
FEATURE SELECTION WITH GEOMETRIC CONSTRAINTS FOR VISION-BASED

UNMANNED AERIAL VEHICLE NAVIGATION

Maria E. Angelopoulou and Christos-Savvas Bouganis

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK

email: {m.angelopoulou, christos-savvas.bouganis}@imperial.ac.uk

ABSTRACT

Vision-based egomotion estimation can be employed to

endow with navigation ability an Unmanned Aerial Vehi-

cle (UAV) that is equipped with an on-board camera. The

egomotion estimation block computes the 3D UAV motion,

taking as an input a 2D optical flow map that is constructed

for each of the captured video frames. This work considers

sparse optical flow estimation, and thus the navigation sys-

tem that is developed includes a feature selection unit, which

initially identifies the points of the optical flow map. This

paper demonstrates that the feature selection process, and in

particular the geometry of the selected feature set, decisively

determines the overall system performance. Various compu-

tation schedules, which combine geometric constraints with a

textural quality metric for the image features, are thus inves-

tigated. This paper shows that imposing appropriate distance

constraints in the feature selection process significantly in-

creases the output precision of the egomotion estimation unit,

thus enabling accurate vision-based UAV self-navigation.

Index Terms— feature selection, optical flow, egomotion

estimation, Unmanned Aerial Vehicle (UAV), self-navigation

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are highly suitable when

aerial operations are required, but the presence of a pilot is

dangerous, impossible or simply expensive [1, 2]. This per-

tains to a wide range of applications, such as surveillance,

search and rescue, aerial mapping, and defence operations.

To provide a useful ‘eye in the sky’, an UAV is typically

equipped with an on-board camera. In the captured video

frames, the points of the 3D real-world scene are projected

on a 2D plane. The motion between adjacent frames can be

described with a 2D motion field, known as the optical flow

map. The inverse problem of extracting the 3D camera mo-

tion from the 2D optical flow map is known as egomotion es-

timation [3]. An on-board egomotion estimation processing

unit that is mounted on an UAV enables its self-navigation.

This work is co-funded by the Technology Strategy Board. The video

sequence of the real-data experiment is captured by a digital camera that is

mounted on the Barnard Microsystems InView unmanned aircraft.
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Fig. 1. The vision-based system for UAV self-navigation.

The optical flow map can be either dense or sparse, de-

pending on whether a 2D motion vector is computed on every

pixel. When sparse optical flow is considered, as is the case

in this work, a feature selection process precedes the actual

tracking that calculates the 2D motion vectors. In this manner,

the tracker takes as an input a subset of distinctive image fea-

tures that are ‘good’ to track [4, 5, 6]. This reduces the com-

putational load and excludes from the calculations nondistinc-

tive features that may disorientate the tracking algorithm.

As shown in Fig. 1, the complete vision-based UAV self-

navigation system consists of the Optical Flow Calculation

and the Egomotion Estimation units. The former is further

divided in two processing blocks. These are the Feature Se-

lection block [4], which identifies the distinctive features on

the reference frame, and the Feature Tracking block [6, 7],

which tracks those features on the adjacent frame to estimate

the 2D optical flow that describes the inter-frame motion.

Occupying the beginning of the processing chain, the Fea-

ture Selection (FS) block determines the course of further pro-

cessing and decisively affects the precision of the estimated

3D motion. In the literature, FS methods identify distinc-

tive features based on a textural quality metric, such as the

minimum eigenvalue of a 2 × 2 matrix containing sums of

derivatives [4]. This paper demonstrates that when FS is ex-

ecuted as part of an egomotion estimation system, not only

the textural properties of the features but also their geometry

should be taken into account when forming the selected fea-

ture set. This produces an informative set of distinctive image

features that are evenly distributed all over the frame, which

significantly increases the precision of the estimated 3D mo-

tion. In the sections that follow, three possible FS computa-

tion schedules are identified and discussed, and their effect

on the performance of egomotion estimation is evaluated, for

certain distance constraints and parameter values.
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Fig. 2. Visualizing the three FS computation schedules, for N = 6.

2. FS APPROACHES AND FEATURE GEOMETRY

With respect to the geometric constraints that can be imposed

to the feature set, this section identifies three possible FS com-

putation schedules and discusses their suitability for vision-

based UAV self-navigation. To assess feature textural quality,

all schedules employ as a quality metric the minimum eigen-

valueλ of matrixGm [4]. For a certain pixel,Gm is computed

on its (2× ω + 1)2 neighborhood, as follows:

Gm =

px+ω
∑

x=px−ω

py+ω
∑

y=py−ω

(

X2
(x,y) X(x,y)Y(x,y)

X(x,y)Y(x,y) Y 2
(x,y)

)

(1)

where (px, py) are the pixel coordinates, and X(x,y), Y(x,y)

denote the horizontal and vertical image derivatives at (x, y).

2.1. Brute-Force FS

In Brute-Force FS (BF), Gm is formed by computing (1) for

each pixel, the λ values are sorted in decreasing order, and

the N top features of the list comprise the selected set [4]. As

shown in Fig. 2(a), the frame is globally treated, and a single

sorting operation is executed that includes all of the pixels.

A drawback of BF is that, due to the absence of geometric

constraints, the selected features may concentrate on a lim-

ited number of Regions of Interest (ROIs) of high textural

quality. The computed motion vectors are thus overcrowded

on these ROIs, leaving the rest of the frame void of motion

information. Moreover, if the limited set of ROIs also in-

cludes regions with local irregularities, such as occlusions or

inter-frame illumination variation, an increased number of in-

accurate motion vectors is produced, dominating further pro-

cessing and degrading the overall performance. For the above

reasons, an unbalanced optical flow map comprises an input

of the egomotion estimation unit that is less informative of

the actual motion, thus decreasing the robustness of egomo-

tion calculation (Sect. 3). Due to the limited height of flight of

an UAV and the limited field of view of its on-board camera,

the number of individual ROIs also tends to be limited. This

renders feature overcrowding significantly common in UAV

egomotion estimation, resulting in a navigation system that

suffers from decreased output accuracy (Sect. 3).

2.2. Dynamic Block-Based FS

A Dynamic Block-Based FS (DBB) approach is next pre-

sented that tackles the drawbacks of BF. As Fig. 2(b) shows,

the frame is globally treated, as in BF, but now multiple

sorting stages occur that take feature location into account.

The first stage considers feature A, which is at the top of

the sorted list, and removes all lower-priority features within

its (2d+ 1)
2

neighborhood, i.e. B and D. A new sublist is

produced, and the second higher-priority feature, C, is next

considered in a similar manner. This process continues for N

sorting stages, giving N sublists of decreasing length. The N

top features of the final sublist comprise the selected set.

In DBB, N blocks of size (2d+ 1)
2

pixels are considered.

These are dynamically located on each frame, with their cen-

ters residing at the pixels that occupy the top N places of the

final sorted sublist. This scheme can render features that are

evenly distributed all over the frame and also exploit high tex-

tural quality, occupying top places in a list that is sorted based

on textural criteria. The degree of ‘feature scattering’ depends

on d, the minimum distance in pixels between adjacent fea-

tures. Sect. 3 demonstrates how d affects the precision of the

estimated 3D motion. A drawback of DBB derives from the

fact that a λ value should be computed and stored for each and

every pixel of the frame before the sorting operations begin.

This limits the possible parallelism in the processing of FS

and thus the performance for FS hardware implementation.

2.3. Static Block-Based FS

A Static Block-Based FS (SBB) scheme is next proposed,

where the FS blocks have a fixed center. Each frame is stat-

ically segmented into N predefined blocks with overlapping

contours. In particular, a border of ω + 1 pixels is required to

compute the derivatives and λ values at the block edges. From

each block a single feature is included in the output set: the

one with the best textural quality. Fig. 2(c) provides a simpli-

fied visualization of SBB for N = 6; no overlapping contours

are shown. A sorted list is produced for each block, and the

top features of these lists comprise the selected feature set.

The parallelism in feature selection can be now increased

by a factor of N , since N blocks of pixels can be indepen-

dently processed up to the end of FS operations, thus making

the method suitable for real-time hardware implementation.

A drawback of this approach is the fact that an individual FS

block may not possess any significantly distinctive features, if

its textural quality is low. To overcome the above, a threshold

can be imposed to λ, and blocks whose best feature does not

meet that threshold can be excluded from further processing.
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Fig. 3. Mean NRMSE of the estimated egomotion parameters for

the indicated FS approaches, where (a) N ∈ [10, 200] with a step of

10 and (b) N ∈ [50, 1000] with a step of 50.

3. PERFORMANCE EVALUATION

This section evaluates the FS schedules of Sect. 2, to quantify

their effect on the final egomotion estimation outputs, for cer-

tain distance constraints and parameter values. Feature track-

ing is implemented with multiresolution block-matching [7,

6], while egomotion estimation is executed through planar

deformation determination [3]. The latter assumes constant

depth in the camera coordinate system. This assumption is

realistic only under certain constraints for normal navigation,

but it is intrinsically highly suitable for plane navigation, due

to the large distances between the camera and the scene. Six

3D motion parameters are rendered; (A,B,C) describe the

translation motion component, β corresponds to a planar ro-

tation around the optical axis, while θ and α describe an out-

of-plane rotation that distorts the original camera coordinate

system [3]. A ground-truth and a real-data experiment are per-

formed. The test sequences include VGA (480×640) frames.

The graphs of Fig. 3 demonstrate the mean of the Nor-

malized Root Mean Square Error (NRMSE) for the egomo-

tion parameters between their estimated and ground-truth val-

ues, for various FS computation schedules and values of N .

The input of the ground-truth experiment comprises an 11-

frame semi-synthetic test sequence, which has been generated

by applying both rotational and translational motion, of vari-

ous angles and magnitudes, on the first frame of the captured

video sequence that is shown in Fig. 4. In this manner, the

ground-truth egomotion parameters are known and are used

to estimate the error. As Fig. 3 shows, BF renders signifi-

cantly higher NRMSE, compared to approaches that involve

adequate geometric constraints. For N ≤ 100, the DBB error

decreases as d increases from 10 to 40. For larger N , increas-

ing d beyond 30 does not further ameliorate accuracy. SBB

error levels are similar to those of the optimal DBB schedules.

The above are confirmed with a real-data experiment,

Fig. 4. Setup for real-data testing. The Barnard Microsystems In-

View unmanned aircraft is equipped with an on-board digital cam-

era, and the captured video sequence is used in the tests.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Computed optical flow map for frame-pair f44 − f45 of the

real-data test, with N = 100 and (a) BF, (b-e) DBB with d equal to

10, 20, 30, 40, respectively, and (f) SBB.

which employs a 50-frame video sequence, captured by an

UAV with an on-board camera (Fig. 4). Fig. 5 illustrates the

calculated optical flow for f44 − f45, N = 100, and various

FS schedules. Fig. 5(a) demonstrates the unbalanced optical

flow map that is rendered by BF, as a result of feature clut-

tering on a limited number of ROIs. Figures 5(b-e) show the

gradual spreading of the motion vectors, as d increases from

10 to 40, for DBB. Fig. 5(f) shows their even distribution for

SBB, which is, in addition, the hardware-friendly version of

FS (Sect. 2). The optical flow of Fig. 5(f) facilitates not only

egomotion estimation but also feature tracking, as its features

are selected with textural quality criteria, leading to increased

overall system performance as demonstrated next.

Fig. 6 shows the computed egomotion parameters, when

applying the indicated FS approaches on the real-data se-

quence of Fig. 4, for N = 100. To map the translation

parameters to meters, a focal length of 50 × 10−3 m and a

mean UAV height of 150 m are considered. For each pa-

rameter set, Fig. 7 presents a flight simulation that visualizes

the estimated UAV motion for the last 20 frames of the se-

2011 18th IEEE International Conference on Image Processing

2407



0 20 40
−500

0

500
Θ

 (
o
)

0 20 40
0

0.05

0.1

α
 (

o
)

0 20 40
−5

0

5

β
 (

o
)

0 20 40
−5

0

5

frame #

A
 (

m
)

0 20 40
−10

0

10

frame #

B
 (

m
)

0 20 40
−0.2

0

0.2

frame #

C
 (

m
)

(a) With BF

0 20 40
−500

0

500

Θ
 (

o
)

0 20 40
0

5
x 10

−3
α

 (
o
)

0 20 40
−2

−1

0

β
 (

o
)

0 20 40
−5

0

5

frame #

A
 (

m
)

0 20 40
0

5

frame #

B
 (

m
)

0 20 40
−0.01

0

0.01

frame #
C

 (
m

)

(b) With DBB, d = 30

0 20 40
−500

0

500

Θ
 (

o
)

0 20 40
0

5
x 10

−3

α
 (

o
)

0 20 40
−2

−1

0

β
 (

o
)

0 20 40
−5

0

5

frame #

A
 (

m
)

0 20 40
0

5

10

frame #

B
 (

m
)

0 20 40
−5

0

5
x 10

−3

frame #

C
 (

m
)

(c) With SBB

Fig. 6. Computed egomotion parameters for the real-data test, when

employing the indicated FS methods and N = 100.

quence, i.e. f31 − f50. The UAV trajectory for BF (Fig. 7(a))

possesses unrealistic discontinuities, while its magnitude de-

viates significantly from the cases where distance constraints

are included in FS. Such cases are shown in Figures 7(b,c),

which illustrate smooth flight trajectories that are also in ac-

cordance with respect to their magnitudes. These demonstrate

the robustness of egomotion estimation that is achieved when

applying appropriate distance constraints, as in both DBB

with d = 30 and SBB. The above observations are consistent

with the low NRMSE values corresponding to these schemes

in the ground-truth experiment (Fig. 3).

4. CONCLUSION AND FUTURE WORK

This work investigates how the inclusion of geometric con-

straints in the feature selection process affects the output

accuracy of a vision-based egomotion estimation system for

UAV self-navigation. Feature distance constraints distribute

the vectors of the optical flow map evenly all over the frame,

thus providing an informative input set for the egomotion es-

timation block. Such constraints are combined appropriately

with textural feature selection criteria, to identify features of

distinctive texture and thus facilitate the tracker. As results

demonstrate, such a combination renders an improved feature

set that enables both accurate feature tracking and egomotion

estimation, hence significantly increasing the precision of

the output 3D motion parameters, compared to brute-force

FS approaches. Future work includes the development and

integration of methods that perform saliency detection for

indicating good candidate points [8], as well as methods that
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Fig. 7. Flight simulation for the parameters of Fig. 6, for frames

f31−f50, when employing the indicated FS methods and N = 100.

effectively identify outliers among the 2D motion vectors.
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