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The high density image sensors of state-of-the-art imaging systems provide outputs with high spa-
tial resolution, but require long exposure times. This limits their applicability, due to the motion
blur effect. Recent technological advances have lead to adaptive image sensors that can combine
several pixels together in real time to form a larger pixel. Larger pixels require shorter expo-
sure times and produce high-frame-rate samples with reduced motion blur. This work proposes
combining an FPGA with an adaptive image sensor to produce an output of high resolution both
in space and time. The FPGA is responsible for the spatial resolution enhancement of the high-
frame-rate samples using super-resolution (SR) techniques in real time. To achieve it, this article
proposes utilizing the Iterative Back Projection (IBP) SR algorithm. The original IBP method is
modified to account for the presence of noise, leading to an algorithm more robust to noise. An
FPGA implementation of this algorithm is presented. The proposed architecture can serve as a
general purpose real-time resolution enhancement system, and its performance is evaluated under
various noise levels.
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1. INTRODUCTION

Every imaging system is based on an image sensor, a 2-D array of pixels that
convert incident light to an array of electrical signals (Figure 1(a)) [Gamal and
Eltoukhy 2005]. Two types of resolution determine the quality of information
collected by the sensor: spatial and temporal resolution.

Spatial resolution depends on the spatial density of the photodiodes and
their induced blur. The most intuitive solution to increase the spatial res-
olution corresponding to the same field of view would be reducing the pixel
size, hence increasing the pixel density. However, the smaller the photodiodes
become, the smaller is the amount of incident light. As a result, a longer expo-
sure time is required to achieve an adequate signal to noise ratio [Gamal and
Eltoukhy 2005; Farrell et al. 2006; Chen et al. 2000].

In the case of no relative motion between the camera and the scene, the re-
duction in the amount of light can be compensated by increasing the exposure
time of the pixels, that is, increasing the integration time of the photodiodes.
However, in real-life systems either the camera is shaking or/and objects are
moving in the scene during the integration time. In this case, the integration
time spans a large number of real-world frames, and the output suffers from
motion blur, thus reducing the temporal resolution. In Figure 1(b), the effect
of motion blur is clearly visible: the exposure time was too long for the fast
moving bus to be captured. Thus, there is a fundamental trade-off in imag-
ing systems: an increase in the spatial resolution by reducing the pixel size
reduces the temporal resolution and vice-versa.

For the rest of the article, LR denotes low spatial resolution and, thus, high
temporal resolution image samples, while HR refers to high spatial and low
temporal resolution. Also, Sh denotes the width of the elementary pixel of the
sensor, which corresponds to resolution HR.

Recently, researchers have focused on the problem of enhancing both spatial
and temporal resolution. Resolution in both time and space can be enhanced
by using multiple cameras to capture a fast moving scene with different sub-
pixel spatial shifts and different subframe temporal shifts [Shechtman et al.
2005]. The main strength of the algorithm in Shechtman et al. [2005] is that
it treats motion blur independently of the cause of temporal change. Its main
weakness lies in the large number of required cameras (such as 18). In real-life
systems, this also introduces additional difficulties in the alignment of all the
captured images from different cameras, a step known as registration [Zitová
and Flusser 2003; Brown 1992]. Apart from having to perform registration on
many images, the large number of cameras increases the distances between
the camera axes, making accurate registration difficult. This limits the ap-
plicability of the system.

In Ben-Ezra and Nayar [2004], the proposed system consists of an HR and
an LR imaging device. The LR device deblurs the image captured by the HR
device, by obtaining motion information for the estimation of the motion point
spread function (PSF). Then, the HR image is deblurred using deconvolution-
based techniques. This approach mainly considers capturing a single image
and focuses on solving the blur caused by the undesired global motion due to
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Fig. 1. (a) A hypothetical 3 × 3 CMOS image sensor. (b) A moving bus as opposed to a still bike.
The first creates motion blur, whereas the second is fully captured.

camera shaking. The proposed system uses either two separate image sensors
or a sensor with an LR periphery. If two separate image sensors are used,
motion trajectories can be detected anywhere in the frame and, thus, the ap-
proach can be extended to dealing with the motion of individual objects. How-
ever, the use of two image sensors results in registration-related problems and
an increased size of the device. In addition, the pixel size of the LR detector
remains fixed over time regardless of the motion magnitude. As a result, the
LR integration time is also fixed. Therefore, the quality of the outputs of the
LR detector decreases as motion becomes faster, and beyond a certain thresh-
old of motion magnitude, the LR samples are considerably blurred themselves.
Hence, to reduce motion blur to a desired extent, the integration time of the
LR device should adapt to the motion magnitude and decrease for faster mo-
tion. This issue is not resolved by the system proposed in Ben-Ezra and Nayar
[2004].

Recent advances in imaging technology have produced sensors no longer
subject to the constraint of time and space invariant pixel size [Foveon, Inc.
2007; Constandinou et al. 2006]. Elementary pixels can be grouped together
to form a larger pixel where and when necessary. Inspired by these advances,
this work proposes the marriage of an FPGA and an adaptive image sensor,
aiming at producing an output of high resolution both in space and time. In
Angelopoulou et al. [2008a], we investigate different ways of configuring the
sensor in order to maximize the raw information collected from the environ-
ment, and propose appropriate methods to process that information and en-
hance the final output. A super-resolution and a deconvolution-based approach
are evaluated, and the super-resolution approach is proven to be more effi-
cient in dynamic regions. In this approach, uniform LR areas are formed on
the motion regions and the LR pixel size is adapted according to local motion
magnitude. In Angelopoulou et al. [2008b], an efficient FPGA architecture is
proposed for the implementation of the resolution enhancement module of the
Super-Resolution (SR) algorithm based on the Iterative Back Projection algo-
rithm, and its performance is investigated. The proposed architecture can also
be used as a general-purpose SR hardware block.
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Our results reported in Angelopoulou et al. [2008b] present some initial per-
formance figures; however, in this article we extend these results as follows:

(1) The noise in the image samples is taken into consideration and the SR
block is modified to account for such noise, leading to a more robust system.
The reconstruction quality is evaluated under different noise levels.

(2) A thorough investigation is carried out on how the system performance is
affected by different decisions and parameters, such as the number of LR
samples in the SR, the initialization of the SR iterative scheme, and the
word-length of the data path.

The structure of the article is as follows. Section 2 presents the forward
model, which describes the generation of the low-resolution output of an imag-
ing system. Section 3 first discusses the possibilities offered by adaptive im-
age sensors. It then presents the architecture of the proposed FPGA-based
video-enhancement system, which benefits from such possibilities. Finally, it
focuses on the spatial enhancement block, introducing SR and the Iterative
Back Projection algorithm in particular, and discusses how the reconstruc-
tion algorithm can account for the presence of noise to produce a more robust
system. Section 4 describes the FPGA implementation of the SR block. In
Section 5, the implementation requirements are discussed, and the system
performance is evaluated, considering different noise levels and system para-
meters. Finally, Section 6 concludes the article.

2. THE OBSERVATION MODEL

The proposed FPGA architecture deals with the problem of reconstructing the
SR output based on LR samples. Before looking into that problem, let us briefly
describe the forward model that forms these samples [Farsiu et al. 2004; Park
et al. 2003]. This is known as the observation model. The LR degradation
channel associated with each LR frame comprises a series of degradations, as
shown in Figure 2. The first stage involves the atmospheric blur. A group of
images that are largely affected by this type of degradation are astronomical
images. This work deals with the stages of the observation model that follow
the atmospheric blur. These are: the motion blur, the spatial blur, and the
additive noise on the pixels of the sensor.

The effect of motion blur can be represented by a convolution with the mo-
tion point spread function (PSF). When the cause of motion is the shaking
camera, as in Figure 2(c), this convolution spans the entire frame. On the
other hand, if the cause is a moving object, as in Figure 1(a), the convolution
spans only the part of the scene affected by that motion.

In the next degradation stage, the high-resolution grid of pixels is spatially
subsampled. This subsampling is done by the LR pixels of the image sensor,
and thus this type of blur is known as camera pixel blur. The generation of
each LR pixel can be thought of as calculating a weighted average of all the
pixels of the high-resolution input that topologically correspond to that LR
pixel; therefore, applying a 2-D PSF on the high resolution pixel neighborhood.
The 2-D Gaussian function is widely accepted as an appropriate sensor PSF,
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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Fig. 2. The degradation stages of the observation model that describes the generation of the LR
output. (a) High resolution input; (b) Atmospheric blur; (c) Motion blur; (d) Camera pixel blur
(subsampling of the original pixel grid); (e) Additive system noise.

as it resembles the pixel’s sensitivity: being high in the middle and decreasing
towards its borders with a Gaussian-like decay.

The final degradation stage involves technology-related non-idealities of the
given sensor, which is usually modeled by an additive noise factor that reduces
the pixel signal fidelity [Tian et al. 2001; Mendis et al. 1997]. The level of
additive noise determines the illumination range that can be detected by the
sensor. The quality of the sensor’s outputs, which are produced within that
range, is quantified using the signal-to-noise-ratio (SNR): the ratio of the sig-
nal power to the noise power.

3. SURPASSING THE FUNDAMENTAL TRADE-OFF: OUR PROPOSAL

3.1 Dynamic Configuration of an Adaptive Image Sensor

The state of the art in imaging technology has produced sensors that are
no longer subject to the constraint of time and space-invariant pixel size
[Foveon, Inc. 2007; Constandinou et al. 2006]. Elementary pixels can be
grouped together to form larger pixels that produce high-frame-rate samples.
Taking advantage of what imaging technology has to offer, this work proposes
an FPGA-based system that uses an adaptive image sensor to locally form ar-
eas of larger pixels on the motion regions, and execute online, real-time video
enhancement.

Let Sh denote the size of the elementary pixel of the sensor, corresponding to
resolution HR, which is the highest spatial and lowest temporal resolution. Let
m and n be the height and width of an area of the sensor measured in Sh units.
That area may include pixels larger than Sh and therefore, produce multiple
time samples during the HR integration. If all pixels, regardless of their size,
are considered as points in the 3-D space, then during the HR integration,
m× n such points will be produced for an m× n area. The distribution of these
points between time and space is determined by the pixel size. Increasing
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Fig. 3. LR time samples produced during the HR integration for different configurations of an
adaptive image sensor.

the pixel size of a particular region, decreases the density of these points on
the 2-D plane and increases their density along the time axis, as the total
number of points in the 3-D space should remain m × n for the given area.
At one end, there are the regions without motion that should be covered with
HR pixels. Therefore, on these regions the distribution is m × n × 1, where
m is on the x axis of the 2-D plane, n is on the y axis of the 2-D plane, and
1 is on the time axis, which gives the number of LR time samples that are
produced during the HR integration. This is the case that is demonstrated in
the first configuration of the sensor of Figure 3. At the other end, there is the
configuration 1 × 1 × (m × n), which would occur if all the available pixels were
grouped together to form one large pixel. Thus, if the pixel size of area Q equals
2 × 2 Sh, the LR spatial resolution is four times lower than the HR resolution,
while the temporal resolution is four times higher. In other words, four LR time
samples are produced for Q during the HR integration, as demonstrated in the
second configuration of the sensor of Figure 3. If the spatial relation is 3 × 3,
9 LR samples are produced, as shown in the third configuration of Figure 3.

3.2 Combining an FPGA with an Adaptive Image Sensor

The adaptive image sensor should be configured in a manner that maximizes
the raw information collected from the environment. Once this information
is captured, it should be further processed to reconstruct a final output of
both high temporal and high spatial resolution. In addition, the entire sys-
tem should operate in real time, at least 25 fps, to achieve real-time capturing
of the scene. Such throughput requirements render software processing inad-
equate, due to the high computational complexity associated with the required
pixel-level processing, which scales with the number of LR samples. By ex-
ploiting the parallelism, pipelining, and data reuse possibilities offered by re-
configurable hardware, these objectives are feasible, as will be explained in the
sections that follow. The role of the FPGA is twofold, as illustrated in Figure 4.
It processes the raw information in real time and, also configures the adaptive
sensor in a way that maximizes the raw information, according to the collected
data.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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Fig. 4. Bidirectional interaction between FPGA and adaptive image sensor.

Fig. 5. The proposed FPGA-based system that employs an adaptive image sensor to execute online
video enhancement. LR areas are formed on the motion regions.

An overview of the proposed video enhancement system is shown in
Figure 5. Motion areas are located on the frame and are configured to larger
pixel sizes forming LR areas, whereas areas with slow motion or no motion are
configured to HR pixels. During the HR integration, a sequence of LR frames
with reduced blur is produced at every LR area. Each LR area is spatially en-
hanced using SR to estimate a high resolution frame based on the LR inputs
[Irani and Peleg 1991]. Thus, motion-deblurring is locally executed on the dy-
namic regions of the scene. The focus of this article is on the implementation
of the SR block that performs the spatial enhancement of the raw outputs.
For issues associated with the sensor reconfiguration, the reader is referred to
Angelopoulou et al. [2008a]. The Blur Detection and Motion Estimation blocks
of Figure 5 are briefly discussed in the following paragraphs before we look
into the SR block and its implementation on FPGA.

The Blur Detection block of Figure 5 reads the sensor’s output and indicates
the blurred regions. These regions of the sensor will be configured to larger
pixel sizes. If the motion blur derives from camera shaking, a single motion
region spans the entire sensor. During the HR integration time, a sequence
of LR frames will be produced at every motion region where the blur effect is
reduced.

The Motion Estimation block of Figure 5 reads the sequence of LR frames
and returns the motion vectors: the displacements of selected features [Shi
and Tomasi 1994] between each LR frame and the reference frame. Any frame
of the LR sequence can be chosen as the reference frame. These displacements
are then used by the SR block to enhance the spatial resolution. In the case of
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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Fig. 6. The forward model consists of a series of unknown degradations related to the imaging
system. The inverse model estimates those degradations to reconstruct the missing high-resolution
data.

a moving object, the pixels of the static background do not participate in the SR
process. The background pixels are identified based on the information from
the motion vectors. The spatial resolution and the frame-rate of the system’s
output are those of the HR sequence, where motion blur has been removed in
the LR areas.

3.3 Super-Resolution

The forward model, which describes the generation of LR samples at the out-
put of an imaging system, was presented in Section 2. The parameters of the
forward model are approximated and used by the inverse model, which is al-
gorithmically formed to reconstruct the missing high-resolution data. In the
high-level diagram of Figure 6, the forward model is succeeded by the inverse
model, since the outputs of the former are the inputs of the latter. In the for-
ward model, every LR sample, M, is produced individually after a series of
degradations, which are not known but can be estimated. These degradations
are presented by the individual LR channels, denoted by DC M in Figure 6.
The inverse problem uses these LR samples as inputs and approximates the
related degradations, so as to apply the inverse procedure and reconstruct the
missing high-resolution data. The undegraded frame at the input of the for-
ward model (Figure 6) comprises the ideal high-resolution information. This
ideal frame is known as the ground-truth frame. Since the parameters of
the forward model are not precisely known and can only be approximated, it
would be naive to expect the exact ground-truth frame at the output of the in-
verse model. In the current section, the forward model will be mathematically
stated, and the inverse problem will be formulated.

The forward model of generating LR pixels is shown in Figure 7. Many HR
pixels are mapped on a single LR pixel, thus imitating the integration of a
group of HR pixels on a single photodiode. The weights with which these HR
pixels contribute to the formation of the particular LR pixel form a Gaussian
kernel—the 2-D PSF shown in Figure 7. As mentioned in Section 2, the 2-D
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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Fig. 7. The formation of the LR output presented mathematically. A 4 × 4 PSF is employed. Two
simulated LR frames with displacements (0, 0) and (0.25, 0.25) are produced.

Gaussian function closely resembles the pixel’s sensitivity, which is high in the
middle and decreases towards the borders with a Gaussian-like decay. Every
LR pixel can thus be expressed as a weighted sum of HR pixels, and the fol-
lowing linear system of equations is formed:

A�h =�l, (1)

where �h and �l denote the vectors of unknown HR pixels and known LR pixels,
and matrix A contains the relative contribution of each HR pixel to each LR
pixel.

The aim of spatial SR is to solve the inverse problem of finding �h. The HR
grid on which reconstruction will occur is the HR grid underlying the LR ref-
erence grid (Figure 7). Thus, �h consists of the HR pixels of this grid. Each LR
frame adds an extra set of equations in the system, one for every LR pixel.

Spatial SR is based on subpixel shifts on the LR reference grid. If a group of
LR frames were shifted on the reference LR grid (Figure 7) by integer LR pixel
units, they would all give the same set of equations since the same groups
of HR pixels would form their LR pixels in the same manner. Therefore, for
an LR frame to uniquely contribute in the system of Equation 1, it should be
shifted by subpixel units on the LR reference grid compared to the other LR
frames. However, although in theory these statements are true, in practice LR
frames with the same integer displacements may give different sets of equa-
tions. This is partly due to additive noise present in the LR samples (Section 2)
and partly due to errors in the motion estimation procedure [Bouguet 2002].
Therefore, in practice it is preferable to consider many LR frames, even if their
displacements overlap.

The SR methods found in the literature solve the SR problem either in
the spatial or in the frequency domain [Park et al. 2003; Baker and Kanade
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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2002; Farsiu et al. 2004]. In this work, a spatial domain method is adopted.
This avoids the transformations between the two domains, and also removes
the need to handle outputs with large dynamic range as produced by fre-
quency domain analysis. Therefore, there is no need for long word-lengths in
hardware implementations. Among the spatial domain methods, the iterative
back projection (IBP) [Irani and Peleg 1991] approach was selected because
of its hardware-friendly characteristics. Instead of solving Equation 1 for �h,
the IBP produces a simulated LR sequence and iteratively minimizes its dif-
ference from the observed LR sequence. This iterative scheme is suitable for
hardware due to its potential for maximum parallelism and data reuse, as will
be demonstrated in Section 4.

3.4 Iterative Back Projection (IBP)

IBP employs an iterative refinement scheme on the HR grid, starting with
an initial high-resolution approximation such as the interpolation of the ref-
erence LR frame. Then, at every iteration of the algorithm the forward model
of Figure 7 is applied to the current high-resolution approximation using the
displacements of the corresponding observed LR frames to produce a simu-
lated LR sequence. The aim of IBP is to minimize the difference between
the observed and the simulated LR sequences, by refining the high-resolution
estimation.

Let Lok denote the kth observed LR frame and Lsk
i denote the corresponding

simulated LR frame at the current iteration, i. As the iterations of the IBP
algorithm succeed one another, each Lsk

i converges to the corresponding Lok.
The error function that is iteratively minimized contains the total error from
all LR frames and is the following:

e(i) =

√√√√
K−1∑
k=0

∑
(xl,yl)

(Lok(xl, yl) − Lsk
i (xl, yl))2, (2)

where (xl, yl) denotes the LR coordinates, and K is the number of LR frames.
All of the observed LR pixels and the corresponding simulated LR pixels

that are influenced by a particular HR pixel contribute to the refinement of
that HR pixel. This contribution is weighted according to the relative position
of that HR pixel and the LR pair. For instance, in the refinement of HR pixel
a (Figure 7), pixel L0 of frame L participates with a weight proportional to
PSF(1, 1), whereas the weight of L′

0 of L′ will be proportional to PSF(0, 0).
At iteration i, every pixel of the current high-resolution approximation, Hi, is
refined as follows:

Hi+1(xh, yh) = Hi(xh, yh) +
K−1∑
k=0

∑
(xl,yl)∈Y

(Lok(xl, yl) − Lsk
i (xl, yl)) × W(k, xl, yl), (3)
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where (xh, yh) denotes the HR coordinates, Y is the set of LR coordinates of
the pixels of Lok and Lsk

i that are influenced by point (xh, yh), and W is the
weight with which Lok(xl, yl) and Lsk

i (xl, yl) contribute to the refinement of
Hi(xh, yh).

3.5 Increasing the System Robustness

As explained in Section 3.3, the error determining the quality of the SR al-
gorithm is the error between the reconstructed output and the ground-truth
frame. In the ideal situation of noise-free LR samples, it can be proven that if
the error function of Equation 2 is iteratively minimized, this is also the case
for the error between the SR output and the ground-truth frame. However, in
a real-world scenario, the LR outputs of the imaging system always contain a
certain level of noise. This is the additive noise factor, which comprises the fi-
nal degradation stage of the observation model and is connected to technology-
related non-idealities of the image sensor, as discussed in Section 2. In the
presence of such noise, the error function of Equation 2 is still minimized, re-
gardless of the noise level. However this is no longer true for the error between
the reconstructed output at every iteration and the ground-truth frame. The
reason for this is that the simulated LR frames gradually converge to the noisy
LR samples, and therefore the final reconstructed output is affected by the
presence of noise. As a result, the higher the noise levels in the LR samples,
the more the SR output diverges from the ideal ground-truth frame.

As explained in Irani and Peleg [1991], averaging in Equation 3, all LR
pixels related to a given HR pixel, already diminishes the effect of noise to a
significant extent. Therefore, increasing the number of LR frames decreases
the sensitivity of the updating process to noise. If a large number of LR frames
is employed, LR pixels with extreme values, within the LR pixel group re-
lated to a given HR pixel, can be identified and not used in the reconstruction,
since such outliers are most likely due to noise. However, in the particular
application of SR in motion-deblurring, which is the main focus of this work,
increasing the number of LR frames means widening the temporal neighbor-
hood around the integration interval of interest (Section 3.3). By doing this,
the correlation in time between the two ends of the LR sequence becomes low.
This may increase the level of nonrigid deformations of the moving object, and
as a result, may complicate the fusion of the relevant LR information.

To keep the number of LR frames within reasonable limits, so as to both
avoid undesirable types of changes in the scene and execute efficient recon-
struction, we have included in the expression of Equation 2, information about
the statistics of the noise. This is done in a manner inspired by the projection
onto convex sets (POCS) framework [Stern et al. 2001; Stark and Oskoui 1989;
Youla and Webb 1982], in which the standard deviation of the noise of each LR
frame is taken into account. In practice, this metric derives from the signal-to-
noise-ratio (SNR) of the corresponding frame. The standard deviation of noise
determines an interval in which the variation of LR pixel values is attributed
solely to the presence of noise. Thus, if the difference between Lok(xl, yl) and
Lsk

i (xl, yl) falls within that interval, these pixels will not contribute to the
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.
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refinement of the corresponding HR pixel Hi(xh, yh). Let ri(xh, yh, k, xl, yl)
denote this difference:

ri(xh, yh, k, xl, yl) = Lok(xl, yl) − Lsk
i (xl, yl), (4)

then, Equation 3 is modified as follows:

Hi+1(xh, yh) = Hi(xh, yh) +
K−1∑
k=0

∑
(xl,yl)∈Y

ui(xh, yh, k, xl, yl) (5a)

ui(xh, yh, k, xl, yl) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ri(xh, yh, k, xl, yl) − δ0(k)) × W(k, xl, yl),
if ri(xh, yh, k, xl, yl) > δ0(k)

0,
if −δ0(k) ≤ ri(xh, yh, k, xl, yl) ≤ δ0(k),

(ri(xh, yh, k, xl, yl) + δ0(k)) × W(k, xl, yl),
if ri(xh, yh, k, xl, yl) < −δ0(k)

(5b)

where ui(xh, yh, k, xl, yl) denotes the contribution of each pair of LR frames,
Lok(xl, yl) and Lsk

i (xl, yl), in the refinement of HR pixel Hi(xh, yh), and δ0(k)
denotes the standard deviation of the noise of Lok. In the ideal case of noise-
free LR frames, δ0(k) = 0, for k ∈ [0, K −1], and thus Equation 5 is simplified to
Equation 3. Thus, Equation 3 can be considered as a special case of Equation 5,
corresponding to the ideal scenario of noise-free LR samples.

Apart from the additive noise, another type of error affecting the reconstruc-
tion process is that of the motion vectors, which are generated by the motion
estimation process and passed to the SR block. To deal with such errors, the
error information at the output of the Motion Estimation block of Figure 5
[Bouguet 2002] is utilized by the SR block. Thus the different LR samples are
weighted, and the contribution of those with large error values is decreased.

To further increase the robustness of the system, neighboring LR samples
before and after the integration interval of interest contribute in SR with ad-
justable weights. This technique increases the available spatial information
at the input of the SR block, since a larger number of different subpixel dis-
placements on the underlying HR grid (Figure 7) is considered, leading to a
better determined SR problem. In addition, using a larger number of LR sam-
ples reduces both the effect of errors related to some of the motion vectors and
the effect of additive noise on the reconstruction output, as explained in the
preceding.

4. ARCHITECTURE OF THE SR SYSTEM

Figure 8 shows an overview of the proposed system. For every new group of LR
frames, produced during a particular HR integration interval (Section 3.2), an
SR stage occurs. At the beginning of each SR stage an initial high-resolution
approximation is produced by applying interpolation on the reference LR
frame. Once this initial phase is completed, the iterations of the algorithm be-
gin. When the iterations are over, the next LR group (associated with the next
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Fig. 8. Architecture overview.

HR integration interval) is processed, and so on. The rest of this section focuses
on the description of the individual blocks of the proposed architecture. The
motion vectors, describing the displacements of each LR frame with respect to
the reference frame, are treated as inputs to the implemented SR system. It
should be mentioned that the target system has four memory banks, each with
a word-length of four bytes.

4.1 Off-Chip Memory Banks

4.1.1 LR RAMs. The LR memory banks store the incoming LR frames. As
has been mentioned, the processing of the LR frames is performed in groups
that correspond to one HR frame. However, as explained in Section 3.5, in
order to increase the robustness of the system, a number of neighboring LR
frames are used in addition to those produced during the HR integration.
Figure 9(a) demonstrates how the tasks of processing LR frames and writing
new frames in the memory banks are scheduled in time, so as to include an
LR frame neighborhood in the processing. In Figure 9(a), four LR frames are
produced during the HR integration and two pairs of neighboring frames (one
pair at each side of the integration interval) are considered. To implement the
scheduling of Figure 9(a) and execute online processing of the LR data, two
memory banks need to be read in parallel, as Figure 9(b) illustrates for the
case of a 2 × 2 PSF and four neighboring frames. For instance, in SR stage 1
(Figure 9(b)) frames 8–11 need to be read together with frames 4–7, which are
in a different RAM bank due to the state of SR stage 0. In order to handle this
we employ a triple buffering scheme. The access pattern of LR RAMs is shown
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Fig. 9. The numbers correspond to the LR frames. (a) A sliding window indicates the group of
frames processed during the current SR stage. While the processing occurs on these frames, a new
group of four frames is written in the memory banks. (b) Triple buffering scheme applied on the
LR RAMs.

in Figure 9(b). There are three possible configurations, each corresponding to
a different combination of modes of the three LR RAMs, depending on which
RAMs are being read and which is being written during the current SR stage.
As the SR stages succeed one another, the LR frames are written and read
from the LR RAMs according to the current state of an FSM. Thus, as demon-
strated in Figure 9(b), a particular configuration appears once in every three
SR stages.

4.1.2 HR RAM. This external memory stores the computed HR pixels.
During the initial phase of the current SR stage, data come into the HR RAM
from the Interpolation unit. Once the initial estimation is computed, data come
from the HR Pixel Refinement unit, which iteratively updates the content of
the RAM until the end of the current SR stage. Before a pixel is written in HR
RAM it is rounded to eight bits. This allows storing HR pixels in groups of four
in the 32-bit RAM, thus increasing the available memory bandwidth.

4.2 Individual Processing Units

The Extract Processing Window (EPW) unit of Figure 8 produces the process-
ing window for both the Interpolation and the Transform HR to LR units, at
different phases of the SR stage. Thus, it operates in two modes, indicated
by the different shades of grey in Figure 10(a). In Mode 1 it returns a 2 × 2
window to the Interpolation unit, while in Mode 2 it returns an S× S window
to the Transform HR to LR unit, with S being the size of the PSF relating the
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Fig. 10. (a) Extract Processing Window Unit. Nh denotes the number of columns of the HR frame,
and S is the size of the PSF relating the LR to the HR grid. (b) Interpolation Unit.

LR to the HR grid. The EPW unit consists of S− 1 FIFOs that are connected
to S× S registers to form the processing window.

To compute the initial high-resolution estimate, the Interpolation unit ex-
ecutes bilinear interpolation. Each interpolated HR pixel is equal either to a
weighted sum of the surrounding 2 × 2 LR pixels or to a raw pixel of this 2 × 2
group of LR pixels. This depends on the position of the interpolated HR pixel,
as is demonstrated in Figure 10(b).

The Transform HR to LR unit multiplies each HR pixel of an S× S process-
ing window with the weight corresponding to its location in the window. The
Ls pixels of the simulated LR sequence (Section 3.3) will be produced by sub-
sampling the output of the convolution of the last high-resolution approxima-
tion. Since all possible subpixel displacements should be covered, the HR
pixels should move in the FIFOs of the EPW unit one location at every cy-
cle. This determines the number of cycles that leads to maximum throughput.
Therefore for maximum performance, the number of cycles per iteration should
be equal to the number of HR pixels.

The HR Pixel Refinement Unit includes parallel processing branches, each
one of them associated with an LR frame, as demonstrated in Figure 11. These
parallel branches meet at a final adder, which corresponds to the external sum-
mation in Equation 3 or Equation 5, to produce the refined version of the HR
pixel that is currently under process. In Angelopoulou et al. [2008b], the iter-
ative process was executed without taking into account the noise statistics re-
lated to each LR frame, and thus Equation 3 was implemented. In the current
work, Equation 5 is used instead. The hardware that implemented Equation 3
is modified to accommodate Equation 5, by including an extra multiplexer that
executes the control logic of Equation 5b, leading to an algorithm that is more
robust to noise.

4.3 Data Reuse and Maximum Performance

Each HR and observed LR pixel is read from the corresponding RAM only
once and they remain on-chip until they are no longer needed. Thus, data
reuse is maximized. Also, for maximum performance, one iteration requires
the number of cycles imposed by the HR convolution (Section 4.2). To achieve
this, the EPW unit, which produces the processing window for convolution, is
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 4, Article 22, Pub. date: September 2009.



22: 16 · M. E. Angelopoulou et al.

Fig. 11. The HR Pixel Refinement Unit. LRok and LRsk
i denote the contribution of each pair of

LR frames, Lok and Lsk
i , in the refinement of the particular HR pixel.

Fig. 12. Temporal Aspect of HR Grid (a) At every clock cycle the cursor moves one position on the
HR grid indicating the currently processed HR pixel. (b) The reference LR frame. (c) An LR frame
with displacement (2,1).

designed to produce the synchronization control signals for the entire system.
When an HR pixel is first brought on-chip it is pushed into the FIFOs of the
EPW. When it is no longer needed by the EPW it will be the input of the next
level of processing, that is the HR Pixel Refinement Unit. When this happens,
all the LR pixels influenced by the particular HR pixel, both observed (Lo),
and simulated (Ls), should be available on-chip.

Since one high-resolution pixel is processed per cycle, it would be convenient
to view the HR grid underlying the reference LR frame as a time-map of the
current iteration. Imagine a cursor moving along the arrow of Figure 12(a)
pointing at one HR pixel every cycle. This is the HR pixel that is currently
under process. Therefore, HR pixel h0, would correspond to time-slot t0, and so
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Fig. 13. Time diagram with execution cycles.

on. To find when, and also how much, every LR pixel will contribute in the re-
finement procedure, we can superimpose the LR grids of the LR frames on the
time-map (Figure 12(b, c)). For instance, at t19 pixels, L0 and L′

0 will both con-
tribute to the refinement of HR pixel h19, but with different weights, depending
on their relative position with respect to h19, as explained in Section 3.3.

The time diagram with the total number of cycles required for these speci-
fications is shown in Figure 13. In Figure 13, Mh and Nh denote the number
of rows and columns of the HR frame, Ml and Nl are the number of rows and
columns of the LR frame, and S denotes the size of the PSF relating the LR to
the HR grid. The two modes in Figure 13 are the two operating modes of the
Extract Processing Window unit, which are described in Section 4.2.

4.4 On-chip Memory

The units Buffering of Simulated LR Frames and Buffering of Observed LR
Frames of Figure 8 include the Ls-type and Lo-type groups of line-buffers, re-
spectively, where Ls and Lo pixels are stored. In order to achieve a throughput
of one HR pixel per cycle, at every cycle, pixels from all LR frames should be
accessed in parallel, while new data is brought in. Therefore, every group
contains a separate buffer for every LR frame. These buffers only get updated
when their content will no longer be used at the current iteration. The width of
the Ls buffers is equal to that of the LR frames. The Lo buffers are made wider
to surpass the limited memory bandwidth of the LR RAM. The Lo buffers used
are twice as wide as the LR frames, and are written using a polling scheme.

5. RESULTS

5.1 Implementation Requirements

The design targets a Celoxica ADMXRC4SX board. The DK5 Handel-C com-
piler was used, and the implementation was placed and routed using Xilinx
ISE v.9.1. The ADMXRC4SX board hosts a Xilinx Virtex-4 FPGA. The operat-
ing frequency of the design on ADMXRC4SX is 80 MHz. The critical path of
the circuit lies in the control block that implements the triple-buffering scheme
that is illustrated in Figure 9. To meet real-time requirements, the system
should achieve 25 fps. As shown in Figure 13, the required number of cycles
for SR reconstruction is:

C = R + Ml × Nl + Mh × Nh × I + [Nh × (S− 1) + S] + Latency, (6)
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Table I. Iterations for Real-Time Performance for Different HR Sizes
Mh × Nh 64 × 64 128 × 128 256 × 256 240 × 320 512 × 512 480 × 640 1024 × 1024
Iterations 780 195 48 41 11 10 2

Fig. 14. The number of FPGA resources increases linearly with the number of LR frames (K).
(a) Number of FPGA slices. (b) Number of BRAMs. The number of BRAMs is independent of the
image size for the sizes reported in Table I.

where Mh (Ml) and Nh (Nl) denote the number of rows and columns of the
HR (LR) frame, I denotes the number of iterations of the SR algorithm, R is
the number of reset cycles, and S is the the size of the PSF relating the LR
to the HR grid. Thus, C depends on the frame size and on the number of LR
frames (K) that contribute to the Latency by �log2(K + 1)�—the latency of the
final adder of the HR Pixel Refinement unit. For K ∈ [8, 15], the number of
maximum iterations of the IBP permitting 25 fps derives from Equation 6 and
is given in Table I.

The number of FPGA slices is mainly affected by K and does not signifi-
cantly vary for different frame sizes, as Figure 14(a) demonstrates for 256×256
and 480 × 640 HR sizes. Linear least squares fitting is applied on the samples
of Figure 14(a), giving the following linear equations for the number of FPGA
slices with respect to K:

SVG A = 650 ∗ K + 2546 (7)

S256 = 593 ∗ K + 2241, (8)

where SVG A and S256 denote the number of slices for HR sizes 480 × 640 (VGA
size) and 256 × 256.

The number of BRAMs equals (S− 1) + K × 2, as (S− 1) BRAMs are used by
the EPW unit, and K are occupied by each group of LR line-buffers. The graph
of Figure 14(b) demonstrates the number of BRAMs for S = 2.

The linearity of the number of slices and BRAMs with the number of frames
K, which is observed in Figure 14, is due to the parallel processing of the
different LR frames. This has been discussed in Section 4. Thus, as is demon-
strated in Figure 11, every LR frame is associated to a parallel processing
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branch. Also, for each additional LR frame, two line-buffers are employed, one
belonging to the Ls-type and the other to the Lo-type groups of buffers. This is
required in order to access pixels in parallel from all of the LR frames
and, thus, achieve a throughput of one HR pixel per cycle, as explained in
Section 4.4.

5.2 Performance Evaluation

The performance of the implemented algorithm was investigated using differ-
ent sets of evaluation parameters. The parameters are the level of noise in the
LR samples, the length of the LR sequence, the type of initial approximation
of the iterative scheme, and the chosen word-length of the system. The eval-
uation is done using semisynthetic data. In this way, the ground-truth frame
is known and can be used as a reference to accurately evaluate the quality of
the reconstructed output. Specifically, a real image, captured with a simple
hand-held digital camera, has been shifted, blurred, downsampled, and conta-
minated with noise, to synthetically produce the LR sequences.

Two groups of experiments are presented. The first is concerned with the
classic SR problem, where a sequence of shifted LR frames is used to recon-
struct a high-resolution output. The second deals with the motion deblurring
of a moving object, presenting the SR results based on time samples read from
an LR motion area. To include motion estimation errors in the simulation, the
OpenCV Lucas and Kanade optical flow [Bouguet 2002] and Shi and Tomasi
[1994] good feature extraction algorithms are employed in both scenarios to
calculate the motion vectors that are used by the SR block.

In all experiments, the LR frames have been contaminated with white
Gaussian noise with various SNRs, ranging from 10 to 70 dB, with a step of
10 dB. The SNR level is defined according to the following expression:

SNR = 10 log
σ 2

f

σ 2
n

, (9)

where σ f denotes the standard deviation of the noise-free image, and σn
denotes the noise standard deviation.

The evaluation process was repeated for different numbers of LR samples.
Specifically, 4, 8, and 12 LR frames were used. The output of every iteration,
which comprises the input of the next iteration, was rounded and truncated to
different bit-widths to investigate how this affects the reconstruction quality.
The results corresponding to the 8 bit rounding and truncating schemes derive
from the FPGA implementation of the algorithm. Apart from those, Matlab
results are reported for the following scenarios: double precision floating-point
version, 9 bits truncated, 9 bits rounded, 10 bits truncated, and 10 bits rounded
(the last four are bit-accurate models). As for the initial approximation, bilin-
ear interpolation was implemented on FPGA, whereas a bit-accurate Matlab
model was developed for bicubic interpolation.

To demonstrate the benefits of SR, double precision floating-point bicubic in-
terpolation was applied on the LR reference frame, to be compared with the SR
output. This is the most elaborate type of interpolation that can be applied on
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Fig. 15. Ground-truth frame with HR spatial resolution and LR temporal resolution for the drinks
sequence. This is the output of an ideal sensor that combines HR spatial resolution with LR
integration time.

the output of a single LR channel, solely using information from that channel.
The metric used to quantify the reconstruction quality is the root mean square
error (RMSE) between the ground-truth frame and the reconstructed output.
All results correspond to the implementation of Equation 5, with the exception
of a comparative analysis between Equation 3 and Equation 5, which is pre-
sented for the second group of experiments to prove the increased robustness
of Equation 5 with respect to noise.

5.2.1 The Classic SR Problem. In the first group of experiments, the nat-
ural image of Figure 15(a) was used to produce a group of LR samples, the
drinks LR sequence. Random displacements were applied on the original
512 × 512 image and the displaced frames were blurred with a 2 × 2 kernel,
rendering LR samples of size 256 × 256.

The graphs of Figure 16 demonstrate the RMSE values obtained when using
8 LR frames of the drinks sequence with different word-lengths and SNR val-
ues, after executing the number of iterations indicated in Table I for a 512×512
HR. The difference between these two graphs lies in the type of interpolation
used as the initial guess: bilinear interpolation is employed for Figure 16(a)
and bicubic for Figure 16(b). These graphs are very similar, which proves the
good convergence properties of the algorithm of Equation 5. Bilinear interpola-
tion is thus preferable, as it leads to similar results with lower computational
cost.

The graphs of Figure 17 demonstrate the decrease in the RMSE as the iter-
ations of the algorithm proceed. The solid vertical line indicates the number
of iterations complying with real-time requirements. In all graphs, the SNR
covers a range from 10 to 70 dB, with a step of 10 dB, while bilinear interpola-
tion is used to initialize the algorithm. The graphs correspond to different data
bit-widths and number of LR frames, as indicated in the figure. For the given
frame size and corresponding number of iterations, the 8 bit rounding scenario
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Fig. 16. RMSE values obtained for real-time SR when using 8 LR frames of drinks with different
word-lengths and SNRs. (a) Bilinear interpolation used as initial approximation. (b) Bicubic
interpolation used as initial approximation.

Fig. 17. RMSE as a function of the number of iterations of the IBP applied on the drinks sequence.
The graphs correspond to different word-lengths and number of LR frames: (a) 8 frames and data
rounded to 8 bits; (b) 8 frames and data rounded to 9 bits; (c) 12 frames and data rounded to 8 bits;
and (d) 12 frames and data rounded to 9 bits.

with 8 LR frames, shown in Figure 17(a), gives outputs of similar quality to
both larger word-lengths and longer LR sequences (Figure 17(b-d)).

In Figure 18, visual results of the reconstructed output are demonstrated
for the set of parameters of Figure 17(a), after executing the number of itera-
tions for real-time performance. Each row of Figure 18 corresponds to the SNR
value indicated on the left. The part of the frame shown in Figure 18 corre-
sponds to the ground-truth part of Figure 15(b). The first column of Figure 18
illustrates the output of floating-point bicubic interpolation applied on a
single LR frame for a magnification factor of 2. The second column shows the
real-time SR output. Using real-time FPGA-based SR, the combination of HR
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Fig. 18. Reconstruction of drinks for various SNRs. The first column shows the output of floating-
point bicubic interpolation using a single LR frame, while the second one demonstrates the higher
quality obtained by the real-time SR FPGA implementation.
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Fig. 19. Ground-truth frame for the car sequence: the output of an ideal sensor combining HR
spatial resolution with LR temporal resolution.

spatial resolution and LR temporal resolution is achieved, leading to superior
results.

5.2.2 The Motion Deblurring Problem. In the second experiment, a mo-
tion area employing pixels of 2 × 2 Sh is considered, which produces four time
samples during the HR integration. If very fast motion is involved (as in
Figure 1(b)), the LR frames themselves are blurred. To incorporate this intra-
LR-frame motion, we first generated a dense HR sequence, using random HR
displacements, and then created the LR motion blurred sequence in two steps.
First we averaged groups of four successive frames and produced sequence A,
with LR pixel temporal resolution and HR pixel spatial resolution. This would
be the output of an ideal but unrealistic sensor that combines LR temporal res-
olution with HR spatial resolution. A 2 × 2 PSF was then applied on sequence
A, and Gaussian noise was added, to get LR sequences with SNR levels rang-
ing from 10 to 70 dB. The desired output belongs to sequence A and is shown
in Figure 19.

The graphs of Figure 20(a,b) describe exactly the same scenarios as those
of Figure 16(a,b), but for the car sequence. The size of the HR frame is now
240 × 320 and thus 41 iterations can be executed, according to Table I. As
in Figure 16(a,b), it is also observed here that, due to the good convergence
properties of the algorithm, bilinear interpolation is preferable as it leads to
similar results to bicubic interpolation but with lower computational cost.

The graphs of Figure 20(c-e) correspond to the 8-bit-round, 9-bit-round, and
10-bit-round scenarios for different lengths of the LR sequence. For a given
word-length, as the SNR decreases, significant deviation of the RMSE values
is observed when different lengths of the LR sequence are used.

In the following subsection, the motion deblurring experiment is employed
for the comparison of Equation 5 with Equation 3, to demonstrate the in-
creased robustness of Equation 5 with respect to noise.

5.2.3 Robust SR in the Presence of Noise. The graphs of Figure 21 demon-
strate a comparison between the RMSE values obtained by Equation 3
(Figure 21(a–d)) and Equation 5 (Figure 21(e–h)), as the iterations of the
algorithm succeed one another, for the car sequence. The solid vertical line
indicates the iterations for real-time performance. In all graphs, bilinear
interpolation is used as the initial estimate. Results are demonstrated for
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Fig. 20. RMSE values for real-time SR on the cars sequence. (a, b) Employing 8 LR frames,
different word-lengths and SNR values, and using: (a) bilinear, and (b) bicubic interpolation as
the initial guess. (c, d, e) RMSE values obtained for the given word-lengths and the indicated
numbers of LR frames.

different data bit-widths, number of LR frames, and SNRs, as indicated in the
figure.

As explained in Section 3.5, the original IBP algorithm of Equation 3 can be
considered as a special case of Equation 5 corresponding to the ideal scenario
of noise-free LR samples, since in that case δ0(k) = 0, for k ∈ [0, K − 1], and
Equation 5 is simplified to Equation 3. The results reported in Angelopoulou
et al. [2008b] indicate that in the noise-free situation, Equation 3, minimizes
the error between the ground-truth frame and the reconstructed output, as
the iterations proceed. Let us call this error reconstruction error. In the pres-
ence of noise, Equation 3 no longer minimizes the reconstruction error, as
Figures 21(a-d) demonstrate. As explained in Section 3.5, this is due to the con-
vergence of the simulated LR frames to the noisy LR samples, which results in
the minimization of the error of Equation 2 but not of the reconstruction error.
For low noise levels, such as SNR = 70 dB (Figures 21(a-d)), Equation 3 ren-
ders a behavior close to that reported in Angelopoulou et al. [2008b]. However,
when the noise level increases, that is, the SNR decreases, the reconstruction
error diverges more from the ideal behavior of the noise-free case.
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Fig. 21. Comparing the convergence properties of Equations 3 (a–d) and Equations 5 (e–h), for the
cars sequence. By accounting for the noise statistics in the LR frames, Equation 5 gives robustness
with respect to noise.

These problems are resolved by employing Equation 5 instead of Equation 3.
Figures 21(e–h) demonstrate the good convergence properties of the algorithm
of Equation 5. The reconstruction error is now always minimized, regardless
of the given system parameters. Two main trends, affecting the rate of con-
vergence, can be observed: (1) For a given word-length, a decrease in the error
deriving from increasing the number of LR frames, becomes larger as the SNR
level becomes lower. This is observed comparing the graph of Figure 21(f) with
that of Figure 21(h). (2) For a given number of LR frames, the decrease of the
error resulting from an increase in the word-length becomes larger as the SNR
gets higher. This is obvious when comparing Figure 21(e) with Figure 21(f).

These observations can be interpreted as follows. For low SNRs, the re-
liability of the LR samples is low. Therefore, additional LR frames further
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Fig. 22. Reconstruction of car for different SNRs. The SR outputs visually demonstrate the higher
quality obtained by the implemented real-time algorithm, compared to the motion-blurred output
of a traditional HR sensor and the bicubic interpolation of the output of an LR sensor.

contribute in the reconstruction on the HR grid, as long as the level of the
related non-rigid deformations remains low (Section 3.5). On the other hand,
for high SNRs, the LR frames are more reliable, and since they comprise sam-
ples of the same scene, they tend to overlap when their number increases. In
that case, increasing the word-length affects the reconstruction quality more
than considering more frames. In other words, for low SNRs more frames are
generally more valuable than more bits, while for high SNRs it is the other
way round.

Moving from the scenario of Figure 21(f) to that of Figure 21(g), the decrease
of the error is trivial, indicating that a tenth bit is redundant. Thus, nine
bits is the minimum word-length for maximal performance for the number of
iterations corresponding to the given frame size.

The output obtained for the parameters of Figure 21(f), after the number
of iterations giving real-time performance, is visualized in Figure 22. The
part of the frame shown in Figure 22 corresponds to the ground-truth part
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of Figure 19(b). Three types of results are illustrated for each noise level. The
first column shows the motion-blurred output that would be produced by a tra-
ditional image sensor employing a uniform static grid of HR pixels. The sec-
ond column contains the output of floating-point bicubic interpolation applied
on a single LR frame. Finally, the third column illustrates the real-time SR
output, where HR spatial resolution and LR temporal resolution are success-
fully combined.

5.2.4 Conclusions of the Performance Evaluation. In the previous para-
graphs multiple design options and algorithmic parameters have been eval-
uated and discussed. The general conclusions deriving from this evaluation
are the following.

(1) For low SNRs, considering more LR frames is generally more valuable than
increasing the word-length of the data path, while for high SNRs it is the
other way round.

(2) The minimum word-length for maximal performance increases as the num-
ber of iterations increases, thus as the frame size decreases (Table I).

(3) Bilinear interpolation is preferable for initialization purposes, as it leads to
similar results to bicubic interpolation but with lower computational cost.

6. CONCLUSIONS AND FUTURE WORK

In this work, we propose an FPGA-based motion-deblurring system that uses
an adaptive image sensor, which is configured with areas of large pixels on
the motion regions. FPGA-based SR is used to compensate for the low spatial
resolution of such areas. In particular, the IBP algorithm is implemented on
FPGA, after being modified to account for the additive noise in the LR sam-
ples. The system is evaluated under various noise levels, considering different
options and parameters, such as the type of initial approximation, the number
of LR samples, and the word-length. Results demonstrate that including infor-
mation about the noise statistics in the algorithm dramatically improves the
convergence properties of the iterative process in the presence of noise, leading
to a more robust reconstruction scheme (Figure 21).

Interesting observations derive from the evaluation process of the imple-
mented algorithm of Equation 5. The low-computational-cost bilinear inter-
polation, when used for initialization purposes, renders similar results as the
elaborate bicubic interpolation, due to the good convergence properties of the
algorithm. Also, for a given word-length, when more LR frames are consid-
ered, the error is more noticeably decreased for low SNRs. On the other hand,
for a given number of LR frames, increasing the word-length results in bet-
ter enhancement for high SNRs. The reconstructed frame is of similar quality
as the output of an ideal sensor with HR spatial resolution but LR temporal
resolution, thus surpassing the fundamental trade-off between space and time.

Future work includes the following issues. (1) For large motion magni-
tudes, considerable extent of motion blur may also appear in the LR samples.
Using SR techniques, the temporal resolution of the reconstructed output is
limited by that of the LR samples. This limit could be surpassed by employing
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multi-channel blind deconvolution [Sroubek et al. 2007] in the SR framework.
(2) Since the system operates in real time, a crucial issue is the configura-
tion of the adaptive image sensor for the next frame to keep the moving object
within the LR window. This can be achieved by determining the location of the
LR window in the next frame, after predicting the new position of the object.
Candidate predictors include the popular Kalman filter [Welch and Bishop
2006; Liu et al. 2007], its extended [Thrun et al. 2005; Bonato et al. 2007], and
unscented [Wan and Merwe 2000] forms; and particle filters [Arulampalam
et al. 2002]. (3) Finally, future work includes the implementation of the mo-
tion estimation and blur detection blocks of Figure 5 on FPGA as well.
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