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ABSTRACT

The high density pixel sensors of the latest imaging sys-
tems provide images with high resolution, but require long
exposure times, which limit their applicability due to the mo-
tion blur effect. Recent technological advances have lead to
image sensors that can combine in real-time several pixels to-
gether to form a larger pixel. Larger pixels require shorter
exposure times and produce high-frame-rate samples with re-
duced motion blur. This work proposes ways of configuring
such a sensor to maximize the raw information collected from
the environment, and methods to process that information and
enhance the final output. In particular, a super-resolution and
a deconvolution-based approach, for motion deblurring on an
adaptive image sensor, are proposed, compared and evaluated.

Index Terms— motion deblurring, resolution, adaptive
image sensor

1. INTRODUCTION

State-of-the-art imaging systems employ high density pixel
sensors. Due to the small pixel size of such sensors, long ex-
posure times are required for the photodiodes to achieve an
adequate signal to noise ratio [1]. If the camera is shaking
or/and objects are moving in the scene during the integration
of light on the photodiodes, the result is motion blur, i.e. low
temporal resolution. This trade-off between spatial and tem-
poral resolution limits the applicability of such imaging sys-
tems. For the rest of the paper, LR (HR) refers to low (high)
spatial and, thus, high (low) temporal resolution.

Recently, researchers have focused on enhancing resolu-
tion in both time and space. In [2], multiple cameras are used
to capture a fast moving scene with different subpixel and
subframe shifts. The algorithm in [2] treats motion blur in-
dependently of the cause of the temporal change, but requires
a large number of cameras. The large number of cameras in-
troduces additional registration problems, not only due to the
large number of captured images, but also due to the increased
distances between the camera axes, which limits the applica-
bility of the system. In [3], an LR imaging device deblurs the
image captured by the HR device, by obtaining motion infor-
mation for the estimation of the point spread function (PSF).
This approach focuses on capturing a single image and solv-

ing the blur caused by the undesired global motion due to
camera shaking. The proposed system uses either two sepa-
rate image sensors or a sensor with an LR periphery. The first
technique can be extended to deal with the motion of objects,
as motion trajectories can be detected anywhere in the frame.
However, the use of two sensors results in registration-related
problems and an increased size of the device.

Recent advances in imaging technology have produced
sensors no longer subject to the constraint of time and space
invariant pixel size [4, 5]. Elementary pixels can be grouped
together to form a larger pixel where and when necessary.

Inspired by these advances, this work explores how an
adaptive image sensor can be configured, so as to maximize
the raw information collected from the environment. Appro-
priate methods are proposed to further process that informa-
tion and reconstruct a final output of both high temporal and
high spatial resolution. In particular, an adaptive sensor is
used for motion deblurring, based on the configuration of cer-
tain pixels of the sensor to larger sizes to produce high-frame-
rate samples. In summary, the contributions of this paper are:
(i) A deconvolution-based motion-deblurring system is pro-
posed, which employs spatially multiplexed pixels of differ-
ent sizes on the sensor. (ii) A super resolution (SR) motion-
deblurring system is proposed and the effect of motion magni-
tude and corresponding motion blur on the desired pixel size
is explored. (iii) A detailed comparison of the proposed SR-
based and deconvolution-based systems is presented.

2. SR-BASED MOTION DEBLURRING

Let Sh denote the size of the elementary pixel of resolution
HR (i.e. the highest spatial and lowest temporal resolution),
and let m and n be the height and width of an area of the
sensor measured in Sh units. That area may include pixels
larger than Sh and, thus, produce multiple time samples dur-
ing the HR integration. If all pixels, regardless of their size,
are considered as points in the 3-D space, then during the HR
integration m×n such points are produced for an m×n area.
The distribution of these points between time and space is de-
termined by the pixel size. Increasing the pixel size of an area,
decreases the density of these points on the 2-D plane and in-
creases their density along the time axis, as the total number
of points should remain m×n for the given area. Thus, if the
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Fig. 1. SR-based motion-deblurring on an adaptive image sensor.

pixel size of an area Q equals k × k Sh, then k × k LR time
samples are produced for Q during the HR integration.

The proposed SR-based system is shown in Fig. 1. Mo-
tion areas are located on the frame and are configured to larger
pixel sizes forming LR areas, whereas areas with slow motion
or no motion are configured to HR pixels. During HR integra-
tion, a sequence of LR frames with reduced blur is produced
at every LR area. Each LR area is spatially enhanced using SR
to estimate a high resolution frame based on the LR inputs [6].
In [7], we have presented a real-time hardware implementa-
tion of SR on a field-programmable gate array (FPGA).

The Blur Detection block locates areas for LR configura-
tion. If the blur is due to camera shaking, a single LR area
spans the entire sensor. The Motion Estimation block reads
the sequence of LR frames produced at each LR area and re-
turns the motion vectors, i.e. the displacements between each
LR frame and the reference LR frame. These are used by the
SR unit to enhance the spatial resolution. Error values ren-
dered by Motion Estimation [8] are used to weight the contri-
bution of different LR samples. Also, to increase the spatial
information available to the SR block, LR samples before and
after the integration interval of interest contribute in SR with
adjustable weights. Before executing SR on the group of LR
frames, the static background is removed based on the infor-
mation from the motion vectors. The spatial resolution and
the frame-rate of the output are those of the HR sequence,
where the motion blur has been removed in the LR regions.

3. DECONVOLUTION-BASED MOTION
DEBLURRING

An overview of the deconvolution-based system is shown in
Fig. 2(a). Under this framework, a motion PSF needs to be
constructed for every moving object. Then, a deconvolution
is applied separately on each object to produce a deblurred
output for the part of the frame occupied by that object.

In order to achieve deblurring via deconvolution using a
single sensor, a hybrid grid consisting of spatially multiplexed
HR and LR pixels is used. Different sizes of LR pixels can
be configured as shown in Fig. 2(b, c), so that larger LR pix-
els will be formed in areas with larger blur. The time samples
captured by the LR pixels are the inputs to the Motion Estima-
tion block. This block renders a set of 2-D points (one point
per LR sample) belonging to the continuous motion trajecto-
ries of individual features during the HR integration. We refer
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Fig. 2. (a) Deconvolution-based motion-deblurring on an adaptive
image sensor. (b, c) Multiplexed LR and HR pixels of a hybrid grid.

to this discrete subset of the actual motion trajectory by dis-
crete motion set. Neighboring features with similar discrete
motion sets are grouped together and a center of mass is de-
termined on the frame for each group. Voronoi tesselation is
applied on the set of these centers of mass. For each Voronoi
cell a motion PSF is constructed on the HR grid by apply-
ing spline interpolation on the points of the associated dis-
crete motion set and calculating the “energy” along the PSF
as in [3]. Once the PSFs are formed, deconvolution is applied
separately on the HR grid of each cell. The input of each de-
convolution block consists of the raw HR pixels of the hybrid
grid and the interpolated HR information formed at the LR
pixels of the grid. The interpolated HR pixels are computed
by solving a linear system formed by weighting the surround-
ing raw HR pixels and the underlying LR information. For
the cells where no motion exists, the reconstructed output is
the output of this interpolation. The final reconstructed frame
consists of the individual outputs produced for every cell.

As different degrees of blur may exist on the same frame,
at every configuration of the sensor, LR areas of certain pixel
size may be formed on independent motion areas, as in the
SR approach. This is achieved by including in the system
of Fig. 2(a) a Blur Detection block to locate LR areas, as
in Fig. 1. Then, at every HR integration, each LR area is tes-
selated, and different subregions are related to different PSFs.

4. COMPARING THE TWO APPROACHES

Depending on the technical specifications of the sensor itself,
we distinguish two cases: (a) the sensor can be configured in
every HR integration, and (b) a sparser configuration can be
performed, i.e. every N HR frames. The difference between
(a) and (b) lies in the accuracy in locating motion regions that
will be configured to larger pixel sizes to form LR areas.

Ideally, all pixels of the scene belonging to the static back-
ground would be configured on the sensor with HR pixels and
would, therefore, not belong to any LR area. Due to the high
accuracy in locating motion regions, case (a) is closer to that
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Fig. 3. Motion blur decreases the temporal resolution of frames.

ideal situation than case (b). Thus, in (a), LR areas include
only few background pixels and mainly consist of dynamic
parts. For the reconstruction of dynamic parts, the SR ap-
proach is the most effective of the two, due to: (i) In this
approach, the LR samples at the input of the SR block expe-
rience reduced motion blur. Therefore, the blending, between
the moving objects and the static background (Fig. 3(b)), is re-
duced. In the deconvolution approach, the input of the decon-
volution block comprises an HR frame of low temporal reso-
lution where that blending is large for large motions, compli-
cating background extraction compared to the SR approach.
(ii) As blur increases, the size of LR pixels increases to pro-
duce an output with sufficiently reduced blur. Larger LR pix-
els require more LR samples for SR reconstruction [6]. These
can be obtained, as the number of produced samples increases
with the pixel size (Sect. 2), and the SR approach is effective.
In the deconvolution approach, the quality of the HR pixels,
that are interpolated on each LR pixel of the hybrid grid to
produce the input of deconvolution (Sect. 3), degrades as the
LR pixel gets larger. This affects the quality of the output.
Thus, the SR approach is more effective for extensive blur.

In (b), LR areas are not formed as often on motion re-
gions, as the sensor is configured sparsely. Thus, moving ob-
jects are not located as often on the frame and wider LR areas
are created that include moving objects, but also significant
parts of the background. For very sparse configuration, a sin-
gle LR area spans the entire frame. The configuration of LR
areas should allow high-quality reconstruction of both mov-
ing and static parts. If large uniform LR pixels are formed,
as in the SR approach, the quality of the reconstructed static
regions cannot surpass that of interpolation applied on a uni-
form LR grid. If a hybrid grid is formed, 50% of the sensor is
configured to HR pixels. Thus, interpolation is limited on the
LR pixels of the grid and is optimized using the raw HR infor-
mation of the surrounding HR pixels. As configuration gets
sparser, LR areas contain more background pixels, and the
hybrid grid of the deconvolution approach is more suitable.

To conclude, the SR approach is the most suitable for the
reconstruction of moving parts and prevails when, due to fre-
quent configuration, the LR areas mainly consist of non-static
parts. The hybrid grid of the deconvolution method allows ef-
fective reconstruction of static parts and is suitable for sparse
configuration, where LR areas also include large static parts.
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Fig. 4. (a) Ground-truth frame. (b) Blurred output for HR spatial
resolution. (c) Bicubic interpolation of reference LR frame. (d) Out-
put of deconvolution-based motion deblurring. (e, f) Output of SR-
based deblurring after 10 (e) and 30 (f) iterations of the algorithm.

5. PERFORMANCE EVALUATION

In both approaches, Motion Estimation is implemented using
Lucas-Kanade optical flow [8] and Shi-Tomasi good feature
extraction [9]. Iterative Back Projection [6] is employed for
SR, and Lucy-Richardson deconvolution is implemented.

The methods are evaluated on junction and ice-skating
(Fig. 3), with HR frame size 480 × 640. The moving objects
are isolated from the background, to exclude errors associated
with the background extraction method from the evaluation
process. The LR sequences were synthetically produced by
applying temporal and spatial blur on a dense sequence Sd

which acts as the real-world scene. The time blur of a sen-
sor with HR pixels spans, in both experiments, 144 frames of
Sd (Fig. 4(b), 5(b)). In the first experiment, the two methods
are compared. In the second experiment, the SR approach,
which is the most suitable for extensive blur (Sect. 4), is used
to deblur a frame containing different motion magnitudes.

Due to space limitation, for the reconstruction of dy-
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Fig. 5. (a) Ground-truth frame. (b) Blurred output for HR spatial
resolution. (c) Bicubic interpolation of reference LR frame. (d) Out-
put of SR-based deblurring after 30 iterations of the SR algorithm.

namic parts we only display qualitative results, which clearly
demonstrate the sharpness achieved after motion deblurring.

The junction sequence includes three moving objects with
similar blur. The LR sequence was generated by applying a
temporal blur of 36 frames and a spatial blur of 2 × 2 on Sd.

To apply the two approaches, all motion areas are config-
ured to LR pixels of size 2×2 HR for the SR approach, and to
the grid of Fig. 2(a) for the deconvolution approach. In the SR
approach, two LR frames at each side of the integration inter-
val are used for additional robustness. Figures 4(d-f) show the
reconstruction of foreground objects by the two approaches,
and the detail images demonstrate the higher sharpness of the
reconstructed outputs compared to Figures 4(b, c).

If the configurations described in the previous paragraph
are applied on the entire sensor, the static background also
needs to be reconstructed on the HR grid. Considering the
background of Fig. 3(a) without the presence of foreground
objects, the root mean square error between the reconstructed
and the ground-truth background is: (i) 4.6 after spatially en-
hancing the hybrid grid of the deconvolution approach and
(ii) 6.9 after applying bicubic interpolation on the uniform
large pixels of the SR approach.

In ice-skating, moving objects with different blur are ac-
quainted. Clock-wise from left (Fig. 3(b)), these are: Susan,
Amy, Jack. The corresponding LR sequences were created in-
dependently, by applying on Sd a temporal blur of 36, 9 and
16 and a spatial blur of 2 × 2, 4 × 4 and 3 × 3, respectively.

Three motion areas are formed in the SR approach, with

LR pixel size 2× 2, 4× 4 and 3× 3 HR, producing 4, 16 and
9 time samples during HR integration. As the LR pixel size
increases with the local motion magnitude, SR reconstruc-
tion (Fig. 5(d)) outperforms bicubic interpolation (Fig. 5(c))
and successfully handles large degrees of blur.

6. CONCLUSION

In this paper, we propose two methods of configuring an adap-
tive image sensor to maximize the information collected from
the environment. For each configuration, an appropriate sys-
tem is developed to process that raw information and enhance
the output. Specifically, an SR and a deconvolution-based ap-
proach, that execute motion deblurring on an adaptive sensor,
are proposed, compared and evaluated. Results demonstrate
that the SR method performs better in dynamic regions and
is, thus, preferable when the sensor can be frequently config-
ured and motion areas are accurately located. Moreover, this
method effectively manages large blur by increasing the LR
pixel size. Experiments show that the deconvolution approach
achieves better reconstruction of static regions and is suitable
for sparse configuration, as large static parts are included in
LR areas. Future work includes evaluating errors associated
with the extraction of foreground objects from the static back-
ground and extending the methods to non-rigid objects.
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