
FPGA-Based Real-Time Super-Resolution on an
Adaptive Image Sensor

Maria E. Angelopoulou, Christos-Savvas Bouganis, Peter Y. K. Cheung,
and George A. Constantinides

Department of Electrical and Electronic Engineering, Imperial College London,
Exhibition Road, London SW7 2BT, UK

{m.angelopoulou,christos-savvas.bouganis,p.cheung,
g.constantinides}@imperial.ac.uk

Abstract. Recent technological advances in imaging industry have lead to the
production of imaging systems with high density pixel sensors. However, their
long exposure times limit their applications to static images due to the motion
blur effect. This work presents a system that reduces the motion blurring using
a time-variant image sensor. This sensor can combine several pixels together to
form a larger pixel when it is necessary. Larger pixels require shorter exposure
times and produce high frame-rate samples with reduced motion blur. An FPGA
is employed to enhance the spatial resolution of these samples employing Super
Resolution (SR) techniques in real-time. This work focuses on the spatial reso-
lution enhancement block and presents an FPGA implementation of the Iterative
Back Projection (IBP) SR algorithm. The proposed architecture achieves 25 fps
for VGA input and can serve as a general purpose real-time resolution enhance-
ment system.

1 Introduction

Every imaging system is based on an image sensor, a 2-D array of pixels that convert
incident light to an array of electrical signals (Fig. 1(a)) [1]. Two types of resolution
determine the quality of information collected by the sensor: the spatial and the tempo-
ral resolution. The spatial resolution depends on the spatial density of the photodiodes
and their induced blur. The most intuitive solution to increase the spatial resolution
corresponding to the same field of view would be reducing the pixel size, hence in-
creasing the pixel density. However, the smaller the photodiodes become, the smaller
is the amount of incident light and, therefore, a longer integration time is required for
each photodiode to achieve an adequate signal to noise ratio [1, 2].

In the case of no relative motion between the camera and the scene, the reduction in
the amount of light can be compensated by increasing the exposure time of the pixels,
i.e. increasing the integration time of the photodiodes. However, in real-life systems ei-
ther the camera is shaking or/and objects are moving in the scene during the integration
time. In this case, the integration time spans a large number of real-world ‘frames’, and
the output suffers from motion blur, thus reducing the temporal resolution. In Fig. 1(b),
the effect of motion blur is clearly visible: the exposure time was too long for the fast
moving bus to be captured. Thus, there is a fundamental trade-off in imaging systems:

R. Woods et al. (Eds.): ARC 2008, LNCS 4943, pp. 125–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

126 M.E. Angelopoulou et al.

Column Amplifiers
Column ADC/ Mux

R
ow

 D
ec

od
er

s

Photodiode

(a) (b)

Fig. 1. (a) A hypothetical 3×3 CMOS image sensor. (b) A moving bus as opposed to a still bike.
The first creates motion blur, whereas the second is fully captured.

an increase in the spatial resolution by reducing the pixel size reduces the temporal res-
olution and vice-versa. For the rest of the paper, ‘LR’ denotes the low spatial resolution
and, thus, high temporal resolution image samples, while ‘HR’ refers to high spatial
and low temporal resolution.

Recently researchers have focused on the problem of enhancing both spatial and
temporal resolution. Resolution in both time and space can be enhanced by using mul-
tiple cameras to capture a fast moving scene with different subpixel spatial shifts and
different subframe temporal shifts [3]. The main strength of the algorithm in [3] is that
it treats motion blur independently of the cause of temporal change. Its main weakness
lies in the large number of required cameras (such as 18). In real-life systems, this also
introduces additional difficulties in the alignment of all the captured images from differ-
ent cameras, a step known as registration. Apart from having to perform registration on
many images, the large number of cameras increases the distances between the camera
axes, making accurate registration difficult. This limits the applicability of the system.

In [4] the proposed system consists of a HR and a LR imaging device. The LR de-
vice deblurs the image captured by the HR device, by obtaining motion information
for the estimation of the motion Point Spread Function (PSF). Then, the HR image is
deblurred using deconvolution-based techniques. This approach mainly considers cap-
turing a single image focusing in solving the blur caused by the undesired global motion
due to camera shaking. The proposed system uses either two separate image sensors or
a sensor with a LR periphery. If two separate image sensors are used, motion trajecto-
ries can be detected anywhere in the frame and, thus, the approach can be extended to
dealing with the motion of objects. However, the use of two image sensors results in
registration-related problems and an increased size of the device. In addition, the pixel
size of the LR detector remains fixed over time regardless of the motion magnitude.

In summary, the contributions of the paper are: (1) The introduction of a motion-
deblurring system which employs an FPGA to dynamically configure a time-variant im-
age sensor. The size of the pixels is adapted according to local motions within the frame.
The FPGA is used for the spatial enhancement of the high frame-rate areas, which are
locally formed on the sensor, to provide super-resolution (SR) effects. (2) An efficient
FPGA architecture is proposed for the implementation of the resolution enhancement
module of the SR algorithm based on the Iterative Back Projection approach, and its

FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor 127

performance is investigated. To the best of our knowledge, no FPGA implementation
of an SR algorithm has been previously reported in literature.

The structure of the paper is as follows. Section 2 presents the architecture of the
proposed FPGA-based motion-deblurring system and focuses on the spatial enhance-
ment block, introducing SR and the Iterative Back Projection algorithm in particular.
Section 3 describes the FPGA implementation of the SR block. In Section 4 hardware
and quality results of the implementation are presented. Section 5 concludes the paper.

2 Surpassing the Fundamental Trade-off: Our Proposal

2.1 Description of the Motion-Deblurring System

The state of the art in imaging technology has produced sensors that are no longer
subject to the constraint of time-invariant fixed pixel size [6, 5]. Elementary pixels can
be grouped together over time, to form neighborhoods of different resolution. Taking
advantage of what imaging technology has to offer, this work proposes an FPGA-based
system that uses an adaptive image sensor to locally form areas of larger pixels and
execute on-line, real-time motion deblurring. Fig. 2 presents an overview of this system.

blur
detection

x, y

extract
object from
background

adaptive image sensor

motion
estimation

FPGA

HR
RAM

LR RAMs

memory banks

SR
displ

err

outin

Fig. 2. The proposed motion-deblurring FPGA-based system that uses an adaptive image sensor.
Areas of large pixels are formed where motion exists and the LR samples are spatially enhanced.

Let Sh denote the size of the elementary pixel of the sensor, corresponding to reso-
lution HR (i.e. the highest spatial and lowest temporal resolution). Let m and n be the
height and width of an area of the sensor measured in Sh units. That area may include
pixels larger than Sh and, thus, produce multiple time samples during the HR integra-
tion. If all pixels, regardless of their size, are considered as points in the 3-D space,
then during the HR integration m × n such points will be produced for an m × n area.
The distribution of these points between time and space is determined by the pixel size.
Increasing the pixel size of a particular region, decreases the density of these points on
the 2-D plane and increases their density along the time axis, as the total number of
points should remain m × n for the given area. Therefore, in one end, there is the still
regions - covered with HR pixels - with distribution m × n × 1 (m in x, n in y and 1 in
t), and at the other end lies the configuration 1× 1× (m × n), if all the available pixels

128 M.E. Angelopoulou et al.

are grouped together to form one large pixel. Thus, if the pixel size of area Q equals
2 × 2 Sh, the LR spatial resolution is 4 times lower than the HR resolution, while the
temporal resolution is 4 times higher, i.e. 4 LR time samples are produced for Q during
the HR integration. If the spatial relation is 3 × 3, 9 LR samples are produced, etc.

The Blur Detection block of Fig. 2 reads the sensor’s output and indicates the blurred
regions. These regions of the sensor will be configured to larger pixel sizes. If the mo-
tion blur derives from camera shaking a single motion region spans the entire sensor.
During the HR integration time, a sequence of LR frames will be produced at every mo-
tion region, where the blur effect is reduced. Before executing SR on this group of LR
frames, the static background should be removed by applying a background extraction
algorithm.

The Motion Estimation block of Fig. 2 reads the sequence of LR frames and returns
the motion vectors, i.e. the displacements of selected features between each LR frame
and the reference LR frame. Any frame of the LR sequence can be chosen as the refer-
ence frame. These displacements will then be used by the SR unit to enhance the spatial
resolution. The spatial resolution and the frame-rate of the final deblurred output will
be those corresponding to the HR sequence.

The robustness of the system is increased by applying the following two techniques.
The error information at the output of the Motion Estimation block [7] is used by the
SR block to weight the information of the different LR samples and decrease the con-
tribution of those with large error values. Additionally, to increase the available spatial
information at the input of the SR block, neighboring LR samples before and after the
integration interval of interest contribute in SR with adjustable weights.

2.2 Super Resolution

The forward model of generating LR pixels is shown in Fig. 3. Many HR pixels are
mapped on a single LR pixel, thus imitating the integration of a group of HR pixels on a
single photodiode. The weights with which these HR pixels contribute in the formation
of the particular LR pixel form a gaussian kernel–the 2-D PSF shown in Fig. 3. Every
LR pixel can be thus expressed as a weighted sum of HR pixels, and the following linear
system of equations is formed:

Ah = l (1)

where h and l denote the vectors of unknown HR pixels and known LR pixels, and
matrix A contains the relative contribution of each HR pixel to each LR pixel.

The aim of spatial SR is to solve the inverse problem of finding h. The HR grid on
which reconstruction will occur is the HR grid underlying the LR reference grid (Fig. 3).
Thus, h consists of the HR pixels of this grid. Each LR frame adds an extra set of
equations in the system, one for every LR pixel.

Spatial SR is based on subpixel shifts on the LR reference grid. If a group of LR
frames were shifted on the reference LR grid (Fig. 3) by integer LR pixel units, they
would all give the same set of equations since the same groups of HR pixels would form
in the same manner their LR pixels. Therefore, for a LR frame to contribute uniquely
in the system of Eq. 1, it should be shifted by subpixel units on the LR reference grid
compared to the other LR frames. However, although in theory the above statements

FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor 129

HR input on the HR grid

HR pixel a

L6 L7 L8

Computations on the HR grid

convolution &
downsampling

for
displacement

(0, 0)

reference LR grid

L3 L4 L5

L0 L1 L2

L'6 L'7 L'8

L'3 L'4 L'5

L'0 L'1 L'2

PSF
Computations on the HR grid

convolution &
downsampling

for
displacement
(0.25, 0.25)

LR frame L
(reference
LR frame)

LR frame L'

Fig. 3. The formation of the LR output presented mathematically. A 4 × 4 PSF is employed. Two
simulated LR frames with displacements (0, 0) and (0.25, 0.25) are produced.

are true, in practice LR frames with the same integer displacements may give different
sets of equations. This is partly due to errors in the motion estimation procedure [7] and
partly due to the quantization of the LR grid on the HR grid on which reconstruction is
executed. Therefore in practice it is preferable if more LR frames are considered, even
if their displacements overlap.

The SR methods found in the literature solve the SR problem either in the spatial
or in the frequency domain. In this work, a spatial domain method is implemented.
This avoids the transformations between the two domains, and also removes the need
to handle outputs with large dynamic range as produced by frequency domain analysis.
Therefore, the need for long word-lengths in hardware implementations is not required.
Among the spatial domain methods the Iterative Back Projection (IBP) [8] approach
was selected because of its hardware-friendly characteristics. Instead of solving Eq. 1
for h, the IBP produces a simulated LR sequence and iteratively minimizes its differ-
ence from the observed LR sequence. This iterative scheme is suitable for hardware due
to its potential for maximum parallelism and data re-use, as it will be demonstrated in
Section 3.

Iterative Back Projection (IBP). The IBP employs an iterative refinement scheme on
the HR grid, starting with an initial HR approximation such as the interpolation of
the reference LR frame. Then, at every iteration of the algorithm the forward model
of Fig. 3 is applied on the current HR approximation using the displacements of the
corresponding observed LR frames to produce a simulated LR sequence. The aim of
IBP is to minimize the difference between the observed and the simulated LR sequence,
by refining the HR estimation.

All of the observed LR pixels and the corresponding simulated LR pixels which are
influenced by a particular HR pixel contribute in the refinement of that HR pixel. This
contribution is weighted according to the relative position of that HR pixel and the
LR pair. For instance, in the refinement of HR pixel a (Fig. 3), pixel L0 of frame L
participates with a weight proportional to PSF (1, 1), whereas for L′0 of L′ this weight
will be proportional to PSF (0, 0).

130 M.E. Angelopoulou et al.

At iteration i, every pixel of the current HR approximation Hi is refined as follows:

Hi+1(xh, yh)=Hi(xh, yh)+
K−1∑

k=0

∑

(xl,yl)∈Y

(Lok(xl, yl)−Lsk
(i)(xl, yl))×W (k, xl, yl),

(2)
where Lok and Ls

(i)
k denote the kth observed and simulated LR frame, (xh, yh) and

(xl, yl) denote the HR and LR coordinates, Y is the set of LR coordinates of the pixels

of Lok and Ls
(i)
k which are influenced by point (xh, yh), W is the weight with which

Lok(xl, yl) and Ls
(i)
k (xl, yl) contribute in the refinement of Hi(xh, yh), and K is the

number of LR frames.

3 Architecture of the SR System

Figure 4 shows an overview of the proposed system. For every new group of LR frames,
produced during a particular HR integration interval (Sect. 2.1), an SR stage occurs. At
the beginning of each SR stage an initial HR approximation is produced by applying
interpolation on the reference LR frame. Once this initial phase is completed, the itera-
tions of the algorithm begin. When the iterations are over, the next LR group (associated
with the next HR integration interval) is processed, and so on. The rest of the section fo-
cuses on the description of the individual blocks. It should be mentioned that the target
system has 4 memory banks, each with a word-length of 4 bytes.

3.1 Off-Chip Memory Banks

LR RAMs. The LR memory banks store the incoming LR frames. As has been men-
tioned, the processing of the LR frames is performed in groups that correspond to one
HR frame. However, in order to increase the spatial information available to the pro-
posed system, a number of neighboring LR frames are used in addition to those pro-
duced during the HR integration (Fig. 5(a)). In hardware, this means that two memory

HR RAM

FPGA

LR RAM
0

LR RAM
1

LR RAM
2

Extract
Processing

Window (EPW)

Interpolation

Transform
HR to LR

Buffering of
Observed

LR Frames

Buffering of
Simulated
LR Frames

HR Pixel
Refinement

MEMORY BANKS

Fig. 4. Architecture overview

FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor 131

t

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

SR stage

0

1

2

3
...

new LR frames being written

LR neighboring frames being processed

LR main frames being processed

(a)

t01 stage 1 / 10 stage 2 / 00 stage 3 /

LR
RAM 0

SR stage 0 /

LR
RAM 1

LR
RAM 2

00

6 74 5

12 13 14 15

8 9 10 11

16 17 18 19

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

...

RAM being written

LR main frames being read

LR neighboring frames being read

FSM for triple
buffering :

00

10

01

(b)

Fig. 5. The numbers correspond to the LR frame number. Four LR frames are produced during
the HR integration and two pairs of neighboring frames (one pair at each side of the integration
interval) are considered. (a) A sliding window indicates the group of LR frames processed during
the current SR stage. While the processing occurs on these frames, a new group of four frames is
written in the memory banks. (b) Triple buffering scheme applied on the LR RAMs. As the SR
stages succeed one another the LR frames are written and read from the LR RAMs according to
the current state of an FSM. There are three possible configurations.

banks need to be read in parallel, as Fig. 5(b) illustrates for the case of a 2 × 2 PSF and
four neighboring frames. For instance, in SR stage 1 (Fig. 5(b)) frames 8-11 need to be
read together with frames 4-7 which are in a different RAM bank due to the state of SR
stage 0. In order to handle this we employ a triple buffering scheme. The access pattern
of LR RAMs is shown in Fig. 5(b).

HR RAM. This external memory stores the computed HR pixels. During the initial
phase of the current SR stage, data come into the HR RAM from the Interpolation
unit. Once the initial estimation is computed, data come from the HR Pixel Refinement
unit, which iteratively updates the content of the RAM until the end of the current SR
stage. Before a pixel is written in HR RAM it is rounded to 8 bits. This allows storing
HR pixels in groups of four in the 32-bit RAM, thus increasing the available memory
bandwidth.

3.2 Individual Processing Units

The Extract Processing Window (EPW) unit of Fig. 4 produces the processing window
for both the Interpolation and the Transform HR to LR units, at different phases of the
SR stage. Thus, it operates in two modes. In Mode 1 it returns a 2 × 2 window to the
Interpolation unit, while in Mode 2 it returns an S × S window to the Transform HR to
LR unit, with S being the size of the PSF relating the LR to the HR grid. The EPW unit
consists of S − 1 FIFOs which are connected to S × S registers to form the processing
window.

132 M.E. Angelopoulou et al.

To compute the initial HR guess, the Interpolation unit executes bilinear interpola-
tion. Each interpolated HR pixel is a weighted sum of the surrounding 2 × 2 LR pixels.

The Transform HR to LR unit multiplies each HR pixel of an S × S processing
window with the PSF weight corresponding to its location in the window. The Ls pixels
of the simulated LR sequence (Sect. 2.2) will be produced by subsampling the output
of the convolution of the last HR approximation. All possible subpixel displacements
should be covered, therefore the HR pixels should ‘move’ in the FIFOs of the EPW unit
one location at every cycle. This poses a minimum in the number of cycles of every
iteration. This minimum will be equal to the number of HR pixels.

The HR Pixel Refinement Unit includes parallel processing branches each one of
them associated with a LR frame. These parallel branches meet at a final adder, which
corresponds to the external summation in Eq. 2, to produce the refined version of the
HR pixel which is currently under process.

3.3 Data Re-use and Maximum Performance

To maximize data re-use every HR and Lo pixel are read from the corresponding RAM
only once and remain on-chip until all the processing associated with them is over.
Also, for maximum performance, one iteration requires the minimum number of cy-
cles imposed by the HR convolution (Sect. 3.2). To achieve this, the EPW unit, which
produces the processing window for convolution, is designed to produce the synchro-
nization control signals for the entire system. When a HR pixel is first brought on-chip
it is ‘pushed’ into the FIFOs of the EPW. When it is no longer needed by the EPW it
will be the input of the next level of processing, that is the HR Pixel Refinement Unit
unit. When this happens, all the LR pixels influenced by the particular HR pixel, both
actual (Lo) and simulated (Ls), should be available on-chip.

3.4 On-Chip Memory

The units Buffering of Simulated LR Frames and Buffering of Observed LR Frames of
Fig. 4 include the Ls and Lo groups of line-buffers, respectively. In order to achieve a
throughput of one HR pixel per cycle, at every cycle all Ls and Lo buffers of all LR
frames are accessed in parallel, while new data is brought in. Therefore, every group
contains a separate buffer for every LR frame. These buffers only get updated when
their content will not be used anymore at the current iteration. The width of the Ls
buffers is equal to that of the LR frames. The Lo buffers are made wider, to surpass the
limited memory bandwidth of the LR RAM. Specifically, the used Lo buffers are twice
as wide as the LR frames and are written using a poling scheme.

4 Results

4.1 Implementation Requirements

The design was implemented on a Celoxica RC300 board using the DK5 Handel-C
compiler, and was placed and routed using Xilinx ISE v.9.1. The RC300 board hosts

FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor 133

Table 1. Iterations for real-time performance for different HR sizes

Mh × Nh 64 × 64 128 × 128 256 × 256 240 × 320 512 × 512 480 × 640 1024 × 1024
Iterations 585 146 36 31 8 7 2

4 6 8 10 12 14 16 18 20
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

4

K

F
P

G
A

 S
lic

es

480x640 (VGA)
256x256

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45

K

B
R

A
M

s

(a) (b)

Fig. 6. The number of FPGA resources increases linearly with the number of LR frames (K).
(a) Number of FPGA slices. (b) Number of BRAMs. The number of BRAMs is independent of
the image sizes reported in Table 1.

a Xilinx Virtex-2 FPGA and on-board ZBT SRAMs. The operating frequency of the
design on RC300 is 60 MHz. To meet real-time requirements the system should achieve
25 fps. The required number of cycles is: C = reset cycles+ Ml × Nl + Mh × Nh ×
Iterations+ [Nh × (S − 1)+S]+Latency, where Mh (Ml) and Nh (Nl) denote the
number of rows and columns of the HR (LR) frame. Thus, C depends on the image size
and on the number of LR frames (K) which contributes in Latency by �log2(K + 1)�,
i.e. the latency of the final adder of the HR Pixel Refinement unit. For K ∈ [8, 15] the
number of maximum iterations of the IBP leading to 25 fps is given in Table 1.

The number of FPGA slices is mainly affected by K and does not significantly vary
for different image sizes, as Fig. 6(a) demonstrates for 256 × 256 and 480 × 640 HR
size. The number of BRAMs equals (S − 1) + K × 2, as (S − 1) BRAMs are used by
the EPW unit, and K are occupied by each group of LR line-buffers (Fig. 6(b)).

4.2 Performance Evaluation

The performance of the system has been evaluated under two different scenarios. The
first one is concerned with the classic SR problem where a sequence of shifted LR
frames is used as the input to produce a HR output. The second deals with the motion
deblurring of a moving object, presenting the SR results based on time samples read
from a LR motion area. To incorporate motion estimation errors in the simulation pro-
cess, the OpenCV Lucas & Kanade optical flow [7] and Shi & Tomasi good feature
extraction [9] algorithms were used in both scenarios to calculate the motion vectors.
The calculated motion vectors were inserted in the SR system.

134 M.E. Angelopoulou et al.

(a) (b) (c)

Fig. 7. (a) Ground-truth reference frame (i.e. the real-world reference frame without any degrada-
tion). (b) Floating point bicubic interpolation of the reference LR frame. (c) Reconstructed frame:
Hardware output after 8 iterations (i.e. the number of iterations leading to real-time performance
for Mh × Nh = 512 × 512).

In the first experiment, a 512×512 natural image was used (Fig. 7(a)) and a sequence
of 8 shifted 256 × 256 LR images was generated. The LR sequence was synthetically
produced by first using randomly generated displacements to move the original image
on the HR grid and then applying a 2 × 2 spatial blur kernel on that HR sequence.

The produced LR sequence was used as input to the proposed system. Fig. 8(a) shows
the decrease in the Root Mean Square Error (RMSE) as the iterations of the algorithm
proceed. The vertical line indicates the number of iterations which complies with real-
time requirements for the given image size (Table 1). The results corresponding to the
8 bit rounding of the output of every iteration derive from the FPGA implementation of
the algorithm. Apart from those, Matlab results are reported for the following scenarios:
floating point version, floating point bicubic interpolation of the reference frame, 8 bits
truncated, 9 bits truncated and 9 bits rounded (the last three are bit-accurate models).
Fig. 8(a) illustrates that for large image sizes that impose a small number of iterations
for real-time performance, the 8 bit rounding scenario gives outputs of similar quality
as both larger word-lengths and the floating point SR, clearly prevailing against ‘8 bits
truncated’. The detail images of Fig. 7 show the higher quality obtained by the FPGA
implementation, after the number of iterations allowed for real-time performance, com-
pared to floating point bicubic interpolation.

In the second experiment, a motion area employing pixels of 2×2 HR is considered,
which produces 4 time samples during the HR integration. The size of the HR frame is
240 × 320. To increase the robustness of the system a neighborhood of 2 LR frames at
each side of the integration interval is considered, so 8 LR frames are used in total.

FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor 135

0 2 4 6 8 10
2

2.5

3

3.5

4

4.5

5

iterations of the SR algorithm

R
M

S
E

bicubic interpolation
floating point SR
8 bit round SR
8 bit trunc SR
9 bit round SR
9 bit trunc SR

0 5 10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

4.5

iterations of the SR algorithm

R
M

S
E

bicubic interpolation
floating point SR
8 bit round SR
8 bit trunc SR
9 bit round SR
9 bit trunc SR

(a) (b)

Fig. 8. RMSE as a function of the number of iterations of the IBP. The solid vertical line indicates
the number of iterations allowed to obtain 25 fps for the given HR frame size (Mh × Nh).
(a) Experiment 1: Mh × Nh = 512 × 512 (b) Experiment 2: Mh × Nh = 240 × 320.

(a) (b) (c) (d)

Fig. 9. (a) Ideal frame with HR spatial resolution and LR temporal resolution. This is the out-
put of an ideal sensor that combines HR spatial resolution with LR integration time. (b) Motion-
blurred output produced if the motion area had HR pixels. (c) Floating point bicubic interpolation
of the reference LR frame. (d) Reconstructed frame for a motion area with LR pixels: Hardware
output after the number of iterations leading to 25 fps. Using FPGA-based SR, the ideal combi-
nation of HR spatial resolution and LR temporal resolution is achieved.

If very fast motion is involved (as in Fig. 1(b)), the LR frames are blurred themselves.
To incorporate this intra-LR-frame motion, we first generated a dense HR sequence of
32 frames, using random HR displacements, and then created the LR motion blurred
sequence in two steps. First we averaged groups of 4 successive frames and produced

136 M.E. Angelopoulou et al.

sequence A, with LR pixel temporal resolution and HR pixel spatial resolution. This
would be the output of an ideal but unrealistic sensor that combines LR temporal res-
olution with HR spatial resolution. A 2 × 2 PSF was then applied on sequence A to
produce the actual LR sequence.

The desired output belongs to sequence A and is shown in Fig. 9(a). Note how close
the detail of the reconstructed output presented in Fig. 9(d) is to Fig. 9(a), as opposed
to Figures 9(b) and 9(c). The system can be easily modified to accommodate high pre-
cision in the pixels, which is required for further improvement in the quality. This is
useful when a smaller frame size is considered and, therefore, more iterations can be
performed (Fig. 8(b)).

5 Conclusions and Future Work

In this paper an FPGA-based system that forms areas of large pixels to cure motion blur
was proposed. To compensate for the low spatial resolution of such areas FPGA-based
SR is used. The reconstructed frame is of similar quality as the output of an ideal sensor
with HR spatial resolution but LR temporal resolution, thus surpassing the fundamental
trade-off between space and time. Future work includes the quantification of the scaling
of the pixel size of the motion areas with the magnitude of motion, the use of bicubic
interpolation as the initial estimation for faster convergence, and the implementation
of the motion estimation, blur detection and background extraction blocks as well on
FPGA.

References

1. Gamal, A.E., Eltoukhy, H.: CMOS image sensors. IEEE Circuits & Devices Magazine 21(3),
6–20 (2005)

2. Farrell, J., Xiao, F., Kavusi, S.: Resolution and Light Sensitivity Tradeoff with Pixel Size. In:
SPIE Electronic Imaging 2006 Conference, vol. 6069, pp. 211–218 (February 2006)

3. Shechtman, E., Caspi, Y., Irani, M.: Space-Time Super-Resolution. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 27(4), 531–545 (2005)

4. Ben-Ezra, M., Nayar, S.K.: Motion-based motion deblurring. IEEE Transactions on Pattern
Analysis and Machine Intelligence 26(6), 689–698 (2004)

5. Constandinou, T.G., Degenaar, P., Toumazou, C.: An Adaptable Foveating Vision Chip. In:
IEEE International Symposium on Circuits and Systems (ISCAS), May 2006, pp. 3566–3569
(2006)

6. http://www.foveon.com
7. Bouguet, J.-Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker - Description

of the algorithm. Intel Corporation, Microprocessor Research Labs, Part of OpenCV Docu-
mentation, http://sourceforge.net/projects/opencvlibrary/

8. Irani, M., Peleg, S.: Improving Resolution by Image Registration. In: CVGIP: Graphical Mod-
els and Image Proc, May 1991 vol. 53(3), pp. 231–239 (May 1991)

9. Shi, J., Tomasi, C.: Good Features to Track. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR 1994) (June 1994), pp. 593–600 (1994)

http://www.foveon.com
http://sourceforge.net/projects/opencvlibrary/

	FPGA-Based Real-Time Super-Resolution on an Adaptive Image Sensor
	Introduction
	Surpassing the Fundamental Trade-off: Our Proposal
	Description of the Motion-Deblurring System
	Super Resolution

	Architecture of the SR System
	Off-Chip Memory Banks
	Individual Processing Units
	Data Re-use and Maximum Performance
	On-Chip Memory

	Results
	Implementation Requirements
	Performance Evaluation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

