A SENSOR-BASED APPROACH TO LINEAR BLUR IDENTIFICATION FOR REAL-TIME
VIDEO ENHANCEMENT

Maria E. Angelopoulou, Christos-Savvas Bouganis, Peter Y. K. Cheung

Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2BT, UK
email: {m.angelopoulou, christos-savvas.bouganis, p.cheung}@imperial.ac.uk

ABSTRACT

Super-resolution (SR) methods are largely affected by the
accurate evaluation of the Point Spread Function (PSF) that is
related to the input frames. When the frames are degraded by
heavy motion blur, the PSFs are highly non-isotropic, which
further complicates their estimation. The ill-posed nature of
blur identification is usually addressed using the assumption
of linear and uniform motion. However, in real-life systems,
this may deviate significantly from the actual motion blur. To
resolve the above, this work proposes combining a scheme
that validates the initial motion assumption with the real-time
reconfiguration property of an adaptive image sensor. If the
linearity and uniformity assumption is invalid for a given mo-
tion region, the sensor is locally reconfigured to larger pix-
els that produce higher frame-rate samples with reduced blur.
Once the appropriate configuration that gives rise to a valid
motion assumption is applied, highly accurate PSFs are esti-
mated, resulting to an improved SR reconstruction quality.

Index Terms— motion blur, super-resolution, blur iden-
tification, adaptive image sensor

1. INTRODUCTION

For super-resolution (SR) [1, 2] to be effective, the PSFs of
the input frames should be accurately estimated, since these
describe the contribution of each frame in the final reconstruc-
tion. In real-time video capturing, fast moving objects pro-
duce locally heavy blur, and are thus related to significantly
non-isotropic PSFs, whose identification is a highly ill-posed
problem. In the literature, motion blur identification is sim-
plified by employing a linear and uniform motion assump-
tion [3, 4], where ‘linear’ implies a motion trajectory that is
accurately approximated with a first order polynomial, and
‘uniform’ indicates identical PSF weights. This assumption
reduces the problem of PSF estimation to the identification of
two parameters: the motion extent and direction. However,
in real-life systems, the actual blur may deviate considerably
from an ideal linear and uniform PSF. This renders the initial
assumption unrealistic, directly affecting the reconstruction.
In [5], a video enhancement system based on an adap-
tive image sensor [6, 7] is proposed. Possible sensor con-
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figurations that maximize the captured raw data are explored
and are combined with processing methods that increase the
spatio-temporal resolution of the output. Two approaches are
presented, a deconvolution-based and a SR-based approach.
For highly dynamic regions, the SR-based approach is proven
to be more appropriate. In this approach, each motion re-
gion is locally configured to a uniform grid of large pixels,
rendering high frame-rate samples with reduced motion blur,
whereas areas with slow motion or no motion are configured
to the elementary pixels of the sensor. The spatial resolution
of the motion areas is increased by fusing the high frame-rate
samples with SR techniques. However, for very fast motion,
these samples are inevitably blurred themselves, and the fi-
delity of the SR output is bounded by the blur effect.

This work addresses the above by proposing an interac-
tion of joint blur identification and validation (BIV) [8] with
an adaptive image sensor. BIV not only estimates linear blur,
but also validates the initial assumption. This keeps the blur
identification process simple, since linear and uniform motion
is assumed, while identifying cases where the assumption is
invalid and thus the PSF estimation is inaccurate. To resolve
such cases, the adaptive sensor is configured to larger pixels
that produce samples with reduced blur. Once the appropriate
pixel size is employed for which the linear motion assump-
tion is valid, accurate PSFs are estimated, increasing the SR
reconstruction quality. In [8], a real-time BIV architecture is
proposed and implemented on reconfigurable hardware.

The contributions of the paper are: (i) A methodology is
proposed that includes the interaction of an adaptive image
sensor with a joint blur identification and validation scheme.
The proposed methodology increases the accuracy in the es-
timation of the PSFs related to the SR inputs, thus improving
the SR reconstruction quality. (ii) The complete algorithm
for real-time video enhancement is presented, including both
the sensor configuration framework and the processing of the
captured data. The system’s performance is evaluated under
linear and non-linear motions and under various noise levels.

2. JOINT IDENTIFICATION AND VALIDATION

The joint blur identification and validation (BIV) scheme
of [8] employs the autocorrelation-based blur identification
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Fig. 1. Outputs for two sensor configurations during HR integration.

framework of [3]. The motion direction is the one that gives
the minimum total intensity (TI) for the directional image
derivative [3]. On that derivative, a mean autocorrelation
function (ACF) is calculated. As explained in [8], if the linear
and uniform motion assumption is valid, this ACF includes
three dominant lobes: a positive lobe at lag 0 and two sym-
metrical negative lobes at a lag equal to the motion extent.
A different number of lobes or a minimum ACF coefficient
at a lag that could not possibly correspond to the motion
extent, indicate an invalid assumption. Invalid assumption
is also indicated, when there is not a clear minimum for the
normalized total intensities of the directional derivatives.

3. ACCOUNTING FOR INTRA-FRAME MOTION IN
A SYSTEM WITH AN ADAPTIVE SENSOR

This section explains how the reconfigurability of the sen-
sor is combined with the BIV scheme to improve the recon-
structed output. For the rest of the paper, ‘LR’ (‘HR’) refers
to low (high) spatial and, thus, high (low) temporal resolution.

The adaptive image sensor can be locally configured to
form LR areas that produce high frame-rate samples, due to
the space-time trade-off [5], thus fragmenting the motion tra-
jectory. Fig. 1 shows the raw outputs for two sensor config-
urations during the HR integration interval, i.e. the time re-
quired by the elementary pixels to achieve a certain signal to
noise ratio (SNR). A grid of elementary pixels would render a
single, motion-blurred frame (Fig. 1(a)), while a 2 x 2 config-
uration would give 4 time samples (Fig. 1(b1-b4)), each con-
taining a fragment of the trajectory of Fig. 1(a). To increase
the spatial resolution of the output, the LR samples are fused
with SR techniques [2]. For SR to be effective, a PSF should
be estimated within a certain accuracy for each sample.

The proposed system utilizes a simple blur detection
block, which is based on the comparison of the strongest
edges of the object with those of the background, to identify
cases where the current configuration produces samples with
negligible motion blur, as in Fig. 1(b1-b4). In such cases, an
isotropic Gaussian PSF can be employed to associate each LR
pixel to the HR pixels of the underlying HR grid [2]. In all
other cases, the Gaussian assumption is inadequate, and blur
identification is required to estimate the motion parameters.
Thus the BIV scheme discussed in Sect. 2 is executed. If
BIV finds the linear and uniform motion assumption invalid,
the pixel size increases in the next sensor reconfiguration, to
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Fig. 2. The algorithm of the system operation for a dynamic region.

produce samples with reduced, more linear motion blur. In
this manner, the initial non-linear and/or non-uniform motion
trajectory is fragmented into shorter, more linear parts. If BIV
finds the initial motion assumption valid, accurate linear PSFs
can be estimated, and the pixel size thus remains constant.

The pixel size of the adaptive sensor depends on the out-
puts of blur detection and BIV blocks, as described above.
These blocks comprise a classifier, whose binary output ¢ de-
termines the pixel size in the next sensor reconfiguration: If
¢ = 1, the pixel size remains constant, as it allows an accurate
estimation of the PSF, employing either the Gaussian or the
linear and uniform motion assumption. If ¢ = 0, the pixel
size increases in the next reconfiguration. A mechanism that
reduces the pixel size every N frames can be accommodated.

For linear motion, the non-isotropic PSFs should be con-
sistent with the inter-frame motion vectors. In case of incon-
sistency, invalidity of the initial linearity assumption is indi-
cated. The above can be used as an additional validity check,
and is thus incorporated into the classifier that is described
above, giving ¢ = 0 in the case of inconsistency.

Ideally, the adaptive sensor would be reconfigured at ev-
ery new HR integration. In reality, reconfiguration is sparser,
depending on the technology of the given sensor. The pro-
posed video enhancement system operates as follows. Mov-
ing objects are detected with a rough motion estimation on
the HR grid, as indicated in Fig. 2. For every moving object,
the control of Fig. 2 is employed, where s denotes the LR
pixel size, with s = 2 corresponding to the smallest LR pixel
size as demonstrated in Fig. 1(b1-b4), and ¢ denotes the bi-
nary output of the classifier that determines the change in the
pixel size in the next reconfiguration. Moreover, b denotes
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Fig. 3. Tl and ACF for carousel (top) and ambulance (bottom row).
On the right, a detail of the ACF is presented, for lags 0 to 33.

the binary output of the blur detection block; b = 0 indicates
negligible motion blur, for which the Gaussian assumption is
adequate and BIV is skipped, while b = 1 indicates that BIV
is required. The part of Fig. 2 included in the gray rectangle
is executed only in those HR integration intervals when the
sensor is reconfigured. A Kalman filter predictor is employed
to determine the position of the object in the next HR integra-
tion. When sensor reconfiguration occurs, that position deter-
mines the location of the LR area, while its pixel size depends
on the validity of the linearity assumption in the last HR inte-
gration, indicated by the value of c. For ¢ = 0 the pixel size
increases, whereas for ¢ = 1 it remains the same. For each LR
area, an LR sequence with reduced blur is produced, and the
PSFs are estimated, based on the outputs of the blur detection
and BIV blocks, as described in the previous paragraphs. The
LR samples are registered using a motion estimation block,
and the corresponding PSFs are used by the SR block that ex-
ecutes the reconstruction on the HR grid [2]. This produces
for each LR area an output with high resolution both in space
and time, and thus motion deblurring is locally executed on
the dynamic regions of the scene. At every new HR integra-
tion, the control starts at the second block of Fig. 2. The loop
ends when the particular object exits the field of view.

4. PERFORMANCE EVALUATION

The performance of the video enhancement system of Fig. 2
is evaluated on the basis of the quality of the final output.
Different parameters are employed, including the type of PSF
assumption, the LR pixel size, and the noise level. The eval-
uation uses semi-synthetic data, i.e. real images are shifted,
blurred, downsampled, and contaminated with noise, to pro-
duce LR sequences. Thus the ‘ground-truth’ frame is known
and is used to evaluate the reconstruction quality. White
Gaussian noise is applied, with SNRs ranging from 10 to 50
dB. The iterative SR approach of [2] is used, and 30 iterations
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Fig. 4. Row I: The raw output for configuration 1 x 1 (elementary
pixel grid), and the intra-frame motion of the time samples produced
during HR integration for each configuration. Rows 2-4: SR recon-
structed outputs when employing the indicated PSF approximations.

are executed for each estimation. To exclude any evaluation
errors due to the blending of the object with the background,
SR is applied on the isolated foreground objects. The number
of frames produced during HR integration for each pixel size
is subject to the space-time trade-off [5]. If this number is k&
for the current configuration, &k additional neighboring frames
are used in SR, for increased robustness [2].

Fig. 3 shows the TT and ACF outputs of BIV (Sect. 2) for
two moving objects with non-negligible motion blur (b = 1).
Both cases employ 2 x 2 configuration and 256 x 256 LR
resolution. The frame on the left is one of the 4 samples gen-
erated during HR integration at 50 dB SNR. According to the
validation criteria described in Sect. 2 and more extensively
discussed in [8], the TI and ACF outputs of Fig. 3 indicate
that for the 2 x 2 configuration the linearity and uniformity
assumption is valid for ambulance, and invalid for carousel.
Indeed, the actual motion of carousel, is not sufficiently linear
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Fig. 5. Errors for the two sets of experiments, for various SNRs.
The legend applies to both graphs, with (b) containing only the 2 x 2
configuration values. The ground-truth frames are shown at the top.

for a 2 x 2 configuration, as the trajectory shows in Fig. 4 (top
right). Thus a 3 x 3 configuration is employed next.

The detailed images of Fig. 4 show the SR reconstructed
output for carousel, for 2 x 2 and 3 x 3 configurations. For ref-
erence purposes, bicubic interpolation is applied on a single
LR frame, with magnification factors 2 and 3, respectively.
The SR output is given both for Gaussian PSF approxima-
tions, whose support corresponds to the LR pixel size [1, 2],
and linear PSFs estimated by BIV. The system output is that of
the 3 x 3 configuration with SR that uses linear PSFs (Fig. 4).

The last row of Fig. 4 demonstrates the system robustness,
presenting the reconstructed outputs for significantly noisy
LR samples (SNR = 20 dB). Fig. 5(a) quantifies the evalua-
tion giving the RMSE values with respect to the ground-truth,
for the above scenarios and SNR from 10 to 50 dB.

Contrary to carousel, ambulance passes the validity check
for 2 x 2 configuration (Fig. 3); thus the pixel size remains
at 2 x 2. Fig. 6 presents the indicated outputs for 50 and
20 dB. The system output is that of SR with the linear PSF
approximation. The associated errors are given in Fig. 5(b).
It can be concluded that when the linear PSF is estimated, the
SR output improves compared to the use of a Gaussian PSF.

5. CONCLUSION AND FUTURE WORK

This paper proposes a methodology for combining the recon-
figuration property of an adaptive image sensor with a blur
identification and validation scheme. The aim is to increase
the reconstruction quality of the final output. The sensor grid
is adapted to the local motions depending on the validity of
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Fig. 6. Reconstructed outputs for ambulance.

the linear and uniform motion assumption. In this manner,
the appropriate configuration is applied, and thus the optimal
PSF approximation is employed in SR, improving the recon-
struction of the output. In this paper, it has been demonstrated
through experiments that the proposed system surpasses lim-
its of traditional SR, proving the significance of adapting the
sensor grid to the given motion. Future work includes extend-
ing the reconstruction to nonrigid motions, and investigating
the approximations of PSFs with second order polynomials.
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