method
utilises the autocorrelation-based blur identification
framework of [4], which is extended so as to include
assumption validation.
2. A methodology is proposed that includes the interaction of
an adaptive image sensor with the BIV scheme. The proposed
methodology increases the accuracy in the estimation of the
PSFs related to the SR inputs, thus improving the SR
reconstruction quality.
3. A hardware architecture of the BIV scheme is presented.
The proposed architecture is implemented on an FPGA and
its performance is evaluated.

It should be noted that the proposed joint BIV scheme
could also be used for general-purpose blur identification
and can be combined with different restoration methods
[11–13]. To the best of our knowledge, this is the first
hardware approach to the blur identification problem that is
reported in the literature. As demonstrated in the paper,
taking advantage of parallelism and data reuse, the FPGA-
based implementation of the BIV scheme renders a
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throughput significantly higher than the 25 fps real-time
requirement, for frame sizes up to 1024 × 1024, while
giving robustness to noise for SNR as low as 20 dB.
Moreover, individual high-throughput blocks that have been
proposed and implemented as part of the BIV architecture,
such as the one implementing the autocorrelation function
(ACF), are useful for a variety of image and signal
processing applications.

The remainder of the paper is organised as follows. Section
2 presents the detailed algorithm of the proposed joint BIV
scheme. Section 3 provides the motivation for developing
the above scheme and explains how the scheme is effectively
incorporated into a video enhancement system that is based
on an adaptive image sensor. The SR reconstruction quality
of the resulting system is evaluated in Section 4, which
provides software results for different PSF assumptions and
various motion types. These results demonstrate that the
interaction of the joint BIV scheme with the reconfiguration
property of an adaptive sensor significantly improves the
reconstruction quality. The hardware architecture of the
proposed BIV scheme, which achieves real-time
performance, is described in Section 5. Section 6 presents
results from the hardware implementation. Specifically,
Section 6.1 discusses the throughput and hardware
requirements of the proposed architecture for different sets of
parameters, and Section 6.2 evaluates the system
performance for various parameters and different levels of
noise. Finally, Section 7 concludes the paper.

2 Joint identification and validation:
description of the algorithm

The proposed joint BIV scheme utilises the spatial domain blur
identification framework of [4], which is extended in order to
incorporate as well validation of the initial motion
assumption. The decision of using a spatial domain instead
of a frequency domain method is based on both algorithmic
and hardware-related criteria. Specifically, frequency domain
blur identification methods [7–9] are restricted to blurring
functions that exhibit a periodic pattern of spectral zeros,
which is not always the case [4]. Moreover, a spatial method
reduces the required hardware cost by avoiding the
transformations between the two domains and also removing
the need to handle outputs with large dynamic range, as
produced by frequency domain analysis. Therefore, the need
for long word-lengths in a hardware implementation is not
required. Among the spatial blur identification methods
[4–6], the autocorrelation-based method of [4] was selected
because of its potential for maximum parallelism and data
reuse, as it will be demonstrated in Section 5.

The detailed BIV algorithm is next presented. The
following notation has been used:

c classification flag, 1/0: valid/invalid linearity and
uniformity assumption

u, L estimated direction and extent of motion (in
pixels)

f input image

Df directional image derivative operator in direction
f

I(f) normalised total intensity (TI) of Df( f )

d step in degrees for calculating Df( f ) and I(f)

g horizontal derivative of the derivative vertical to u

M number of rows of g rotated by u
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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K number of columns of g rotated by u minus 1

mi[n] the ith line of g that derives after interpolation
along u, where mi[n] = 0 for n � [0, K]

Ri discrete set of autocorrelation coefficients for
mi[n]

R̄ mean of the discrete autocorrelation coefficients
of the M lines of g along u

m mask for isolating the moving object from the
background

p1 threshold for identifying considerably small
values of L that are owing to motion non-
linearities

P, N number of dominant positive and negative lobes
in �R

p2 threshold for I(u)

The detailed algorithm, which implements the proposed
joint BIV scheme, is given in Fig. 1.

Fig. 1 Algorithm implementing the proposed joint BIV scheme
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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2.1 Blur identification

The blur identification part in the BIV algorithm employs the
framework of [4], which is based on the calculation of the
mean ACF along the direction of the motion. This
subsection discusses the approach of [4], and how this was
modified and extended to achieve local, computationally
efficient and robust to noise blur identification.

In the lines 2–11 of the BIV algorithm, the linear motion
parameters (u, L) are identified employing the autocorrelation-
based framework of [4]. The method of [4] is based on the
fact that along the motion direction image smoothness is
higher and pixels are correlated. As demonstrated in the BIV
algorithm, a series of filtering operations precedes the
autocorrelation calculations. First, the image derivatives are
calculated in different directions and the total intensities of the
derivatives are computed (lines 2 and 3). The direction with
the minimum intensity is the motion direction u. An image
derivative g is then generated as follows. First, the derivative
of the input frame is calculated in the direction vertical to u,
which removes object-related image properties and
emphasises motion-related properties. On this output, the
derivative in direction u is then applied (line 5). Image g is
then traversed along direction u, and the autocorrelation
coefficients are calculated on the lines of pixels that are
interpolated along that direction (lines 7–9). Finally, the mean
of these autocorrelation outputs is calculated (line 10), and the
lag of the minimum mean autocorrelation coefficient gives the
motion extent along u (line 11).

In [4], the directional filters, for the calculation of Df( f ) and
g, derive from the [21 1] kernel rotated and interpolated to fit
each direction. The small support of these filters renders them
particularly sensitive to additive noise, reducing the robustness
of the method. Thus, for SNR , 35 dB, Yitzhaky and
Kopeika [4] suggest avoiding the calculation of g and
computing the ACF directly on Du( f ). In that case, the ACF
is significantly affected by the image correlation properties.
To resolve the above, Sobel filters have been used in this
work for the derivative calculations, replacing the [21 1]
kernels of [4]. Moreover, for SNR , 40 dB, the system
robustness is further increased by applying on the input frame
an adaptive Wiener filter [14], which adapts to the local image
variance and thus preserves the image edges.

In [4], the frames that are considered involve global motions,
which would derive from camera motion. To deal with object
motion as well, a masking stage should be included (line 6).
The mask should be applied after the derivative g has been
calculated. The mask is generated by considering a pair of
frames before and after the current frame, avoiding the
blending regions at the borders of the object, to minimise the
interference from the static background [1].

The computational load of the blur identification process
can be significantly reduced by considering fewer directions
for calculating Df( f ) and also fewer ACF lags. Moreover,
by rotating f by u and then calculating g on the rotated
frame, only two filters should be applied for the generation
of g: a vertical and a horizontal filter. Such issues are
further discussed in Sections 5 and 6.1, where different
design options are evaluated with respect to the system’s
area and throughput, whereas Section 6.2 discusses their
impact on the system’s performance.

2.2 Assumption validation

In this section, a scheme that validates the initial linear and
uniform motion assumption is proposed. This validation
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process is equivalent to performing a classification where
cases of linear and uniform intra-frame motion are classified
as positive, whereas all other cases give rise to negative
classification. This classification can be done using two
types of data: the normalised total intensities I(f) and the
coefficients of �R.

To demonstrate their properties for different motion types,
the above data are calculated on the motion-blurred frames
derived after the application of different motion PSFs on
the 240 × 320 ground-truth image of Fig. 2. It should be
noted that the example that follows is an introductory
example that employs a very simple image. The validation
scheme will be extensively evaluated in Section 6.2, where
its performance is investigated by employing a large
number of tests with various semi-synthetic video data.

Four motion PSFs are applied on the ground-truth image of
Fig. 2. These are each associated with a different motion type:
(i) a linear and uniform PSF with an extent of 15 pixels, which
is applied in the vertical direction (Fig. 3a), (ii) the non-
uniform linear PSF of Fig. 3b, which is also vertically
applied, (iii) the non-linear and uniform PSF of Fig. 3c, and
(iv) the non-linear and non-uniform PSF of Fig. 3d. The
experiments demonstrated in Fig. 4 are executed after
adding Gaussian noise that results in an SNR of 50 dB,
since 50 dB is the typical SNR of digital cameras. The
intensities I(f) and coefficients �R, which are calculated for
each blurred frame, are illustrated in the graphs of Fig. 4.

The mean ACF along the motion direction normally has a
particular shape for the case of linear and uniform motion,
which is similar to that of Fig. 4a. Specifically, it contains
three dominant lobes: a positive lobe at lag 0 and two
negative lobes that are symmetrical with respect to the
y-axis. The lag of the minimum coefficients of the two
symmetrical negative lobes indicates the motion extent. In
Fig. 4a, for example, the minimum ACF coefficients lie at
lag +15. Therefore the estimated motion extent is equal to
15. The relation between the minimum ACF coefficients
and the linear motion extent is explained in detail in [4].
Experiments have shown that the more the given ACF
diverges from the form that is described above, the more
the corresponding motion diverges from the ideal linear and
uniform case. Therefore negative classification occurs in the
following cases:

1. The total numbers of positive and negative main lobes is
different than those stated above, that is one positive lobe at
lag 0 and two symmetrical negative lobes. This is the case
for high-frequency temporal vibrations that lead to non-
uniform motion, where more lobes are formed. Specifically,
in that case, at each side of lag 0, there is a positive lobe
surrounded by two negative lobes, as can be observed in
Fig. 4b. Non-linear motions, both uniform and non-
uniform, may as well generate multiple irregular lobes, as
illustrated in Figs. 4c and d.

Fig. 2 Ground-truth image
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2. The lag of the minimum ACF coefficient, that is the
position of the minimum ACF coefficient on the x-axis of
the ACF graph, is very close to lag 0. This indicates a
motion extent that is too small to reflect the actual PSF.
This is normally observed in the case of non-linear motions,
both uniform and non-uniform, as shown in Figs. 4c and d.

When a frame is linearly blurred along a particular direction,
there is a clear minimum in the TI graph, which indicates the
motion direction (Figs. 4a and b). In the case of non-linear

Fig. 3 Various motion PSFs and the corresponding motion-
blurred images

a, b X-axis indicates the pixels, whereas y-axis gives the PSF weights
c, d Pixels are represented as squares with their ‘facades’ corresponding to
the PSF weights
a Linear and uniform motion
b Linear and non-uniform motion
c Non-linear and uniform motion
d Non-linear and non-uniform motion
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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motions, this minimum is not clear (Figs. 4c and d). Therefore for
non-linear motions, the minimum normalised TI is significantly
higher (Figs. 4c and d) than in the case of linear motions (Figs. 4a
and b), and this value is used in the classification.

Linear and uniform motions of very large extents may as
well be undesired for the given specifications, owing to the
large supports of the associated PSFs, which increase
the computational cost and required precision for the

Fig. 4 Calculated normalised total intensities I(f) and autocorrelation coefficients R̄ for the indicated motion types

a Linear and uniform motion
b Linear and non-uniform motion
c Non-linear and uniform motion
d Non-linear and non-uniform motion
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286 275
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subsequent restoration block. By setting a maximum lag in
the ACF computations, only linear motions whose extent is
smaller than that lag produce negative ACF lobes. Larger
motions are automatically classified as negative, which is
appropriate for the system that will be described in Section 3.

2.3 Inter-frame and intra-frame motion

Owing to the continuity of motion in subsequent frames, for a
linearly moving object, the intra-frame motion PSFs should
be consistent, in both extent and direction, with the inter-
frame motion vectors. Thus, if the intra-frame and inter-
frame motion parameters are not consistent, the linearity
assumption is probably invalid. The above can be
incorporated in the validation scheme as a further check for
motion linearity, with the extra computational cost required
for registration. When the subsequent reconstruction block
is SR based, registration is executed anyway for the SR
method to be applied [12, 13, 15–17], and thus the
above check can be implemented with no additional
computational cost.

3 Accounting for intra-frame motion in a
system with an adaptive image sensor

In [2], we proposed a video enhancement system that is based
on an adaptive image sensor [3, 10]. The system of [2] exploits
the space–time trade-off, according to which a decrease in the
spatial resolution of an image sensor results in an increase in
the temporal resolution of the output video sequence [18,
19]. In particular, the motion regions are configured to
larger pixel sizes that produce high frame-rate samples with
reduced motion blur. The system of [2] compensates for the
decrease in the spatial resolution of the motion areas by
applying SR on the sequence of high frame-rate samples.
Thus, the final output has high resolution in both space and
time. However, for very fast motion, the time samples are
inevitably blurred themselves, and the fidelity of the final
reconstructed output is bounded by the blur effect.

For the rest of the paper, ‘LR’ (‘HR’) refers to low (high)
spatial and, thus, high (low) temporal resolution.

In this paper, the system of [2] is extended so as to estimate
the accurate PSFs of the LR samples that are produced on the
motion areas. This is done by utilising the BIV scheme to
estimate the intra-frame motion of the LR samples. By
accurately estimating the motion PSFs of the LR frames
that participate in the reconstruction process, the SR
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reconstruction quality is increased. The remainder of this
section explains how the reconfigurability of an adaptive
image sensor is combined with the BIV scheme to provide
accurate intra-frame motion identification and thus improve
the output of the subsequent SR reconstruction block.

The adaptive image sensor can be locally configured to
form LR areas that produce high frame-rate samples,
because of the space–time trade-off [12], thus fragmenting
the motion trajectory. Fig. 5 shows the raw outputs for two
sensor configurations during the HR integration interval, that
is the time required by the elementary pixels to achieve a
certain SNR [20, 21]. The number of time samples produced
during the HR integration interval increases as the pixel size
increases, that is as the spatial resolution decreases, in
accordance with the space–time trade-off [18, 19]. Thus, a
grid of elementary pixels would render a single, motion-
blurred frame (Fig. 5a), while a 2 × 2 configuration would
give four time samples (Figs. 5b1–b4), each containing a
fragment of the trajectory of Fig. 5a. To increase the spatial
resolution of the output, the LR samples are fused by
applying SR techniques [17]. For SR to be effective, a PSF
should be estimated within a certain accuracy for each sample.

The proposed system utilises a simple blur detection block,
which is based on the comparison of the strongest edges of the
object with those of the background, to identify cases where
the current configuration produces samples with negligible
motion blur, as in Figs. 5b1–b4. In such cases, an isotropic
Gaussian PSF can be employed to associate each LR pixel
to the HR pixels of the underlying HR grid [17]. In all
other cases, the Gaussian assumption is inadequate and blur
identification is required to estimate the motion parameters.
Thus the BIV scheme, as described in Section 2, is
executed. If BIV finds the linear and uniform motion
assumption invalid, the pixel size increases in the next
sensor reconfiguration, to produce samples with reduced,
more linear motion blur. In this manner, the initial non-
linear and/or non-uniform motion trajectory is fragmented
into shorter, more linear parts. If BIV finds the initial
motion assumption valid, accurate linear PSFs can be
estimated, and the pixel size thus remains constant.

The pixel size of the adaptive sensor depends on the
outputs of blur detection and BIV blocks, as described
above. These blocks comprise a classifier whose binary
output c determines the pixel size in the next sensor
reconfiguration: If c ¼ 1, the pixel size remains constant, as
it allows an accurate estimation of the PSF, employing
either the Gaussian or the linear and uniform motion
Fig. 5 Outputs during the HR integration interval for two sensor configurations

a 1 × 1 configuration
b1–b4 2 × 2 configuration
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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assumption. If c ¼ 0, the pixel size increases in the next
reconfiguration. A mechanism that reduces the pixel size
every N frames can also be accommodated but has not been
investigated in this work.

For linear object motion, the non-isotropic PSFs describing
the intra-frame motions are expected to be consistent with the
inter-frame motion vectors. In case of inconsistency, invalidity
of the initial linearity assumption is indicated. The above can
be used as an additional validity check and could thus be
incorporated into the classifier that is described above, giving
c ¼ 0 in the case of inconsistency. However, it should be
noted that this additional validity check has not been
incorporated in the experiments presented in this paper.

Ideally, the adaptive sensor would be reconfigured at every
new HR integration. In reality, reconfiguration is sparser,

Fig. 6 Algorithm of the system operation for a dynamic region
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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depending on the technology of the given sensor. The
proposed video enhancement system operates as follows.
Moving objects are detected with a rough motion estimation
[22] on the HR grid, as indicated in Fig. 6. For every
moving object, the control of Fig. 6 is employed, where s
denotes the LR pixel size, with s ¼ 2 corresponding to the
smallest LR pixel size as demonstrated in Figs. 5b1–b4 and
c denotes the binary output of the classifier that determines
the change in the pixel size in the next reconfiguration.
Moreover, b denotes the binary output of the blur detection
block; b ¼ 0 indicates negligible motion blur, for which the
Gaussian assumption is adequate and BIV is skipped,
whereas b ¼ 1 indicates that BIV is required. The part of
Fig. 6 included in the grey rectangle is executed only in
those HR integration intervals when the sensor is
reconfigured. A Kalman filter predictor [23, 24] is
employed to determine the position of the object in the next
HR integration. When sensor reconfiguration occurs, that
position determines the location of the LR area, whereas its
pixel size depends on the validity of the linearity
assumption in the last HR integration, indicated by the
value of c. For c ¼ 0 the pixel size increases, whereas for
c ¼ 1 it remains the same. For each LR area, an LR
sequence with reduced blur is produced, and the PSFs are
estimated, based on the outputs of the blur detection and
BIV blocks, as described in the previous paragraphs. The
LR samples are registered using a motion estimation block.
Motion estimation is implemented using Lucas–Kanade
optical flow [22] and Shi–Tomasi good feature extraction
[25]. The PSFs corresponding to the LR samples are then
used by the SR block that executes the reconstruction on the
HR grid [17]. This produces for each LR area an output
with high resolution both in space and time, and thus
motion deblurring is locally executed on the dynamic
regions of the scene. At every new HR integration, the
control starts at the second block of Fig. 6. The loop ends
when the particular object exits the field of view.

4 Effect of BIV on SR reconstruction quality

This section investigates how the quality of the reconstructed
output is affected by various sensor configurations and PSF
Fig. 7 TI and ACF for carousel (top) and ambulance (bottom row)

On the right, a detail of the ACF is presented, for lags 0–33
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assumptions, in order to demonstrate the benefits from the
utilisation of the proposed joint BIV prior to SR. It should
be noted that the current section aims to demonstrate the
importance of BIV, by showing how the SR output quality
improves when a realistic motion assumption is employed
in the reconstruction process. The actual evaluation of the
FPGA-implemented BIV method will be presented in
Section 6.2, after its hardware architecture has been
described in detail.

The evaluation is assessed using semi-synthetic data. That
is, a real image, captured with a hand-held digital camera, has
been shifted, blurred, downsampled and contaminated with
noise, to synthetically produce the LR sequences. Thus, the
‘ground-truth’ frame is known and is used as a reference to
evaluate the reconstruction quality. Various parameters are
employed, including the type of PSF assumption, the LR
pixel size and the noise level. The input frames have been
contaminated with white Gaussian noise resulting to a range
of SNRs between 10 and 50 dB. The SNR level is defined

as follows: SNR = 10 log(s2
f /s

2
n), where sf denotes the

standard deviation of the noise-free image and sn denotes
the noise standard deviation. The iterative SR approach of
[17] is used, and 30 iterations are executed for each
estimation. To exclude any evaluation errors owing to the
blending of the object with the background, SR is applied
on the isolated foreground objects. The number of frames
produced during HR integration for each pixel size is
subject to the space–time trade-off [2]. If this number is k
for the current configuration, k additional neighbouring
frames are used in SR, for increased robustness [17].

Fig. 7 shows the TI and ACF outputs of BIV (Section 2) for
two moving objects with non-negligible motion blur (b ¼ 1).
Both cases employ 2 × 2 configuration and 256 × 256 LR
resolution. The frame on the left is one of the four samples
generated during HR integration at 50 dB SNR. According
to the validation criteria described in Section 2, the TI and
ACF outputs of Fig. 7 indicate that for the 2 × 2
configuration the linearity and uniformity assumption is

Fig. 8 Reconstructed output for carousel for the indicated sensor configurations, noise levels, and reconstruction methods

Row 1: Raw output for configuration 1 × 1 (elementary pixel grid), and the intra-frame motion of the time samples produced during HR integration for each
configuration
Rows 2–4: SR reconstructed outputs when employing the indicated PSF approximations
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valid for ambulance and invalid for carousel. Indeed, the
actual motion of carousel is not sufficiently linear for a 2 ×
2 configuration, as the trajectory shows in Fig. 8 (top right).
Therefore a 3 × 3 configuration is employed in the next
reconfiguration of the adaptive image sensor.

The detailed images of Fig. 8 show the SR-reconstructed
output for carousel, for 2 × 2 and 3 × 3 pixel
configurations. For reference purposes, bicubic interpolation
is applied on a single LR frame, with magnification factors 2
and 3, respectively. The SR output is given both for
Gaussian PSF approximations, whose support corresponds to
the LR pixel size [13, 17], and for linear PSFs estimated by
BIV. The validation block of BIV indicates that the linear
motion assumption is invalid for the 2 × 2 configuration and
valid for the 3 × 3 configuration. The system output is that
of the 3 × 3 configuration with SR that uses linear PSFs
(Fig. 8).

The last row of Fig. 8 demonstrates the system robustness,
presenting the reconstructed outputs for significantly noisy
LR samples (SNR ¼ 20 dB). Fig. 9a quantifies the evaluation
giving the root mean square error (RMSE) values with respect
to the ground-truth, for the above scenarios and SNR from 10
to 50 dB.

Contrary to carousel, ambulance passes the validity check
for 2 × 2 configuration (Fig. 7); thus, the pixel size remains
at 2 × 2. Fig. 10 presents the indicated outputs for 50 and
20 dB. The system output is that of SR with the linear PSF
approximation. The associated errors are given in Fig. 9b. It
can be concluded that when the linear PSF is estimated, the
SR output improves compared to the use of a Gaussian PSF.

The above evaluation demonstrates that when the linear PSFs,
which describe the intra-frame motions of the LR frames
participating in SR reconstruction, are estimated and taken into
account in the reconstruction process, the SR output improves
dramatically compared to the case where a naive assumption
of Gaussian PSFs is made. In the remainder of the paper, an
efficient real-time hardware architecture of the proposed blur
identification and classification scheme is proposed,
implemented on FPGA and evaluated.

Fig. 9 Errors for the two sets of experiments, for various SNRs

a errors for carousel
b errors for ambulance
Legend applies to both graphs, with b containing only the 2 × 2 configuration
values. Ground-truth frames are shown at the top
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5 Joint identification and validation:
hardware architecture

The block diagram of the proposed FPGA-based architecture,
which implements the algorithm of Section 2, is presented in
Fig. 11. The proposed architecture is fully pipelined and
optimised with respect to throughput, area and data reuse.
The input frames and the corresponding binary masks are
read from a single-port off-chip random-access memory
(RAM), the Image Memory. The processing is mainly
divided into two stages, each associated with certain system
blocks and input stream, as explained in the following
subsections. The first processing stage identifies the motion
direction u, and the second stage calculates the motion
extent L and implements the validation scheme.

5.1 Directional filters and minimum TI block

During the first processing stage, the input frame is
horizontally traversed, and the directional image derivatives
Df( f ) and corresponding total intensities I(f) are
calculated (Section 2). To maximise data reuse, an extract
processing window (EPW) block produces a processing
window in every clock cycle. In every cycle, all the
elements of the current processing window are fed in
parallel to the directional filters, for the computation of the
directional image derivatives, thus maximising the
parallelism in the derivative calculations.

The Sobel approximation to the derivative is employed,
which is in 08 as follows

S08 =
+1 0 −1
+2 0 −2
+1 0 −1

⎡
⎣

⎤
⎦ (1)

In directions other than the horizontal and vertical, the Sobel
approximation requires 5 × 5 coefficients, to accommodate
the corresponding rotations of the derivative kernel.

As explained in Section 2, the image derivatives should be
calculated on the umasked frames. After the derivatives have
been calculated, the minimum total intensity (MinTI) block
computes for each derivative the sum of absolute intensities
only of pixels with mask bit 1. In this manner, the static
background is excluded from the intensity calculations. The
MinTI block finally returns the direction u corresponding to

Fig. 10 Reconstructed outputs for ambulance
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Fig. 11 Overview of the joint BIV system, as implemented on FPGA
the minimum TI. This does not necessarily coincide with a
filter’s direction. That is, if the difference between the
minimum TI and the TI corresponding to an adjacent
filtering angle are similar, then the block returns the mean
direction. The ACF will then be computed by the
subsequent blocks along that direction.

Only the motion line matters in the above computations,
and not which way the object moves along that line.
Therefore the rotation angles included in the filter-
bank need to span only half of the Cartesian plane.
Fig. 11 demonstrates a filter-bank employing eight
different angles; thus, a step of 22.58 is used for the filter
formation.

5.2 Rotation block

The mean ACF should be computed on the derivative g in
direction u (Section 2). To do this, instead of combining
horizontal scanning with non-horizontal processing, it is
computationally more efficient to do the opposite: traverse the
frame along u, thus horizontally scanning the rotated frame
and processing the corresponding rows. In addition, by doing
the above, only two directional filters need to be available for
the generation of g: a vertical and a horizontal filter.

The rotation is implemented using the nearest neighbourhood
interpolation scheme, which transforms the rotation problem to
the simpler problem of generating the corresponding stream of
RAM addresses. Thus, the rotation block takes u as its input
and generates the streaming addresses for the horizontal raster
scan of the rotated by u frame. Lookup tables return the sine
and cosine values corresponding to u, for the formation of the
Cartesian rotation equations

x′

y′

[ ]
= cos u − sin u

sin u cos u

[ ]
x
y

[ ]
(2)
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The streaming addresses are generated by the rotation block by
employing nearest-neighbour interpolation, that is by simply
selecting the nearest pixel after applying (2).

5.3 EPW block

This block increases data reuse by producing in every cycle a
convolution window. The block employs first in first out
(FIFOs) and registers in the circular buffering scheme
demonstrated in Fig. 12. FIFOs are implemented with on-
chip dual-port Block RAM (BRAMs). The block operates
in two modes, associated with the two main processing
stages, thus saving hardware resources.

The first mode, Mode 1, which is denoted in Fig. 12 with
black shade, is associated with the generation of the
directional image derivatives Df( f ), as has been mentioned
in Section 5.1. In Mode 1, the input frame f is read into the
buffers in horizontal raster scan order. Thus, the active length
of the FIFOs equals the length of the rows of f. All
four FIFOs feed the same window of registers, whose size is
5 × 5, that is the maximum required filter size (Section 5.1).
As mentioned in Section 5.1, in every cycle, the processing
window is read in parallel by the directional filters of Fig. 11.

The second mode, Mode 2, is associated with the
calculation of the image derivative g. Therefore, in Mode 2,
the buffers of Fig. 12 are fed with f rotated by u, and an
active FIFO width equal to the diagonal of frame f is
required to accommodate the longest possible row. Two
independent buffering structures, related to different
filtering operations, are formed. Each includes a FIFO pair
and a separate window, denoted in Fig. 12 with a white
shade. The first filtering feeds a vertical Sobel filter that
calculates the vertical image derivative Du+908( f ), to remove
object edges as explained in Section 2. The vertical
derivative is directly consumed by the second buffering
structure, which feeds a horizontal Sobel filter, and the
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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Fig. 12 EPW block

The block operates in two different modes, which are distinguished in the figure with the black and white shades. Each mode is associated with a processing stage
image derivative g is produced. Only 08 and 908 derivatives
are, therefore, involved in Mode 2, and a 3 × 3 window
size suffices for the Sobel approximation.

As stated in Section 5.1, the derivatives are applied on the
unmasked frame; thus, the mask bits are propagated to the
next processing levels along with the corresponding pixel
values.

5.4 Construct ACF and classification blocks

The ACF calculations are executed on the rows of the image
derivative g, which are generated in a streaming manner –
one pixel per cycle – by the structure of Fig. 12. To
minimise the latency and resources, redundancies involved
in the ACF computation are removed. Therefore the ACF
coefficients are computed only for half of the Cartesian
plane, since the ACF is symmetrical with respect to axis
y (Fig. 4). In addition, since the expected intra-frame
motion extent is smaller than the row length, only ACF
coefficients up to a predefined maximum lag are calculated.

The construct ACF block of Fig. 13 consumes one pixel per
cycle. To clarify its functionality, Fig. 14 demonstrates the
dataflow for a hypothetical six-pixel row, using a maximum
lag of three pixels. Each register of the two groups of
Fig. 13 corresponds to a particular lag (0–3), as indicated
by the indexing of Fig. 14. The upper rectangle displays the
contents of registers Ra at every cycle, while the lower
rectangle shows the values that are added to each Rb
register. To obtain the mean ACF, the block processes in
this manner the entire image, accumulating information
from all rows in registers Rb. Thus, at the beginning of a
new row only the Ra, and not the Rb registers, are reset.
Each row contributes in the mean ACF with weight Wr,
which is proportional to the number of non-zero mask bits
of the particular row. In this manner, rows containing
insignificant part of the moving object do not bias the
output. The Wr weights should be available at the
beginning of each row’s processing; thus, for their
calculation, part of the pipeline is circumvented to fetch
from an earlier level the corresponding mask bits. In the
IET Comput. Digit. Tech., 2011, Vol. 5, Iss. 4, pp. 271–286
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end, registers Rb, each related to a particular lag, contain
the coefficients of the mean ACF.

Fig. 14 Time diagram of the ACF computation for a hypothetical
six-pixel row ‘abcdef’

t-Axis indicates the clock cycles

Fig. 13 Construct ACF block

The number of registers comprising groups Ra and Rb equals the number of
lags under consideration
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The validity of the linear and uniform motion assumption is
decided by the classification block. This control block takes
the mean ACF coefficients as its input, implements the
control logic described in Section 2 and renders a
classification bit that indicates if the assumption is valid or not.

6 Hardware evaluation

6.1 Implementation requirements

The design targets a Celoxica ADMXRC4SX board [26],
which hosts a Xilinx Virtex-4 FPGA [27] and PL2 zero bus
turnaround (ZBT) SSRAM banks. This type of RAM has a
pipeline stage at the data and address input lines, which
allows it to operate at high clock speeds [26]. The DK5
Handel-C compiler [26] has been used, and the
implementation has been placed and routed using Xilinx
ISE v.9.2i [27]. The operating frequency of the design on
ADMXRC4SX is 120 MHz. The critical path of the circuit
lies in the control logic of the rotation block (Section 5).

The total number of clock cycles required to process a
single frame is as follows

Cycles = 80 + (V × U ) + (Vr × Ur) + (2 × G) (3)

where V and U denote the number of rows and columns of the
original frame, Vr and Ur denote those of the rotated frame
(which depend on u for given V and U ), and G is the
number of lags that are considered in the ACF calculation.
Also, a constant equal to 80 is because of the reset and
latency cycles of the circuit. Thus, the total number of
cycles is mainly affected by the frame size and the motion
direction (indicated by u). Specifically, the term V × U
corresponds to the first processing stage when the original
frame is horizontally scanned, whereas the term Vr × Ur is
related to the second stage, when horizontal scanning is
applied on the rotated frame. The number of lags also
contributes in a small extent in (3), determining the number
of cycles for the construct ACF and classification blocks.
On the contrary, the number of directional filters does not
affect the number of cycles, as these filters operate in parallel.

The system’s throughput is plotted in Fig. 15, with respect
to the frame size and the motion direction. The vertical axis of
Fig. 15 is in logarithmic scale. To meet real-time
requirements, the system should achieve at least 25 fps. All
throughput values in Fig. 15 keep a large ‘safety margin’
above that minimum, the smallest being 38 fps for frame
size 1024 × 1024 and +458. Owing to its high throughput,
the proposed architecture is extremely appropriate for low-
power applications, as the operating frequency can be
reduced without affecting the real-time performance. The
number of external memory accesses is 2 × V × U per
frame, since each frame is read twice from the off-chip
RAM, once for every processing stage.

The number of FPGA slices mainly depends on the number
of directional filters and is slightly affected by the frame size,
as Fig. 16 demonstrates for G¼ 30. The effect of variations of
G on the number of slices is relatively insignificant. The
number of BRAMs depends on the size of the derivative
kernel that is used. For a 3 × 3 derivative filter, whose
rotated version requires up to 5 × 5 coefficients, the
required number of BRAMs equals 4, for the frame sizes
reported in Fig. 16, as for these sizes, the maximum
required length of line buffers does not surpass the BRAM
length. In addition, six DSP slices are occupied for all
image sizes.
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It should be noted that the multiplications associated with
the directional filters do not require full multipliers, since
they multiply the value of a register to a constant. This is
implemented by the Handel-C compiler only with wires that
are connected to VCC and ground and (if needed) adders
[26]. For example, the multiplication b ¼ a * 7 is
implemented as b ¼ (a ≪ 3) 2 a. Therefore DSP slices are
not employed and are thus saved for possible future
expansion of the core. As for the adder trees that have been
used to compute the final outputs of the directional filters,
these are fully pipelined and thus do not affect the
operating frequency.

Fig. 16 Number of FPGA slices for different number of directional
filters and frame sizes

The number of considered ACF coefficients equals 30

Fig. 15 System throughput for different frame sizes and motion
directions

Vertical axis is in logarithmic scale
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6.2 Performance evaluation

The performance evaluation of the FPGA-based architecture is
assessed using semi-synthetic data. That is, real images, which
are captured with a simple hand-held digital camera, have
been convolved with realistic motion PSFs and contaminated
with noise, to synthetically produce the blurred frames. In this
way, the system performance is accurately evaluated, since the
actual validation class and motion parameters are known, and
are compared with the validation output and the estimated
parameters of the proposed system. The input frames have
been contaminated with white Gaussian noise resulting in a
range of SNRs between 10 and 70 dB.

In Fig. 17a, a receiver operating characteristic (ROC) curve
[28] is used to evaluate the performance of the classifier under
different noise levels and employing different numbers of
directional filters for the image derivative computations.
The input frames used for the generation of the ROC were
produced after applying various linear, non-linear, uniform
and non-uniform motion PSFs on the ground-truth frames
of Fig. 17b. Specifically, 50 different motion PSFs of
varying spatio-temporal shapes and magnitudes were
applied on each ground-truth, locally on the foreground
objects of the four leftmost images and globally on the
entire rightmost image of Fig. 17b. Therefore in the last
case, the associated binary mask has ones on the entire area

of the unrotated frame f. The two first images of Fig. 17b
are at resolution 256 × 256, whereas the last three are 512
× 512 frames. The entire experiment has been repeated
considering four, six and eight directional filters and with
SNR 50 and 20 dB. In all experiments, 33 lags have been
considered for the autocorrelation calculations, fully
accommodating the maximum extent of linear motion that
has been used, which is 27 pixels. The ROC curve
presented in Fig. 17a corresponds to the parameter values
p1 ¼ 4 and p2 ¼ 8.4 of the algorithm presented in Section
2, which gave the highest performance in our experiments.

The dotted curve in Fig. 17a presents the output of floating
point classification, employing full search for the minimum
TI, thus a step of 18 and 180 directions. The floating point
scenario is implemented in Matlab. The rest of the curves
present the outputs of the hardware implementation for
numbers of directional filters and noise levels that are
indicated in the legend. As observed in Fig. 17a, the
classifier’s performance significantly improves when the
number of filters increases from four to six and from six to
eight. For the given system that employs Sobel filters as
directional filters, for eight directions or more the achieved
performance is similar to the best possible floating point
full search scenario. Therefore, eight directional Sobel
filters are enough to obtain adequate validation performance
with respect to motion linearity and uniformity, as the ROC

Fig. 17 Evaluating the performance of the classifier

a ROC curves for the indicated number of filters and noise level
b Ground-truth frames used for the generation of the test sequences
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curve is close to the ROC of the floating point system that
uses 180 filters. Fig. 17a demonstrates that the variation of
the performance for a given number of directional filters
under different SNRs is very small, which proves the
increased robustness of the classifier with respect to noise.

Six representative examples, taken from the set of
experiments used in the above evaluation, are demonstrated
in Fig. 18. The scenarios of Fig. 18 involve 50 dB SNR
and eight directional filters, while six different motion types
are employed: three that are linear and uniform, in
Figs. 18a, c and e and three that are not, in Figs. 18b, d and f.
In particular, Figs. 18b and d contain non-linear sinusoidal
motion, whereas Fig. 18f contains non-uniform motion
resulting from high-frequency temporal vibrations (Section
2). The blurred frames are correctly classified; thus, for
Figs. 18a, c and e, the validation output is positive, whereas
for Figs. 18b, d and f it is negative. The actual parameters
of the linear and uniform motions of Figs. 18a, c and e are:
extents of 11, 8 and 20 pixels, and directions of 2258, 08
and 458, respectively. As observed in Fig. 18, these
parameters are accurately identified, based on the lag of

the minimum ACF coefficient and the minimum TI,
respectively.

Fig. 19 presents the outputs of the system for the same
scenarios as Fig. 18, but under a high level of noise. In
particular, an SNR of 20 dB is employed, and the
corresponding noisy frames are shown in Fig. 19. For the
examples of Fig. 19, both the classification outputs and the
estimated motion direction are unaffected by the heavy
noise. A few very small divergences are observed for the
estimated motion extents in the case of positive
classification. Specifically, for Fig. 19a, the estimated
motion extent is now 10 pixels instead of 11, which is the
actual value and which was accurately identified at 50 dB.
In Fig. 19c, the extent of eight pixels is identified.
However, the high level of noise makes the negative lobe of
the ACF less steep and thus the minimum less clear. The
identification accuracy of the method is systematically
evaluated in the next paragraph.

In Fig. 20, the accuracy of the identified linear parameters
is evaluated with respect to the number of directional Sobel
filters and the level of noise, for a set of frames that are

Fig. 18 Testing examples

a, c, e Experiments with valid linear and uniform motion assumption
b, d, f Experiments with invalid linear and uniform motion assumption
In particular, the motion is non-linear for Figs. 18b and d and linear but non-uniform in Fig. 18f. For each experiment, the calculated TI graph and the mean
autocorrelation coefficients are demonstrated in the figure
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blurred with linear and uniform motions. To produce this
set, 50 different linear motions, of random angles and
extents between 7 and 27 pixels, were applied on the
ground-truth frames of Fig. 17b. The graphs of Fig. 20
present the average values of the errors between the
actual and estimated motion parameters (u, L). The value
180 on the axis with the numbers of filters indicates the
output for the full-search, floating point scenario, where a
step of 18 covers all integer directions, calculating 180
derivatives. For SNR . 20 dB, the performance of the
method is stable, indicating its robustness to noise.
Contrary to the validation block, which achieves maximal
performance with eight directional filters (Fig. 17a), for
the identification block to obtain accuracy similar to the
full-search floating point scenario, more than eight filters
need to be used. This is expected, since validation is a
binary problem, but blur identification is not. Thus, the
choice of the number of filters for joint BIV depends on
the required accuracy in the estimation of motion
direction and extent, which is imposed by the given
application and mainly the subsequent reconstruction
block that uses these parameters.

Utilising the output of the assumption validation process
can significantly improve the quality of subsequent
restoration, as has been demonstrated in Section 4.

7 Conclusions and future work

This paper proposes a joint BIV scheme, which not only
estimates the linear blur parameters, as achieved by traditional
blur identification methods, but also validates the initial linear
and uniform motion assumption. This keeps the
computational cost of blur identification low, owing to the use
of the linearity and uniformity assumption for the
simplification of the ill-posed identification problem, while
identifying cases where the assumption is invalid and thus the
PSF estimation is inaccurate. In addition, this work proposes a
methodology for combining the above scheme with the
reconfiguration property of an adaptive image sensor, in order
to tackle cases where the initial motion assumption is found
invalid. The sensor grid is adapted to the local motions
depending on the validity of the linear and uniform motion
assumption. In this manner, the appropriate configuration is
applied, and thus the optimal PSF approximation is employed

Fig. 19 Same scenarios as Fig. 18, but under significant noise: SNR ¼ 20 dB

a, c, e Experiments with valid linear and uniform motion assumption
b, d, f Experiments with invalid linear and uniform motion assumption
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in SR, improving the reconstruction of the output. Results
demonstrate that the proposed methodology surpasses limits
of traditional SR, proving the significance of adapting the
sensor grid to the given motion.

To target real-time restoration, the proposed joint BIV system
is implemented on an FPGA and is evaluated for various sets of
parameters. The system’s throughput, which mainly depends on
the frame size, is significantly higher than the 25 fps real-time
requirement, for frame sizes up to 1024 × 1024. The area of
the circuit mainly depends on the number of directional filters
used for the derivative calculations, while the number of on-
chip memories depends on the size of the derivative kernel.
The proposed method is robust to noise for SNR as low as
20 dB and correctly validates the initial assumption using
eight directional Sobel filters.

Future work includes extending the reconstruction to non-
rigid motions and investigating the alternative option of
employing second-order blur approximations when the
linearity assumption is found invalid. The latter will be
evaluated with respect to the related computational costs
and hardware resources, and compared to the option of
utilising the reconfiguration property of an adaptive image
sensor, which has been examined in this paper.
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