
A Comparison of 2-D Discrete Wavelet Transform
Computation Schedules on FPGAs

Maria Angelopoulou1, Konstantinos Masselos1, Peter Cheung1, Yiannis Andreopoulos2

1Department of Electrical and Electronic Engineering, Imperial College London
Exhibition Road, London SW7 2BT, UK

{m.angelopoulou, k.masselos, p.cheung}@imperial.ac.uk
2Department of Electrical Engineering, University of California Los Angeles

54-147 Eng. IV Building, 420 Westwood Plaza, Los Angeles, CA 90095-1594, USA
yandreop@ee.ucla.edu

Abstract— When it comes to the computation of the 2-D
Discrete Wavelet Transform (DWT), three major computation
schedules have been proposed, namely the row-column, the
line-based and the block-based. In this work, the lifting-based
designs of these schedules are implemented on FPGA-based
platforms to execute the forward 2-D DWT, and their comparison
is presented. Our implementations are optimized in terms of
throughput and memory requirements, in accordance with the
specifications of each one of the three computation schedules and
the lifting decomposition. All implementations are parameterized
with respect to the image size and the number of decomposition
levels. Experimental results prove that the suitability of each
implementation for a particular application depends on the given
specifications, concerning the throughput and the hardware cost.

I. INTRODUCTION

The two-dimensional Discrete Wavelet Transform (DWT) is

a key operation in image processing, and is the kernel of both

the JPEG-2000 still image compression standard [1] and the

MPEG-4 still texture decoding standard [2]. The 2-D DWT is

carried out by applying the 1-D DWT in both the horizontal

and the vertical direction of the image. As shown in Fig. 1,

each unit that executes the 1-D DWT produces two sets of

coefficients: a low-frequency and a high-frequency set. The

outputs of a horizontal filtering stage are vertically filtered to

produce the 2-D subbands LL, LH , HL and HH . All LH ,

HL and HH coefficients are stored, to contribute later in the

reconstruction of the original image from the LL set. The LL
coefficients will either be the input of the horizontal filtering

stage of the next level, if there is one, or will be stored as

well, if the current level is also the last one.

The traditional convolution-based 1-D DWT [3] imposed

high computational complexity. The lifting scheme ([4], [5])

overcomes this problem by factorizing the polyphase matrix

of the DWT into elementary matrices.

For the implementation of the 2-D DWT, several computa-

tion schedules have been proposed. In practical designs, the

most commonly used computation schedules are: the row-
column (RC) [3], the line-based (LB) [6] and the block-based
(BB) [7]. The simplest of these is RC, which adopts the

level-by-level logic of Fig. 1. However, such an approach

necessitates the use of large memory blocks, distant from

the computational units, as the only source of the filter’s

horizontal filtering stage

vertical filtering stage

h.f. :
v.f. :

H0

L0

HH1

HL1

LH1

LL1

HH2

HL2

LH2

LL2

H2

L2

HH3

HL3
LH3

LL3

IN
(LL0)

H1

L1

level 0 level 1 level 2

unit that implements the forward 1D-DWT

...

h.f. h.f. h.f.v.f. v.f. v.f.

Fig. 1. The 2-D DWT decomposition.

inputs. Contrary to RC, both LB and BB involve an on-chip

memory structure that operates as a cache for the original

image, minimizing the accesses of the large memory blocks.

Thus, memory utilization and memory-access locality are

improved. The main difference among LB and BB concerns

the way the original image is traversed. Specifically, in LB,

non-overlapping groups of lines are processed, whereas, BB

operates using non-overlapping blocks of the image.

In [8], [9] and [10] 2-D DWT computation schedules

have been compared on a theoretical basis. In [11] and

[12], they are compared on programmable architectures

and on a VLIW DSP, respectively. Even though the

above comparisons are particularly enlightening, none

of them is based upon hardware implementations. Thus,

the implementations involved do not take advantage of

the implementation efficiency and the parallelism in data

processing that hardware could offer. In addition, the vast

majority of comparisons of the different alternatives focuses

on convolution-based realizations and lifting is not considered.

Contribution of this paper—In this paper, the three

major 2-D DWT lifting-based computation schedules are

implemented on FPGA-based platforms and compared in

terms of performance and area. The computation schedules

are compared for different image sizes (M*M) and number

of levels (L) of the transform. To the best of our knowledge

no comparisons of detailed hardware implementations of

FPT 20061810-7803-9729-0/06/$20.00 2006 IEEE

register without write enable input

we
neg

neg unit that gives negative value of input
HP

pipeline

r1 r2 r3

filter input
r6

>>1

>>2

in
iti

al
iz

at
io

n_
si

gn
al

w
e_

N
or

m
al

M
od

e

r4 r5

m1

m2

+ 2

LP

register with write enable input

Fig. 2. Hardware implementation of the 5/3 lifting filter, designed
to perform the 1-D DWT.

the three major 2D-DWT computation schedules exist in

literature. This comparison will give significant insight on

which schedule is most suitable for given values of the

relevant algorithmic parameters.

Structure of this paper—Section II presents decisions

we made that are, for comparison reasons, common in all our

FPGA implementations. Sections III, IV and V describe how

we implemented RC, LB and BB, respectively. In section VI

we discuss the results of the three FPGA implementations.

Finally, section VII offers our conclusions.

II. COMMON IMPLEMENTATION DECISIONS AND

ASSUMPTIONS

The comparison of the main 2-D DWT computation sched-

ules is performed on the basis of some common implementa-

tion decisions and assumptions. These are concerned with the

memory block that stores the image (image memory) and the

filtering structure used to compute the DWT.

A. Image memory

In this comparison, a single-port image memory is consid-

ered. The image memory is usually off-chip.

Traditionally, two memory blocks are used in image-

processing systems: one to store the original image, and one

t

2

21

210

101

012

234

456

initialization

finalization

normal mode

LP[0], HP[0]

LP[1], HP[1]

LP[2], HP[2]

LP[3], HP[3]

new samples in the FIFO, coming directly from the filter's input

samples already in the FIFO

new samples in the FIFO, coming from r6

012

234

676
46 5

3

5

7

new content of r6 that will be written in the FIFO at the next
clock cycle

Fig. 3. The contents of the FIFO in respect to time for the filtering
of an 8-pixel line.

for the outputs. To avoid the second block, we used the in-

place mapping scheme: the filter’s outputs are written over

memory contents that are already consumed and no longer

needed. To adopt this scheme, each memory location should

have the same bit-width as the outputs of the transform.

B. Filter implementation

A single filter is used in all three implementations, in-

troducing the minimum hardware cost. That is, the same

single filter is shared among all levels and also among the

vertical and the horizontal filtering stages within each level.

The choice of using a single filter is mostly appropriate for an

RC architecture that uses a single-port RAM.

We used a 5/3 lifting filter [5], as it involves less com-

putational load than FIR or 9/7 lifting filters [4]. The lifting

equations of this filter are the following :

HP [2n + 1] = X[2n + 1] − �X[2n] + X[2n + 2]
2

� (1)

LP [2n] = X[2n] + �HP [2n − 1] + HP [2n + 1] + 2
4

� (2)

where X are the signal samples, HP is the high-frequency

output coefficient, LP is the low-frequency output coefficient,

and �.� represents the floor operator. The floor operator ensures

an integer-to-integer lossless transform.

In the hardware implementation of the filter, a three-word

FIFO will store inputs X[2n + 1], X[2n], X[2n + 2], and

a register will store HP [2n − 1], which was calculated in

the previous lifting step. According to the above equations, in

order for a new pair of output coefficients to be computed, two

(and not one) new filter inputs are needed. Thus, a filtering

operation will take place, and a pair of output coefficients will

be produced, every two cycles.

Our hardware implementation of the 5/3 lifting filter is

shown in Fig. 2. Registers r1, r2 and r3 constitute the FIFO.

Observing Fig. 3, one concludes that the filter’s behavior is

182

neg

r1 r2 r3

>>1

in
iti

al
iz

at
io

n_
2n

d_
st

ep

(a

ct
iv

e
lo

w
 s

ig
na

l)
w

e

r4 r5

mb mc

...

m4

...

ma

...

...

Fig. 4. This filter derives from that of Fig. 2, by applying a few
changes (the shaded areas), to incorporate a multiple-input function.
The lower part is not shown, as it remains the same.

determined according to whether the initialization phase is

over. Thus, the filter might behave in one of the two following

ways:

1) The initialization mode, where the data flows in the

FIFO with a step of one. During the initialization phase,

two samples are mirrored around the first sample, and

a simple shifting takes place in the FIFO, as shown in

Fig. 3.

2) The normal mode, where the data flows with a step of

two. After the initialization phase has been over, the

FIFO is written every two clock cycles and a filtering

operation is executed every second cycle. Thus, the

pattern shown in Fig. 3 is achieved. The same pattern

applies for the finalization mode, but the source of r1’s

input is now the FIFO itself, eliminating the need to

access memory during this step.

In RC, only one input enters the filter per cycle, since

the single-port image memory is the only source of input

coefficients. Thus, for RC, the filter of Fig. 2 is ideal as it

is. On the contrary, as we will see in the following sections,

both LB and BB involve multi-port on-chip buffers, that can

supply the filter with more than one inputs per cycle. In order

to make the best possible use of the parallelism offered, we

made a few small changes to the filter of Fig. 2, to incorporate

a multiple-input function (Fig. 4). Now, two or three inputs

can be inserted in the filter at a single cycle. However, during

the horizontal filtering at level 0, the samples will be drown

from the single-port memory, just like in the case of RC. Thus,

during the horizontal filtering at level 0, the new filter behaves

in a single-input mode, apart from the multiple-input mode in

which it functions in any other case.

III. ROW-COLUMN IMPLEMENTATION

The RC is implemented by applying the forward 1-D DWT

in both the horizontal and the vertical direction of the image,

for a chosen number of levels, in the way shown in Fig. 1.

horizontal filtering

rst=0?

j=0
r=0
c=0

T F

rising_edge(clk)? F

T

r=M-step?

r=0
c=0

T
F

r =r+step

vertical filtering

c=M-step?
F T

c=c+step j=L-1?
T

F

j=j+1
r=0
c=0TERMINATE

step = 2j

Fig. 5. Flowchart of the RC algorithm as implemented (r/c = current
row/column, j = current level).

din
dout

we
addr

IMAGE MEMORY FILTER

LP

HP

din

finaliz_value

FSM we_Img_Mem
addr_Img_Mem

mux_ctrl

we_NormalMode
init_sig

we_NormalMode
init_sig

finaliz_sig

Fig. 6. Block diagram of the RC architecture.

Specifically, in any given level, in order to proceed to the

vertical filtering, of the current level’s LL image block, the

horizontal filtering should have been completed. In addition,

in order to proceed to the next level, the filtering at the

previous level should have finished. Figures 5 and 6 present

the flowchart and the block-diagram of RC, as implemented.

The RC architecture is the one with the simplest control

path. The parallelism achieved during the filtering operations

depends on the number of ports of the image memory. Its

major disadvantage is the lack of locality, due to the use of

large memory blocks, distant from the computational units.

This decreases the performance.

IV. LINE-BASED IMPLEMENTATION

The flowchart of LB, as implemented, is presented in Fig. 7.

The LB uses on-chip buffers (Fig. 8, Fig. 9), to store coeffi-

cients of intermediate levels which will be used at subsequent

levels. This improves the memory-access locality compared to

RC, and improves, hence, the performance. Moreover, contrary

to RC, where the single-port image memory imposes a serial

183

Vertical filtering at level j in normal mode.
LLj+1 coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

Horizontal filtering at level (j+1).
Output coefficients stored on chip.

COUNT(j)=COUNT(j)+2

Horizontal filtering of r.
Outputs stored on chip.

r=r+1

Vertical filtering at level j in initialization mode.
LLj+1coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

j=L-1?

NO

Horizontal filtering at (j+1).
Outputs stored on chip.
COUNT(j)=COUNT(j)+1

COUNT(j)=?1

j= 0

23

4

COUNT(j)=0.

COUNT(j)=0.

Vertical filtering at level j in normal mode.
All outputs stored in image memory.

r=M-1?

j = 0

COUNT(0) = 0

rst=0?

j=0, r=0
COUNT(j)=0 (j=0,1,...,L-2)

T F

Horizontal filtering of image's last row.
Output coefficients stored on chip.

Vertical filtering at level j in finalization mode.
LLj+1 coefficients stored on chip.

LHj+1, HLj+1 and HHj+1 stored in image memory.

j=L-1?

Vertical filtering at level j in normal mode.
All outputs stored in image memory.

FT

T

F

j = j+1

TERMINATE

ve
rt

ic
al

 fi
na

liz
at

io
n

TF

Horizontal filtering at j.
Output coefficients stored on chip.

rising_edge(clk)?
F

T

r=3?

Horizontal filtering of row r.
Outputs stored on chip.

r=r+1

T F

Horizontal filtering of r.
Outputs stored on chip.

r=r+1

j = 0

j= j+1

j= j+1

Fig. 7. Flowchart of the LB algorithm as implemented (r = current
row, j = current level).

buf1(j)

buf2(j)

C(j)

M/2j

R(j)

Fig. 8. On-chip line buffers of level j, used in LB.

nature to the filtering operations, these buffers may be multi-

port to increase parallelism.

A group of lines is processed up to the final level, and a

filter’s output is stored in image memory only if it will be

used as it is during reconstruction and never again during

decomposition. Thus, LH , HL and HH coefficients are

stored after the vertical filtering at any level, whereas the LL
coefficients are stored only at the last level (Fig. 7).

After the completion of a vertical filtering at level j−1, the

resulting LLj coefficients are written in R(j). Buffer R(j) will

then be horizontally filtered and the resulting coefficients will

be written, depending on the current stage of level j’s vertical

filtering, in one of the following: C(j), R(j) (implementing

the in-place mapping scheme) or buf1(j) (only during the

din

dout

we
addr

IMAGE
MEMORY

FILTER

LP
HP

r1_content

FSM

R(0)

R(1)

R(2)...

C(0)

C(1)

C(2)...
buf1(0)

buf1(1)

buf1(2)...

buf2(0)

buf2(1)

buf2(2)...

...
...

Fig. 9. Block diagram of the LB architecture.

initialization phase of the vertical filtering at level j, when

buf1(j) is still empty).

Using the still empty buf1(j) during vertical initialization,

we eliminate the extra line buffer that would store the extra

information needed for the initialization mirroring to occur.

When initialization is over, that is during the normal-mode

vertical filtering, the value of the FIFO’s first register (r1) and

the high-frequency output of the current lifting step, are stored

in buf1(j) and buf2(j), respectively. Thus, the coefficients of

the preceding lifting step are retrieved at the current step from

buf1(j) and buf2(j). In this way, a continuity in the vertical

filtering of each column is created, since in LB the vertical

filtering, contrary to the horizontal filtering, is not inherently

continuous. During vertical finalization, the values of buf1(j)

is also the samples that are mirrored.

The filter used in LB, is that of Fig. 4, which incorporates a

multiple-input mode to take advantage of the multi-port nature

of the on-chip RAMs. Fig. 10 depicts how the normal-mode

vertical filtering of each column is executed, and shows the

multi-port filter’s behavior.

V. BLOCK-BASED IMPLEMENTATION

The BB is implemented bringing on chip blocks of the

original image. Traditionally, the size of these blocks is equal

to 2L ∗ 2L, to allow the generation of either an LLL/LHL

or an HLL/HHL pair, L denoting the final level. Thus, an

on-chip memory of equal size should be used, where blocks

are temporally stored. This memory is known as Inter-Pass

Memory(IPM). The RC algorithm is then applied on the block,

up to the last level, the decomposition of the block is written

back to image memory, and the next block is brought on chip.

The traditional version of BB demands complicated control

and addressing, is not effective in streaming applications

and imposes high memory requirements (for six levels of

184

buf1(j)

C(j)

R(j)

Lj(0)

Lj(0)

Lj(0)

Hj(0)

Hj(0)

Hj(0)

Lj(1)

Lj(1)

Lj(1)

Hj(1)

Hj(1)

Hj(1)

Lj(M/2j+1-1) H j(M/2j+1-1)

Lj(M/2j+1-1)

Lj(M/2j+1-1)

Hj(M/2j+1-1)

Hj(M/2j+1-1)

 0col # : 1 2 3 M/2 j-2 M/2 j-1

...

...

...

...

LLj+1(0),
LHj+1(0)

HLj+1(0),
HHj+1(0)

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

LLj+1(M/2j+1-1),
LHj+1(M/2j+1-1)

... HLj+1(M/2j+1-1),
HHj+1(M/2j+1-1)

R(j+1) LLj+1(0) LLj+1(M/2j+1-1)...LLj+1(1)

Lj(0) H j(0) L j(1) H j(1) L j(M/2j+1-1) H j(M/2j+1-1)buf2(j) ...

r1 r2 r3

R(j) C(j) buf1(j)
m4

buf2(j)

Fig. 10. Vertical filtering in normal mode in an LB architecture.
Three inputs are loaded in parallel into the FIFO, while buf2(j) passes
through multiplexer m4 of the filter.

decomposition the size of the IPM would be 4096 words).

The BB version that we implemented is the one that requires

the minimum local buffering and simplifies the most the

control and the addressing. Each level has its own IPM, where

coefficients LL are stored to be filtered horizontally. The size

of IPM(j) is such that allows the generation of an Lj/Hj pair

at level j. As we have seen, for a new Lj/Hj pair to be

generated, two new input coefficients should enter the filter.

Thus, the size of IPM(j), where j = 1, 2, ..., L − 1, will be

only 2 words. No IPM is needed for level 0, as the filter’s

inputs come straight from image memory.

In the previous section, we saw that the vertical filtering

is not inherently continuous in LB. In order for the vertical

filtering to be executed correctly, line-buffers buf1(j) and

buf2(j) were used. In BB, the horizontal - and not only the

vertical - filtering is deprived of inherent continuity. Therefore,

apart from the use of buf1(j) and buf2(j) in vertical filtering,

in exactly the same way as in LB, a two-word register,

bufH(j), will be needed to store the two intermediate results of

horizontal filtering. As we have seen, buf1(j) will also be used

to implement the initialization mirroring without additional

hardware cost, storing the mirroring samples. In the same

manner, the still empty bufH(j)(0) will be used to store the

horizontal mirroring sample.

An Lj/Hj pair, produced after the horizontal filtering of

IPM(j), is either stored in a line-buffer (for the odd rows of

level j) or consumed at once (for the even rows of level j) to

produce either an LLj+1/LHj+1 or an HLj+1/HHj+1 pair

(Fig. 11). Hence, in the case of even rows, a vertical filtering

action is undertaken after the generation of every Lj/Hj pair,

and no supplementary line-buffer is needed. On the contrary,

in Fig. 10, in the even rows of vertical filtering, a whole row

of Lj and Hj coefficients had to be written in R(j), so that

continuous horizontal filtering would be applied on it. Only

buf1(j)

linebuf(j) Lj(0)

Lj(0)

Hj(0)

Hj(0)

Lj(1)

Lj(1)

Hj(1)

Hj(1)

 0col # : 1 2 3

...

...

...

LLj+1(0),
LHj+1(0)

HLj+1(0),
HHj+1(0)

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

...

bufH(j+1)(0)LLj+1(0) LLj+1(1)

Lj(0) H j(0) L j(1) H j(1)buf2(j) ...

Lj(2)

Hj(2)

Hj(2)

4

Lj(2) H j(2)

Lj(2)

5

LLj+1(1),
LHj+1(1)

HLj+1(1),
HHj+1(1)

LLj+1(2) IPM(j+1)

Lj(0) H j(0) L j(1) H j(1) L j(2) H j(2)

Lj+1(0) ...

*

**
buf1(j+1)

*

**

r1 r2 r3

linebuf(j) buf1(j) Lj(0)/ H j(0)
m4

buf2(j)

r1 r2 r3
1st step of
initialization

2nd step of
initialization

bufH(j+1)(0) IPM(j+1)(0) IPM(j+1)(1)

r1 r2 r3

bufH(j+1)(0)IPM(j+1)(0)IPM(j+1)(1)

...

Lj(M/2j+1-1) Hj(M/2j+1-1)

Lj(M/2j+1-1)

Lj(M/2j+1-1)

Hj(M/2j+1-1)

Hj(M/2j+1-1)

M/2j-2 M/2 j-1

Fig. 11. The normal-mode vertical filtering at level j, in BB, is
followed by initialization-mode horizontal filtering at level j + 1.
Being at the beginning of the vertical initialization stage at level
j + 1, Lj+1 is written in buf1(j+1).

after the completion of the horizontal filtering of the even row

of level j, the vertical filtering would begin.

The block diagram of the BB architecture is shown in

Fig. 12. The on-chip memory needed for level j is illustrated

in Fig. 13. The control logic, implemented with the FSM, is

a lot more complicated in the case of BB, compared to that

of LB. Mainly, it differs from the control logic presented in

Fig. 7 in the following:

1) Successive columns of Lj and Hj coefficients are no

longer filtered vertically in a successive manner. After

a vertical filtering of an even column occurs, if the

current level is not the final one, LLj+1 is either written

in bufH(j+1) or in IPM(j+1), depending on the current

stage of horizontal filtering at level j+1. A single step of

horizontal filtering at level j + 1 may occur (depending

on the horizontal filtering stage) interrupting the vertical

filtering of level j.

2) The horizontal filtering is no longer continuous. After a

discrete step of horizontal filtering at level j+1, it should

be decided if a vertical filtering at level j +1 can occur.

If it does occur, a single step of horizontal filtering

at level j + 2 might follow, and so on. This domino

effect in the worst case reaches the final level, imposing

highly frequent interchanges between successive levels,

that complicate the control logic.

As in LB, the filter used in BB should make full use of the

parallelism multi-port buffers offer. Thus, the version of Fig. 4

185

FILTER

LP
HP

r1_content

FSM

linebuf(0)

linebuf(1)

linebuf(2)...

buf1(0)

buf1(1)

buf1(2)...

buf2(0)

buf2(1)

buf2(2)

...

...
...

IPM(1)

...
...din

dout

we
addr

IMAGE
MEMORY

IPM(2)

bufH(0)

bufH(1)

bufH(2)

Fig. 12. Block diagram of the BB architecture.

buf1(j)

buf2(j)

linebuf(j)

M/2j

IPM(j)

bufH(j)

2

Fig. 13. On-chip memory of level j, used in BB.

is used, so that the filter operates in a single-input mode during

the horizontal filtering at level 0 and functions in a multiple-

input mode in any other case.

VI. RESULTS AND COMPARISONS

The architectures were implemented in VHDL, synthesized

with Synplify Pro 7.7, and placed and routed on Xilinx Virtex

4 XC4VLX15 FPGA, using Xilinx ISE v.8.1. In all the

implementations, the image memory shares the same clock

with the rest of the system. This simplification renders our

comparison as generic as possible, since the image memory is

sometimes on-chip (e.g. in large FPGA devices). Under this

assumption, it should be noted that the computation schedules

with larger traffic towards the image memory are favored, and

no interface circuit is needed.

A. Throughput

The RC, the LB and the BB operate on the XC4VLX15

device at 172.4, 113.6 and 117.6 MHz respectively. The three

schemes have similar data paths. However, the frequency

varies because the critical path lies in the control path.

The LB obtains the highest throughput among the three.

This is due to the small number of cycles it requires to

complete the 2-D DWT; it starts from 150,024 (M=256, L=3),

and reaches 2,374,740 cycles (M=1024, L=6). The throughput

of LB reaches 757 frames/sec (M=256, L=3) and drops at 47

frames/sec (M=1024, L=6).

256,3 256,4 256,5 256,6 512,3 512,4 512,5 512,6 1024,3 1024,4 1024,5 1024,6
0

100

200

300

400

500

600

700

800

M, L

fr
am

es
/s

ec

Throughput

RC

LB

BB

Fig. 14. Throughput results.

There is no great difference between the number of cycles

needed for RC and BB. Specifically, RC needs 347,651-

5,607,174, while BB requires 354,827-5,767,246 clock cycles.

However, the higher frequency in which RC operates, im-

proves the throughput, resulting in the difference observed in

Fig. 14. If the image memory operates in a smaller frequency

than the rest of the system, BB will outperform RC.

The larger number of cycles in RC, compared to LB, is due

to the fact that a single-port memory is used as the only source

of inputs for RC. Thus, inputs enter the filter in a serial manner

and no parallelism is involved in the filtering operations. On

the contrary, in LB and BB, two or three inputs might enter

the filter in parallel. Also, in RC the filter’s output pair cannot

be written in image memory in a single cycle; one of the

outputs should be buffered to be written at the next cycle. The

results that we got prove that using multi-port buffers, even

with a single filter, halves the number of cycles for the LB

architecture. But this is not the case for the BB, even if multi-

port buffers are also used to increase memory-access locality.

This is due to the streaming nature of the operations taking part

in LB, which is no longer the case for BB. Thanks to that,

in LB at many points the next action is predetermined, for

example the horizontal filtering is continuous and successive

columns are successively filtered. As a result, many low level

actions can occur in parallel, as it is pre-decided that they

wouldn’t affect each other. Things are different for BB, since

the control is deprived of such a streaming behavior and many

options should be considered at a specific point, instead of

following a predetermined route. As a result, in the case of

BB, the number of cycles is increased, compared to LB.

B. FPGA slices

The FPGA slices used in RC are much fewer than in LB

and BB (Fig. 15). This is due to the simplicity of the control

associated with the RC algorithm. The number of slices for

RC covers a range from 280 (M=256, L=3) up to 329 slices

(M=1024, L=6). For LB and BB this range is 2659-3001 and

2646-3597 slices, respectively.

186

3,256 3,512 3,1024 4,256 4,512 4,1024 5,256 5,512 5,1024 6,256 6,512 6,1024
0

500

1000

1500

2000

2500

3000

3500

L, M

of

 s
lic

es

Number of FPGA slices

RC
BB
LB

Fig. 15. Number of FPGA slices.

C. Memory issues

The RC does not involve any on-chip buffers, contrary to LB

and BB. Thus, in RC the image memory is the only source of

inputs for the filter. As a result, the number of image memory

accesses is significantly larger in the RC case (Fig. 16). In the

cases of LB and BB this number is the same, and does not

vary when the number of levels varies, as it is, in both cases,

equal to 2 ∗ M2.

In LB and BB, the on-chip local memory of each level is

accommodated in BRAMs (Fig. 17), generated by the Xilinx

ISE Coregenerator, and registers. The bit-width used is 16 bits.

The Virtex-4 BRAMs used are 18 K dual-port BRAMs.

To obtain maximum throughput, the buffers of the same

type and of different levels can be grouped together in a single

BRAM, if the space provided is enough. This way, during the

vertical filtering of successive columns, R(j), C(j), buf1(j) and

buf2(j) can feed the filter simultaneously. At the same time,

locations of buf1(j) and buf2(j), that have already been read,

are overwritten with the new intermediate results, to be read at

the next lifting step. Moreover, R(j) can be read while R(j+1)

is written with the output of a previous column’s vertical

filtering. Therefore, four dual-port BRAMs should be used in

the cases of image sizes 256 and 512. Four additional dual-

port BRAMs will be needed for size 1024, to accommodate

the larger buffers of level 0. The number of BRAMs remains

the same for 3, 4, 5 and 6 levels, to guarantee high throughput

and enough space for the larger buffers of the lower levels.

In BB, buffers IPM and bufH of each level are implemented

as two-word registers. Contrary to LB, the vertical filtering

of successive columns is no longer successive. Thus, the

constraints that guarantee maximum throughput are not so

strict for BB. During vertical filtering, three filter inputs should

be read simultaneously, thus, at least two dual-port BRAMs

should be used. To provide enough memory space, 2, 3 and 6

BRAMs should be used for image sizes 256, 512 and 1024,

respectively. These choices, which also respect the minimum

of two BRAMs, remain the same for 3, 4, 5 and 6 levels,

256,3 256,4 256,5 256,6 512,3 512,4 512,5 512,6 1024,3 1024,4 1024,5 1024,6
0

1

2

3

4

5

6
x 10

6

M, L

of

 m
em

or
y

ac
ce

ss
es

Number of Image Memory Accessesx106

LB
BB
RC

Fig. 16. Total number of all accesses (contains both read and write
accesses) of the image memory.

256 512 1024
0

1

2

3

4

5

6

7

8

M

of

 B
R

A
M

s

Number of FPGA block RAMs

LB

BB

Fig. 17. Number of BRAMs.

since the larger buffers of the lower levels are the ones that

determine the memory space needed.

VII. CONCLUSION

The three major 2-D DWT lifting-based computation sched-

ules have been compared in terms of throughput, area and

memory requirements on the Virtex-4 FPGA family. The

conclusions of this work are the following. The LB has the

highest throughput among the three schedules. The BB has the

lowest throughput, due to control complexity, as well as to the

frequency in which it operates, which is not as high as in the

RC case. The RC has by far the lowest hardware cost. Not only

it involves no on-chip buffering, but also the FPGA slices used

are significantly fewer than in the cases of the other two. The

LB and the BB offer similar memory-access locality, higher

than RC, minimizing the number of image memory accesses,

compared to RC. However, BB achieves this by using a smaller

number of BRAMs.

Future work would involve extending the current compar-

ative analysis by broadening the range of the comparison

parameters. For instance, using dual-port image memory and

more filters would be considered.

187

REFERENCES

[1] ISO/IEC FCD15444-1: 2000, “JPEG 2000 image coding system,” May
2000.

[2] ISO/IEC JTC1/SC29/WG11, FCD 14496-1, “Coding of moving pictures
and audio,” May 1998.

[3] S. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. PAMI, vol. 2, no. 7, pp. 674–693,
1989.

[4] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting schemes,” J. Fourier Anal. Appl., vol. 4, pp. 247–269, 1998.

[5] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for
lifting-based forward and inverse wavelet transform,” IEEE Trans. Signal
Processing, vol. 50, 2002.

[6] C. Chrysafis and A. Ortega, “Line-based, reduced memory, wavelet
image compression,” IEEE Trans. Image Process., vol. 9, no. 3, pp.
378–389, March 2000.

[7] G. Lafruit, L. Nachtergaele, J. Bormans, M. Engels, and I. Bolsens,
“Optimal Memory Organization for Scalable Texture Codecs in MPEG-
4,” IEEE Trans. Circuits Syst. Video Technol., vol. 9, no. 2, 1999.

[8] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, Y. Andreopou-
los, and C. E. Goutis, “Evaluation of design alternatives for the 2-D-
discrete wavelet transform,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, pp. 1246–1262, December 2001.

[9] M. Weeks and M. Bayoumi, “Discrete Wavelet Transform: Architec-
tures, Design and Performance Issues,” J. VLSI Signal Process., vol. 35,
2003.

[10] C. Chakrabarti, M. Vishwanath, and R. M. Owens, “Architectures for
wavelet transforms: A survey,” J. VLSI Signal Process., vol. 14, pp.
171–192, 1996.

[11] Y. Andreopoulos, P. Schelkens, G. Lafruit, K. Masselos, and J. Cornelis,
“High-level cache modeling for 2-D discrete wavelet transform imple-
mentations,” VLSI Signal Processing (special issue on Signal Processing
Systems), vol. 34, no. 3, pp. 209–226, July 2003.

[12] K. Masselos, Y. Andreopoulos, and T. Stouraitis, “Performance com-
parison of two-dimensional discrete wavelet transform computation
schedules on a VLIW digital signal processor,” IEE Proc. Vision,
Image and Signal Process., to appear, preprint available from:
www.ee.ucla.edu/ yandreop.

188

