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a b s t r a c t

Minimally invasive surgery has been established as an important way forward in surgery for reduc-
ing patient trauma and hospitalization with improved prognosis. The introduction of robotic assistance
enhances the manual dexterity and accuracy of instrument manipulation. Further development of the
field in using pre- and intra-operative imaging guidance requires the integration of the general anatomy
of the patient with clear pathologic indications and geometrical information for preoperative planning
and intra-operative manipulation. It also requires effective visualization and the recreation of haptic
and tactile sensing with dynamic active constraints to improve consistency and safety of the surgical
procedures. This paper describes key technical considerations of tissue deformation tracking, 3D recon-
TE
mage guidance
eature tracking
ugmented reality
D reconstruction
ctive constraints
aptic feedback

struction, subject-specific modeling, image guidance and augmented reality for robotic assisted minimally
invasive surgery. It highlights the importance of adapting preoperative surgical planning according to
intra-operative data and illustrates how dynamic information such as tissue deformation can be incor-
porated into the surgical navigation framework. Some of the recent trends are discussed in terms of
instrument design and the usage of dynamic active constraints and human–robot perceptual docking for
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. Introduction

With recent advances in imaging and surgical instrumenta-
ion, the field of surgery is entering a time of change towards
afer, more consistent and minimally invasive intervention. The
se of preoperative and intra-operative imaging augmented by
echatronically enhanced or robotic assisted instruments has

ignificantly improved the perceptual-motor capabilities of the
urgeon, allowing surgical procedures to be carried out with
nprecedented accuracy and efficiency [1]. Despite these advances,
echnical challenges remain. Issues related to in situ 3D reconstruc-
ion, biomechanical modeling under large scale tissue deformation,
ecreation of tactile sensing and feedback, and instrument dexterity
re some of the major obstacles to be tackled.
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

U
NWhen performing open surgery, the surgeon operates directly

n the patient with relatively unrestricted visual, force and tac-
ile feedback. By combining the current tissue morphology with
rior knowledge of the anatomical model, experienced surgeons
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can carry out the required procedure with ease, albeit often at a
cost of large incisions and access trauma. In minimally invasive
surgery (MIS), the small incision used for gaining surgical access has
contributed to reduced trauma, shorter patient recovery time, and
improved prognosis. However, the rigid instrument used, coupled
with the fulcrum effect has resulted in poor hand–eye coordination
and manual dexterity, contributing to a series of ergonomic and
safety issues. Such is the nature of technological–clinical transla-
tional cycles that as the technology advances, a new clinical frontier
becomes feasible and in its pursuit, a new set of technical chal-
lenges arise. With the advent of robotic assisted MIS, dexterity is
enhanced by microprocessor controlled mechanical wrists, allow-
ing for motion scaling for reduced gross hand movements and the
performance of micro-scale tasks that are otherwise not possible
[2]. Currently, the surgical community is tackling even greater chal-
lenges – surgery with no scar based on Natural Orifice Transluminal
Endoscopic Surgery (NOTES). While the debate of its feasibility for
safe, routine clinical use remains fervent, it is necessary to examine
recent technological advances in imaging, modeling, mechatron-
imally invasive intervention: Computer assistance for robotic surgery.
007

ics, robotics, and human–robot interaction to envisage the future 61

directions of MIS. 62

Traditionally, surgical procedures are planned out using medi- 63

cal images reviewed off-line. Image guidance in surgery provides 64

in situ visualization of either preoperative or intra-operative data. 65
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ig. 1. A flowchart showing the key steps involved in image-guided surgical navig
onstraints all play important roles but their integration into a single platform pres

owever, real-time image guidance requires accurate registration
f the medical images to the patient anatomy during surgery.
ithout apparent deformation or morphological changes, registra-

ion can be performed preoperatively and remain constant during
urgery. If large tissue deformation is present, as in the case of car-
iac and gastrointestinal surgery, it is necessary to provide on-line
egistration and remodeling of the data, also by taking into consid-
ration potential topological changes of the tissue during surgery.
hus far, cardiac surgery remains a challenging problem for image
uidance due to its complex structure and motion. To help illus-
rate the key steps involved in image-guided surgery, Fig. 1 shows
flow chart of the steps for an image-guided MIS framework, from
cquisition of images through to robotic assistance, with the incor-
oration of haptic feedback and dynamic active constraints during
urgery.

Typically, the first step of an image-guided surgical navigation
ystem consists of gathering relevant preoperative data. In the case
f robotic assisted MIS, it is necessary to combine three sources
f information: data describing the general anatomy of the patient
ith clear pathologic indications, a kinematic model of the robot,

nd geometrical information for co-registration of preoperative
lanning and simulation of alternative intra-operative approaches.

n using this information, additional constraints also need to be
aken into account. For example, for robotic assisted MIS, remote
entre of motion of the instrument at the trocar must be satisfied.
he second step of surgical guidance is adapting the preoperative
urgical plan according to intra-operative data. To this end, dynamic
nformation such as tissue deformation and topological change, is
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

mportant. These can be used for co-registration of pre- and intra-
perative data and facilitate the implementation of augmented
eality (AR) for mapping imaging data to the operative field-of-view.
f advanced features such as virtual fixtures (active constraints) are
o be incorporated, haptic boundaries are defined and updated at
EDSubject-specific model generation, augmented reality, haptic feedback and active
any challenges.

this stage. Although not yet available routinely in the clinic, pro-
cedure simulation can also be provided to assess the potential
effect of the surgical step before its execution. The overall goals
of image-guided surgery are therefore to provide a fully planned
and rehearsed procedure before its execution; integrate real-time
intra-operative imaging for enhanced accuracy and surgical vision;
track and model deformation to adapt to anatomical changes dur-
ing surgery; incorporate robotic assistance for enhanced dexterity
and motion control; and recreate haptic and tactile sensing with
dynamic active constraints to improve the consistency and safety
of the surgical procedures. It is evident that the pre-requisite of
achieving these goals is to accurately track the deformation of the
tissue such that motion adapted visualization and control can be
applied. In the following sections, we will describe key technical
considerations of tissue deformation tracking, 3D reconstruction,
subject-specific modeling, image guidance and augmented real-
ity. We will also present some of the recent trends in instrument
design and in using dynamic active constraints and human–robot
perceptual docking for robotic assisted MIS.

2. Tissue deformation tracking during surgery

In addition to facilitating pre- and intra-operative image inte-
gration, tissue deformation tracking in robotic assisted MIS also
serves the purpose of visual servoing for motion stabilization. In
robotic assisted beating heart TECAB (Totally Endoscopic Coronary
Artery Bypass), for example, this provides virtual immobilization
of the heart and forgoes the need of mechanical stabilizers. In gen-
imally invasive intervention: Computer assistance for robotic surgery.
007

eral, the landmarks to be tracked can be divided into two main 125

categories, natural and artificial landmarks. Natural landmarks are 126

prominent local features on the tissue surface, whereas artificial 127

landmarks (also known as fiducials) are external markers with 128

distinctive shape or color placed in vivo. These landmarks pro- 129
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Fig. 2. Example image frames taken from an in vivo MIS image sequence with signif-
icant tissue deformation coupled with illumination changes: (a1) the first frame of
the footage and (a2) a subsequent frame of the same sequence that presents a large
degree of global motion. Example matched points between the two image frames are
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ide a stable frame of reference for making image registration
ossible.

.1. Tracking of artificial landmarks

In image-guided intervention, it is common to use artificial land-
arks, particularly in established clinical systems. An initial study

n motion compensation of the beating heart in robotic assisted
nterventions has been performed by Nakamura et al. [3]. They pro-
osed a high speed visual servoing system which uses a 4-DOF
degrees of freedom) robotic finger to track fiducials placed on
he epicardial surface. In vivo experiments performed on porcine
ata showed good 2D trajectory tracking. Ginhoux et al. [4] used
ctive optical markers rather than fixed fiducials to measure cardiac
eformation. By decoupling cardiac and respiratory induced defor-
ation, an adaptive model for predictive control in visual servoing
as established. The performance of the method was evaluated
ith in vivo porcine data and demonstrated that the model can

ancel out physiological motion with a residual tracking error up
o 1.5 mm. The main drawback of this approach is that due to the
arge distance between the fiducials, the recovered motion is heav-
ly interpolated across the surface. Sauvée et al. [5] addressed this
ssue by combining fiducials with surface textures. The calibrated
ducials allowed for 3D pose estimation of the laparoscopic camera
hereas the surface texture permitted denser motion recovery.

Dey et al. [6] used fiducial markers to register freehand 2D
ndoscopic images to preoperative 3D computed tomography (CT)
odels of the brain. A marker based system for referencing the

ertebrae using an endoscope was presented by Thoranaghatte et
l. [7]. Also, Siddique and Jaffray [8] used fiducials in the thorax
uring respiration under X-ray fluoroscopy. They proposed an esti-
ator of the location of the landmarks based on a particle filter

pproach that estimates their location and the associated spatial
ncertainty. In terms of consistency, the tracking of soft tissue based
n artificial landmarks is attractive in that it gives full control of
he placement of the fiducials. However, it can also interfere and
ignificantly complicate the actual surgical procedure itself. To cir-
umvent this problem, these markers often need to be placed away
rom the operating site, thus diminishing its accuracy and practical
alue.

.2. Tracking of natural landmarks

With the maturity of computer vision techniques, the use of
atural landmarks, such as vessel junctions and surface textures,
as attracted significant interest in recent years. Existing research
as shown that direct application of existing tracking techniques

n computer vision to MIS has significant problems, largely due
o free-form tissue deformation and contrastingly different visual
ppearances during changing surgical scenes. The main difficulty
nvolved is in the consistency of the natural landmarks as they
eform with the surrounding structure, a situation that is not
ncountered when using rigid, high-contrast external fiducials.
esirable properties of an ideal MIS feature tracking technique

nclude high repeatability under rotation, translation, scaling and
ffine transformation, as well as robustness to illumination changes
nd local deformations. To this end, Giannarou et al. [9] presented
comprehensive study on feature detection in soft tissue track-

ng. They introduced an affine invariant feature detector based on
nisotropic features for reliable MIS feature tracking in the presence
f laparoscopic camera motion and tissue deformation. Experi-
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

ental results on in vivo MIS data showed that the anisotropic
etector performed favorably as compared to existing state-of-
he-art techniques and the method was capable of detecting a
reater number of corresponding features in the presence of signif-
cant geometric and photometric image transformations and tissue

230
ED
 P

R
Ohighlighted in blue and the green lines show the point correspondences extracted

using an affine anisotropic feature detector [9]. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of the article.)

deformation. Example results from the technique are shown in
Fig. 2.

Mountney et al. [10] evaluated the performance of state-
of-the-art feature descriptors in computer vision when applied
to soft tissue tracking in MIS. A novel probabilistic framework
was developed for selecting the most discriminative descriptors
for consistent deformation tracking. The accuracy and temporal
persistency of the tracking approach was further enhanced by
employing a Bayesian fusion method. Stoyanov et al. [11] intro-
duced an approach for computing 3D structure and motion from
a set of sparse salient features on the soft-tissue surface with a
pre-calibrated stereo laparoscope. The temporal behavior of the
extracted features was detected with stereo-temporal constraints
by using an iterative registration algorithm. In order to improve the
robustness of the algorithm in detecting the landmarks, Ortmaier
et al. developed a prediction algorithm based on ECG and respira-
tory signals [12]. For the evaluation of the proposed approach, the
tracking of the detected landmarks was restricted in a mechanically
stabilized area of the beating heart.

With endoscopic procedures exploring the natural cavities of the
patient, the paucity of salient landmarks makes region-based rather
than feature-based tracking methods more suitable for motion
tracking. Groeger et al. [13] recovered heart motion by a region-
based tracking using natural epicardial features. An affine motion
model was used to track local regions on the tissue, showing model
trajectories strongly correlated with the dynamic characteristics of
the cardiac and respiratory motion. The limitation of this approach
is that motion is only recovered in the 2D image space and the
ability of the algorithm to recover 3D measurements has not been
investigated. For sinus examination, Burschka et al. [14] also used
region-based tracking for intra-operative registration directly from
monocular endoscopic images.

In order to increase the robustness of region-based tissue
tracking approaches in the presence of large motion and variabil-
ity between successive image frames, motion models have been
employed. Hager and Belhumeur [15] proposed region tracking
combined with linear 2D motion models. The method integrated
both geometric and photometric cues based on an illumination
model. To make the tracking robust to occlusions, they also devel-
imally invasive intervention: Computer assistance for robotic surgery.
007

oped a regression technique whereby occlusions were treated 231

as outliers. In a different approach, a model-free visual servo- 232

ing method was introduced by Bourger et al. [16] based on the 233

Efficient Second-order Minimization (ESM) tracking algorithm. In 234
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rder to tackle occlusions, a pixel color selection method based on
istograms matching was applied prior to tracking. The method
erformed the ESM tracking with a 4-DOF surgical robot by incorpo-
ating a vision-based robot control strategy, showing the robustness
f the method even in the presence of significant occlusion. The
ain drawback in using the ESM tracking algorithm is its high

omputational complexity.

. 3D deformation recovery

The above step of tissue deformation tracking only involves
racking distinctive features within the image plane. For recov-
ring 3D surface deformation, it is necessary to combine these
eatures with the relative configuration of the camera(s) and con-
traints imposed by the biomechanical properties of the soft tissue.
o this end, techniques traditionally employed in computer vision
pplications have found limited success in MIS applications. Due
o complex deformation of the tissue, the research effort on 3D
econstruction in MIS has been shifted from transposing methods
eveloped for generic environments with strong a priori constraints
o developing solutions specifically tailored to the properties of
ndoscopic environments. Such systems are characterized by weak
onstraints, an emphasis on stochastic modeling, and strict run-
ime requirements. These can be grouped according to the visual
ues employed during the reconstruction phase, which include
tereo vision, photometric stereo and structure from motion.

.1. Visual cues for 3D deformation reconstruction

In general, stereoscopic methods for 3D reconstruction have the
dvantage of not relying on assumptions of the image formation
odel beyond the inherent geometric relationships between the

tereo cameras. Thus far, stereo laparoscopes are part of the stan-
ard equipment for robotic assisted MIS systems. The major hurdles

aced by stereo based deformation recovery in MIS are related
o feature detection and matching, with the calculated disparity
etween features matched in the left and right visual channels
eing sought for the 3D triangulation in a calibrated system. In these
asks, the average density of the detected features dictates which
reas can be reconstructed, whereas their distinctiveness deter-
ines the ambiguities encountered during the feature matching

rocess. Traditional methods [17] rely on either global smoothness
onstraints or adaptive support windows during the feature match-
ng process. For MIS, global smoothness constraints are unsuitable
or dealing with separate organs and occlusions due to surgical
ools. More recently, the success of Markov Random Fields (MRFs)
or dense stereo reconstruction has attracted interests in the com-
uter vision community but its real-time application to 3D tissue
eformation has yet to be established [18,19].

In MIS images, the homogeneity of visual features is manifested
n a general decrease both in the number and distinctiveness of
etected features. As a result, stereo approaches will initially yield
t best a semi-dense surface. In order to yield dense reconstruc-
ions, the most common approach is to impose local smoothness
onstraints given a sparse set of strong features in different areas
f the MIS image. In cardiac surgery, for example, Lau et al. [20]
sed a B-spline representation of the disparity map for the recon-
truction of the epicardial surface surrounding the coronary artery,
llowing a compact algebraic representation and real-time perfor-
ance of the algorithm. Richa et al. [21] used thin-plate splines

TPS) made of three-stacked Radial Basis Functions (RBF) in order
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

o represent a target epicardial surface area under projective trans-
ormation. The surface is characterized by its pre-defined and
racked control points, and the dense stereo reconstruction prob-
em is reduced to finding the optimal warping parameter of the TPS
etween the left and the right stereo channels. Finally, Stoyanov et
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al. [11] employed a Normalized Cross-Correlation (NCC) measure to
match features detected in both channels with a Maximally Stable
Extremal Regions (MSER) detector, thus achieving desirable prop-
erties such as rotational and monotonic illumination invariance.
The matched features are then tracked with the Lucas–Kanade (LK)
tracker extended by including epipolar constraints.

While the aforementioned approaches have shown to be
suitable for recovering the motion of small regions and an approx-
imation of their structure, the smoothness constraints introduced
make them less suitable for a complete reconstruction of the entire
field-of-view [21]. Moreover, their implicit dependency on the
tracker performance makes them particularly susceptible to occlu-
sions and specular highlights. An approach addressing the issue of
global dense 3D reconstruction has been proposed recently by Stoy-
anov et al. [22], where the feature matching process was reduced
to a 1D search problem through planar rectification of the stereo
image pair, followed by a constrained dense disparity registration
using hierarchical Piecewise Bilinear Maps (PBM). While achieving
a dense reconstruction of the complete field-of-view, the hierar-
chical approach causes early mismatches to be propagated through
all remaining scales, making it particularly sensitive to specular
highlights.

Other approaches addressing the reconstruction problem while
avoiding dependency on image features include photometric meth-
ods such as Shape-From-Shading (SFS). The original algorithm of
SFS stemmed from the seminal work of Horn [23] as a way of
reconstructing the shape of an object given its reflectance prop-
erties and the measured perceived brightness. The problem was
originally expressed as finding the unique solution of a non-linear
first-order Partial Differential Equation (PDE) resulting from an
image formation model consisting of orthographic cameras with
a light source located at infinity and perfectly Lambertian surfaces.
One of the first attempts to find practical applications for SFS in
MIS was presented by Rashid and Burger [24], who formulated a
direct algorithm for SFS under perspective projection with the light
source located at the optical centre. The approach is based on a
linearization of the SFS equation and its locality allows for efficient
parallel implementation; however, it requires very smooth surfaces
in order for the assumed linearity to hold. A different approach to
the same environment was presented by Deguchi and Okatani [25],
who demonstrated more practical results from the GI tract. How-
ever, the proposed method did not attempt to solve the PDE, rather
it evolved an initial level set made of points located at the same
distance from the projection centre. Apart from practical difficul-
ties in finding such points, with initial inaccuracies propagated to
the subsequent stages of the reconstruction process, this method
like most others suffered from the inability of solving the Bas-
Relief ambiguity or disambiguating between concave and convex
structures.

More recently, mathematical advances in viscosity solution the-
ory [26] allowed for the development of methods performing well
in realistic conditions for endoscopic images. Tankus et al. [27]
extended the fast marching formulation of the SFS problem by
Kimmel and Bruckstein [28] to the perspective case, showing good
results with data extracted from a GI tract endoscopy sequence.
While the practical applicability of the method suffered from (1)
requiring the exact locations of all points of local depth minima
in the input image (manually labeled in the study); and (2) the
assumption of an infinitely distant light source, it demonstrated the
potential of the SFS approaches. Yuen et al. [29] further extended the
method by providing a faster single-pass solution. At the same time,
imally invasive intervention: Computer assistance for robotic surgery.
007

Prados et al. [30], provided a control formulation for the solution 358

of the SFS problem based on the notion of discontinuous viscosity 359

solutions using realistic assumptions and showed that the problem 360

can be well-posed in the case of a light source at the optical cen- 361

tre and perspective projection, a scenario well suited to endoscopy 362
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pplications, thus removing the need of providing values for critical
oints in order to resolve ambiguities.

Despite these recent developments, SFS can suffer from several
hortcomings. First, they require input images to represent objects
ith a uniform albedo, a requirement reflected in the usage of test

mages from the GI tract. Also, almost all proposed methods tend
o be iterative, with run-times still not suitable for real-time imple-

entation. Furthermore, the underlying assumption of Lambertian
urface characteristics makes them sensitive to specular highlights
requently found in MIS. Most importantly, these methods do not
rovide absolute depth information, as non-Lambertian surfaces,
rrors in the light source intensity and surface albedo estimation
esult in an unknown scale factor between the reconstructed sur-
ace and the ground truth.

.2. Depth cue fusion

For MIS, since none of the single modalities of depth reconstruc-
ion can provide consistent results, fusion of multiple depth cues
ecomes important. Multi-cue fusion schemes have seen a recent

ncrease in popularity among the computer vision community in an
ttempt to improve the overall robustness of the algorithms. This is
esigned to emulate the structure of the human vision system, con-

ectured to follow a Bayesian inferencing mechanism [31]. Among
ecent studies, multiple cues have been fused for feature tracking
sing graphical models [32], depth reconstruction from texture and
tereo cues [33], and SFS ambiguity resolution using texture cues
34].

For example, Lo et al. [35] proposed a Bayesian Network (BN)
tructure for fusing together stereo and SFS cues. While the com-
lexity of the inferential process does not allow the performance
o be in real-time, and the method requires an initial global align-

ent between the cues used, it represents a first attempt towards
lobal dense 3D reconstruction. While the use of cues such as tex-
ure is not appropriate to MIS applications, other cues have been
sed towards this goal. Given the surgeon’s fixation points obtained
ith eye-tracking equipment, Stoyanov et al. [36] combined ocu-

ar vergence with stereo information to infer depth in relatively
extureless areas of the epicardial surface for focused energy abla-
ion. While the application is not dense depth recovery of the
ntire field-of-view, it provides the surgeon with depth informa-
ion from any given fixation point without requiring interaction
ith additional equipment. For surgical navigation, image guid-

nce is necessary for in situ visualization of intra-operative data.
hile laparoscopic video depicts the organ surfaces to the surgeon,

t gives no indication of the relation of internal structures to each
ther. Building subject-specific anatomical models combined with
D surface deformation derived above can assist in the visualization
nd simulation of tissue-instrument interaction.

. Subject-specific model generation

.1. Pre- and intra-operative image acquisition

One of the early applications of surgical planning is based on pre-
perative imaging and reconstruction. Current imaging modalities
uch as magnetic resonance imaging (MRI), CT, X-ray fluoroscopy
nd ultrasound are popular in this field. More recently, biopho-
onic techniques including OCT (optical coherence tomography),
OI (diffuse optical imaging), and CFLM (confocal laser microscopy)
ave found their way to be integrated with endoscopy for in situ, in
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

ivo cellular level imaging. This represents the general trend in sur-
ical technology, as we drive towards more complex procedures but
ith reduced invasiveness, effective use of pre- and intra-operative

maging ensures a fully rehearsed procedure before its execution
nd safe intra-operative navigation during its performance.
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The complex motion of the heart makes image-guided cardiac
surgery particularly challenging. An understanding of the underly-
ing mechanics governing myocardial contraction is essential for the
interpretation and prediction of changes induced by heart disease
as well as assisting with on-line registration. In this regard, cardio-
vascular MR (CMR) imaging has taken a key role in preoperative
simulation as it provides a non-invasive way to assess the intra-
mural motion of the myocardium. CMR can detect gross changes
in contractile behavior of the myocardium but the increased sensi-
tivity of scanners today allows for the detection of subtle regional
changes in the myocardium during early stages of cardiac dysfunc-
tion.

The study of myocardial deformation and contractility has also
been possible with MR tagging, DENSE (displacement encoding
with stimulated echoes), and MR velocity imaging [37]. MR tag-
ging [38] is an imaging protocol that uses a grid of magnetic
saturation, produced by a sequence of radio frequency pulses, on
the myocardium, providing landmarks that are tracked through
time. However, there are significant limitations on the technique,
in the form of tag fading, intra-slice motion, and the complicated
post-processing steps involved in tracking the landmarks, but it
is still a reliable means of determining the intramural motion of
the myocardium. SENC (strain encoding) imaging [39] is a related
technique whereby strain is directly measured in the MR images
without separate measurement of displacement or velocity. DENSE
[40] is a method for myocardial displacement imaging that is
performed by the manipulation of the spin phase via stimulated
echoes; the phase of each pixel is modulated based on its posi-
tion. Large displacements can be detected since the method can
work over a long time interval but image acquisition is time con-
suming. Phase contrast velocity imaging [41,42] provides a velocity
vector at each voxel and has traditionally been used to visualize
blood flow within the heart but blood flow artefacts, limitations on
velocity sensitivity and low SNR have caused difficulties in anal-
ysis. Recent work on improved pulse sequence design with blood
saturation to limit the blood flow artefacts has brought its use to
the myocardium, where lower velocities are expected. Huntbatch
et al. [43] also developed a Bayesian motion recovery framework
for the restoration of the velocities within the myocardium. Reli-
able contractility information can be derived from this data and
direct cardiac modeling is possible. Fig. 3 displays MR images of the
heart alongside phase contrast velocity images of the left ventri-
cle as well as results of the Bayesian motion recovery framework.
For imaging of the material properties, diffusion tensor imaging
[44,45] has been used to investigate the underlying myocardial fiber
orientation. By augmenting this data with strain rate from veloc-
ity mapping, the relationship between fiber orientation and fiber
shortening may be elucidated. In the figure, the directions of the
velocities show the radial thickening, circumferential twisting and
longitudinal contraction as expected in a normal left ventricle.

4.2. Building 3D shape models

From the comprehensive imaging data, the immediate step
before surgical navigation and simulation is to build 3D models.
For cardiac surgery, detailed segmentation of the myocardium is not
trivial due to the complexity of the anatomy. Manual segmentation
is time consuming and impractical and much research has been
directed to optimal, fully/semi-automatic techniques. In practice,
segmentation can be expedited through the use of Statistical Shape
Models (SSM) [46], which characterize the morphology and dynam-
imally invasive intervention: Computer assistance for robotic surgery.
007

ics of the heart across a set of subjects. They are built from training 483

sets of shapes and principal components analysis (PCA) and when 484

applied to the set, can give information about the range of shapes. A 485

training set requires a number of shapes with points in correspon- 486

dence and this is especially difficult when dealing with 3D shapes. 487
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ECig. 3. (Top) Short axis images of the left ventricle of a normal subject and the ass
nd longitudinal velocities of the left ventricle of the same subject, at mid-systole a

orkaew and Yang [47], for example, proposed an automatic tech-
ique for establishing the correspondences based on harmonic
apping of the surfaces of the myocardium. The Minimum Descrip-

ion Length (MDL) criterion was incorporated into the objective
unction to find the model with the most compact description of
he shape variation – this indicates that the best correspondence
as been found and all spurious variation removed. The technique
as demonstrated on cardiac surfaces [47] and pelvic floor models

48,49]. A cardiac probabilistic atlas for the automatic segmentation
f 4D cardiac images was proposed by Lorenzo-Valdés et al. [50].
he use of an atlas provides prior shape knowledge of the heart and
an potentially allow for better model initialization. These tech-
iques, however, require excessive computation time and are only
uitable for off-line analysis.

Recently, Lekadir and Yang [51] have developed a robust and fully
utomatic segmentation technique with active shape model search.
he method is based on global geometric constraints during feature
oint search by using inter-landmark conditional probabilities and
as demonstrated on the left ventricle. Ecabert et al. [52] also pre-

ented an automatic model-based method for segmentation of the
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

hole heart from CT images. Automatic localization of the heart is
erformed through a generalized 3D Hough transform and a global
imilarity transform. After alignment, a deformable adaptation is
sed to match the cardiac mesh to the boundaries in the images. It
hould be noted, however, that while the use of a statistical model
d velocity images along the x, y, and z directions. (Bottom) Radial, circumferential,
d-diastole, after Bayesian motion recovery [43].

can assist in the segmentation of the heart, building the training set
from a large enough set of patients is a challenge.

4.3. Biomechanical models

For MIS, accurate, subject-specific models can greatly bene-
fit both surgeon and patient during surgical planning, navigation,
and simulation. 3D shape models, while being able to provide
information about the morphology of the anatomy in question,
cannot inform us as to the physical properties of the anatomy
during deformation. A physical-based, or biomechanical, model,
used to integrate the structural and functional information avail-
able, is required to fully simulate the deformation that the
anatomy undergoes. Ideally, the model would be subject-specific,
created with minimal operator intervention, able to provide real-
istic simulation of the motion and deformation, and able to deal
with tissue–instrument interaction. Photo-realistic rendering and
accurate haptic feedback would also make simulations, either pre-
operatively or intra-operatively, more lifelike. In a similar vein,
computational fluid dynamics (CFD) can be used to further the
imally invasive intervention: Computer assistance for robotic surgery.
007

understanding of the relationships between morphology and flow 531

in cardiac surgical planning. For the heart, computer models of 532

the vessels and cardiac chambers can be used to simulate blood 533

patterns. Boundary conditions of the inflow and outflow and a 534

dynamic volumetric mesh are both required and the flow equations 535
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ig. 4. (Top) A flowchart illustrating the process of K-PLSR to expedite biomechani
rom the left ventricle of a normal subject over the cardiac cycle.

re solved for each element within the mesh. CFD simulation is a
romising technique for the investigation of how surgical changes
o the anatomy can result in hemodynamic changes.

However, traditional biomechanical models require much a pri-
ri data that is difficult to obtain on a per subject basis. Parameters
uch as material properties and fiber orientation are crucial to the
ccuracy of the simulation but are difficult to acquire in vivo. It is
herefore common for a general model to be developed and then

apped to each subject. In cardiac surgery, direct modeling of
yocardial deformation is possible, for example, through virtual

agging [53], which combines the advantages of both MR tagging
nd velocity mapping. No a priori data is required as a grid is super-
mposed on the phase contrast velocity images and deformed based
n the underlying velocity vectors. Segmentation is still needed for
he epicardial and endocardial walls in the short axis slices though.
he objective function to be minimized calculates the difference
etween the real and simulated velocity vectors and a volume
onservation constraint is applied to ensure physically meaningful
esults.

For rapid modeling of contractile behavior of the myocardium,
ee et al. [54] introduced the concept of a Kernel-Partial Least
quares Regression (K-PLSR) motion modeling scheme. Initial mod-
ling was applied to a coarse mesh of the anatomy and K-PLSR was
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

sed to predict a fine mesh of the same timeframe. The regression
s trained with a set of corresponding coarse and fine meshes, the
atter created by using volume subdivision to the coarse contour
oints. The chosen mesh also facilitates the calculation of cardiac
train in the radial, circumferential and longitudinal directions.
sed modeling of the left ventricle. (Bottom) The derived longitudinal strain results

The use of K-PLSR greatly reduced computation time of a virtual
tagging analysis for a fine mesh. The flowchart representing this
method, along with an example of 3D virtual tagging results on
the left ventricle of a normal subject, can be seen in Fig. 4. The
colormap indicates the amount of longitudinal strain in the left ven-
tricle, characterized by left ventricle shortening and lengthening,
over a single cardiac cycle. Longitudinal strain is difficult to model
with other imaging modalities due to the in-plane motion of the
heart during image acquisition. The method was further extended
to incorporate the ordinary Kriging estimator for improved esti-
mation of the simulated velocity vectors at the mesh points [55].
Direct contractility modeling can be advantageous to the modeling
of cardiac dynamics, which would aid in the simulation of dynamic
surgical procedures.

5. Image guidance and augmented reality

For image-guided surgery, a key requirement is the augmen-
tation of the exposed surgical view with pre- or intra-operatively
acquired images or 3D models. The inherent challenge is accurate
registration of pre- and intra-operative data to the patient, espe-
cially for soft tissue where there is large deformation. With the
increasing use of intra-operative imaging techniques, AR platforms
imally invasive intervention: Computer assistance for robotic surgery.
007

are emerging in clinical environments [56]. Laparoscopic proce- 585

dures are especially well suited to AR applications because the 586

view of the operating scene is observed on surgical consoles. Tra- 587

ditionally preoperative data had to be reviewed off-line before the 588

operation for preoperative planning or during surgery for guidance. 589
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ig. 5. The da Vinci surgical robot for minimally invasive procedures. The surgical c
tereo laparoscope shown right middle, thereby providing 3D depth information to
he instrument (right bottom) and removes the fulcrum effect present in traditiona

R in surgery [57] can provide in situ pre- or intra-operative data
egistered to the surgical field-of-view.

Early work by Bajura et al. [58] on “live” ultrasound echography
ata visualization within a pregnant human subject was achieved
y using a small video camera mounted in front of a conventional
ead-mounted display worn by an observer. Abolmaesumi et al.
59] presented a robotic assistant for ultrasound based tracking and
isual servoing that compensates for patient motion. Ultrasound
mage and AR guidance were also used for off-pump, closed, beating
ntracardiac surgery [60]. The method was tested on porcine mod-
ls for implanting a mitral valve prosthesis via a universal cardiac
ntroducer. The method displayed the entire prosthesis and tools

ithout artefacts, thus providing intuitive navigation, positioning,
nd orientation of surgical instruments.

Preoperative data used for AR can also provide accurate subject-
pecific models displayed to the surgeon on demand during surgery.

hile being well established in neuro and orthopedic surgery, its
pplication to cardiac and gastrointestinal surgery is still in its
nfancy due to the difficulty of handling large tissue deformation.
egistration of preoperative cardiac images to the beating heart
equires real-time tissue motion correction. For this purpose, Rick-
rs et al. [61] developed an approach for MR guided transcatheter
losure of atrial septal defects based on real-time MR fluoroscopy
o track inducer sheath movement.

With the development of stereo consoles for robotic assisted
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

U
N

C
Ourgery, such as the da Vinci robotic surgical console as shown in

ig. 5, the surgeon can regain depth perception. However, over-
aying virtual objects onto the 3D scene is not straightforward
62,63]. With traditional AR, which uses surface transparency over-
ays, virtual objects can appear to float above the scene even though

ig. 6. (a) A phantom heart as seen through a da Vinci laparoscope. (b and c) AR visualiza
o the cardiac structure.
ED
 P

R
Oe shown top left provides stereo views of the operating field through the use of the

rgeon. Master–slave endo-wrist control (left bottom) allows for intuitive motion of

rendered at the desired depth. The reason for this is that our depth
perception depends on occlusions and motion parallax. For exam-
ple, if one object occludes another, it is perceived to be above it.
Bichlmeier et al. [64] developed a virtual mirror that relies on
motion parallax to provide accurate depth perception. The method
is intuitive but requires explicit extraction of the 3D tissue geome-
try, and optical tracking of both the patient and the surgeon.

In order to address the issue of visual fidelity, an AR approach
by Lerotic et al. [65] called inverse realism has been developed to
provide see-through vision of the embedded virtual object while
maintaining salient anatomical features of the viewed surface. The
features are accentuated and occlude the virtual object therefore
providing realistic depth perception in the scene. The method is
based on non-photo-realistic rendering of pq values [66]. The pq
values represent surface gradients of the exposed anatomical struc-
ture and the information about the surface is used to enhance
salient features on the surface, while rendering smooth background
regions semi-transparently. This type of rendering is perceived as
“X-ray vision” where the exposed surface around the virtual object
becomes transparent to provide a view through the surface.

With this technique, local surface orientation is provided by
the pq values. The smooth background is attenuated and made
transparent. Salient anatomical features are sharpened according
to their pq values and kept non-transparent. These two images are
combined together using a mask and a color look-up table. The
imally invasive intervention: Computer assistance for robotic surgery.
007

resulting translucent rendering as shown in Figs. 6 and 7, has occlu- 645

sions needed for accurate depth perception while providing views 646

of the embedded object. It has been shown that inverse realism 647

can provide accurate depth perception for AR in 3D surgical dis- 648

plays and the technique works equally well in stereo consoles and 649

tion with inverse realism showing a superimposed artificial heart valve in relation

dx.doi.org/10.1016/j.compmedimag.2009.07.007
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ig. 7. (a) Laparoscopic ultrasound probe (Aloka UST-5550) used on a phantom hear
ethod, where ultrasound images (c) are shown in situ.

ead-mounted displays. Moreover, it removes the need for explicit
xtraction of the 3D tissue geometry, thus facilitating its real-time
xecution.

. Improved manipulator/end-effectors for surgical
avigation

The standard laparoscopic configuration used in robotic MIS fea-
ures two or three manipulator arms and an laparoscope. Optimal
ntry points must be selected from a set of pre-defined admissible
orts. However, due to the fixed port points, the robotic manip-
lators can only reach a restricted region inside the body. This
inematic constraint given by the fulcrum point on the patient’s
kin incision must be considered when developing a robot-assisted
IS system. To determine the relationship between the entry points

nd the operative region within the body, preoperative images are
lso necessary for optimal port placement. Furthermore, to access
egions that are out-of direct line of sight of the surgeon, articulated
nstruments are essential.

.1. Port placement

Optimal port placement requires a system to consider all compo-
ents of the MIS together. For example, systems such as V-CAB [67]
nd STARS [68] have been developed to optimize port placement for
obotic assisted MIS. Using interactive visualization and manipula-
ion of the simulated thoracic ports in 3D within the reconstructed
horacic region, the optimal position of the ports can be determined.
owever, it should be noted that because of carbon-dioxide insuf-
ation during MIS coupled with respiratory and cardiac motion, the
ositions of the targeted regions on the heart may change signifi-
antly compared to preoperative data.

.2. Instrument design and articulation

The design of robotic tools for MIS is not only affected by the
xed entry ports on the body of the patient but must also respect
everal requirements: a relatively small size; an adequate num-
er of DOF to keep contact with organs at a minimum and avoid
angerous regions; good velocity and force resolution; and ample
orkspace, in order to be able to reach all points of a given tra-

ectory with the desired orientation. The conflicts between these
ontextual, mechanical and control constraints make the design
f a dexterous instrument challenging. Systems such as MARGE
69] are focused on the design and control of enhanced dexterity
evices for complex motion assistance in MIS, especially for coro-
Please cite this article in press as: Lee S-L, et al. From medical images to min
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ary artery bypass grafting (CABG). A novel control algorithm based
n the dynamic decoupling of the control torque in task and posture
ehavior control has been proposed [70]. The Steady-Hand Robot
71] has been designed to extend the surgeon’s dexterity in micro-
urgical applications. The robotic tool is attached to a serial, six DOF
ED
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Fen through the da Vinci laparoscope. (b) Augmented view using the inverse realism

manipulator arm providing smooth, tremor-free, precise positional
control and force scaling. Recently, a number of research groups
have focused on the development of micro-robots for enhanced
control and navigation for robotic assisted MIS. For example, the
MICRON project [72] focused on the design of a hand-held active
manipulator to compensate for tremor during ophthalmological
microsurgery. The three-DOF parallel robotic manipulator features
piezo-electric actuators and a 6 DOF sensing system with inertial or
optic sensors. A TEC (Tethered Epicardial Crawler) system has also
been developed for minimally invasive beating heart surgery [73].

Several teams have also developed manually driven prototypes
aimed to improve the accuracy of surgical manipulation of tis-
sue, mainly by augmenting the surgeon’s tactile or haptic sensing.
D’Attanasio et al. [74] described a new endoscope for integration
with a computer-assisted arthroscopy system. The device contained
a cable-actuated steerable tip and sensors to detect the position of
the tip and contact with the surrounding tissues are embedded.
In addition, the steering mechanism can also be servo-controlled
by the surgeon. The primary characteristic of this mechatronic tool
is the semi-automatic collision avoidance to prevent the tip from
touching dangerous regions detected prior to the surgery.

6.3. Surgical navigation for NOTES

Recently, there has been significant interest in pushing the fron-
tiers of MIS to NOTES. There are three major justifications for
the development of NOTES – better cosmetic appearance, ease of
access, and the stimulus for a technological advancement that could
enable a diminution of the pain and discomfort associated with
traditional surgery [75]. With NOTES, the 3D reconstruction of the
deforming scene can provide depth information that would benefit
the surgeon but the limited field-of-view can make intra-operative
navigation particularly difficult. In order to enhance the global
awareness and spatial orientation, Lerotic et al. [76] described a
dynamic view expansion scheme to provide enhanced visual cues
that can aid NOTES navigation. Mechatronically, the maneuverabil-
ity and stability of the instruments can be fulfilled by incorporating
hyper-redundant joints with an articulated probe to provide the
necessary flexibility to navigate inside complex structures, such as
the GI tract, while avoiding tears and perforations. It is also impor-
tant that the device can be locked in the desired position when the
tool reaches the operating area. It is evident that navigation in a
NOTES environment can greatly benefit from the incorporation of
intra-operative imaging techniques. The imaging and visualization
techniques described above will therefore play a role in the future
development of NOTES navigation platforms.
imally invasive intervention: Computer assistance for robotic surgery.
007

7. Haptic feedback and active constraints 739

With image-guided surgery, incorporating haptic feedback into 740

the master control interface can provide surgeons with the required 741
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point can be computed. Based on the gaze-contingent framework, 842

Mylonas et al. [88] have proposed gaze-contingent active con- 843

straints. Real-time binocular eye tracking was adopted to augment 844

the robotic manipulation with human vision in a way that increases 845

performance and accuracy. 846
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erceptual information for navigation and optimal force applica-
ion. The human haptic sense can be divided into two separate
ensory channels [77]: kinaesthetic force and cutaneous tactil-
ty. Kinaesthetic perception refers to the sensations of positions,
elocities, forces, constraints, and inertia, which all actively resist
ontact motion. Cutaneous stimulation can be further classified into
he sensations of pressure, stretch, vibration, geometry, roughness,
lippage, and temperature, all of which arise through direct contact
ith the skin surface. However, compared to the kinaesthetic force

eedback, it is still not practical for cutaneous tactility to be adopted
n tele-manipulation robot systems. Not only is the present tech-
ology limited to cutaneous tactility on the fingertip but it is also
ery difficult to integrate a tactile display into many master control
nits because of its considerable size and weight and complicated
echanical requirements.

Recently, Okamura [78] performed psycho-haptic research to
valuate the influence of haptic perception on human sensory and
otor capabilities for several surgical tasks. The experiments have

haracterized the problems with the deficiency of haptic feedback
n tele-manipulation surgery. Pezzementi et al. [79] demonstrated
he effect of haptic feedback on performing soft tissue suturing
howing that it can reduce the number of failures, the completion
ime, and the magnitude of tension force required. In practice, it is
ifficult to obtain haptic sensing data in vivo during robot-assisted
IS. During surgery, the instruments are interacting with many

bjects such as the trocar, tissue, and other surgical instruments.
ultiple miniaturized force sensors need to be embedded in the

nstrument requiring practical considerations of biocompatibility
nd sterilization [80]. These are some of the reasons why the cur-
ent state-of-the-art surgical robotic systems, including da Vinci,
ave not yet successfully integrated the contact haptics between

nstruments and tissue during surgery. Because of this, the research
ttention has naturally shifted from haptic sensing to rendering in
ele-operated surgery. Recent advances in haptic rendering technol-
gy enable collision detection and the computation of the interac-
ion forces and simple tactile forces between modeled instruments
nd organs. In MIS, the simulation of realistic haptics is faced with
any challenges [81]. To render in real-time with dynamic feed-

ack, the computational cost required for both graphic and haptic
endering of high-fidelity deformable tissue models is a major bot-
leneck. Updates for haptic rendering have to be maintained at a
ate above 1 kHz for perceptively continuous force sensing.

Although patient-specific models can be achieved accurately
ith advanced medical imaging technologies, empirical investiga-

ion of the in vivo tissue mechanics still requires improvement. As
entioned earlier, the lack of real material parameters is the main

arrier to representing the inherent non-linear, anisotropic and
ate-dependent behavior of soft tissue. There has been much inves-
igation into the derivation of subject-specific material properties
irectly from preoperative medical images and the incorporation
f this knowledge into MIS systems would control the amount of
actile feedback to the surgeon, thus providing a more realistic
xperience.

.1. Active constraint control based on preoperative data

Early work on haptic rendering was focused on active con-
traints. One well-known example of a haptic-enabled active
onstraint robotic system is the Acrobot hands-on surgical sys-
em [82,83]. It features a force feedback handle positioned close
o the robot end-effector. The surgeon can differentiate between
Please cite this article in press as: Lee S-L, et al. From medical images to min
Comput Med Imaging Graph (2009), doi:10.1016/j.compmedimag.2009.07.

he cutting of hard or soft tissue via the handle. The method relies
n preoperative registered imaging data and does not require any
orce sensors. By using the CT-based planning system, not only does
he surgeon have a better estimation of prosthesis positioning, but
e/she can also preoperatively define a safety region in which it
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is safe to perform bone tissue removal. The basic concept behind
the active constraint control instrument is to gradually increase the
haptic stiffness to the surgeon’s hand via the handle when the cutter
approaches the pre-defined forbidden region.

Indeed, the concept of active constraints can be deduced from
the original work of Virtual Fixtures first proposed by Rosenberg
[84] in 1993. The idea behind virtual fixtures is as a ruler guid-
ing a pen and this would alleviate the workload of certain human
sensory modalities on processing the remote-control task. Further
work on virtual fixtures was carried out by Burschka et al. [85],
who developed a closed-loop position control system to guide the
user using virtual fixtures based on both tool tracking and a visual
reconstruction of the surrounding environment. The latest research
on virtual fixtures seeks to simulate force feedback consisting of
dynamic properties. In recent work, Ren et al. [86] applied dynamic
virtual fixtures on beating heart ablation procedures. The operator
would sense a peg-in-hole haptic effect when reaching the ablation
target using the haptic device. Therefore, the method relies heav-
ily on the preoperative images and the accuracy of intra-operative
registration.

7.2. Dynamic active constraints and gaze-contingent motor
channeling

With the limitations of 3D structural recovery and registration
for intra-operative guidance, the future clinical impact of active
constraints relies not only on imaging techniques, but also on its
ability to incorporate human interaction to enhance its flexibil-
ity. To this end, gaze-contingent information was presented as an
important visual sensory channel to illustrate how the information
from eye movements and ocular vergence can be used to control the
instruments and update the active constraints in dynamic surgical
scenes. The work on gaze-contingent depth recovery was proposed
by Mylonas et al. [87]. By tracking the binocular eye movement and
calculating ocular vergence, the 3D depth of the fixation point on
the tissue can be determined. Given the known intrinsic and extrin-
sic parameters of the calibrated stereo laparoscopic camera, the 3D
distance between the laparoscopic instrument and the eye fixation
imally invasive intervention: Computer assistance for robotic surgery.
007

Fig. 8. A schematic illustration of dynamic active constraints by the use of conical
pathways carved out from the active constraint boundary, which can be positioned
towards the ablation targets based on the fixation during the experiment [88].

dx.doi.org/10.1016/j.compmedimag.2009.07.007
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By generating a force based on the relative separation between
he fixation point and the instrument tip, the operator can perceive
he haptic cues and constraints for manipulating the instrument.
ig. 8 illustrates the use of dynamic active constraints through the
se of conical pathways leading towards the target. This constraint
omprised of a planar boundary parallel to the viewport of the vir-
ual camera and a narrow conical channel aimed at the target as
etermined by the fixation point. It has been shown that by the use
f this scheme, significant improvement can be achieved in terms of
he confidence and accuracy of the instrument manipulation [88].
his effectively bridges the visual and motor modalities by shift-

ng the burden of the instrument control and the computational
ognition towards a perceptually enabled channel.

. Discussion and conclusions

In this paper, we have outlined some of the major research issues
elated to image-guided and robotic assisted surgical navigation.
lthough there exists much research into robotic assisted MIS, there
till remain many unresolved challenges. For tissue deformation
racking, the accurate identification of surface features is a critical
ssue as they can be unstable and prone to errors due to intrinsic
issue surface appearance or specular highlights. Dense 3D recon-
truction constitutes one of the essential building blocks for truly
eneral robotic assisted MIS frameworks. While current methods
ffer adequate performance mainly in the field of motion esti-
ation/compensation, the ability to recover accurate dense depth

nformation is of great importance if an integrated framework
ncompassing processes from preoperative and intra-operative
ata registration for computer-aided navigation to prescription of
ctive constraints is to be developed.

Given the shortcomings of single-cue systems and the recent
rive towards developing multi-cue integration, the future of
D reconstruction is increasingly moving towards multi-modal
pproaches, with cues not limited to being visual, but possibly also
nferred from the physical properties of the scene. For example,
nvisible structured light [89] can be used to recover depth and
urface information without interfering with the surgeon’s visual
cene. As for the fusion mechanism, while graphical models provide
reat flexibility when compared to ad hoc methods, their com-
utational complexity cannot be under-estimated, especially with
IS tools being developed with increasingly higher output resolu-

ions. However, depth information provides no indication of the
tructures located below the surface visible to the surgeon. The
ntegration of 3D imaging techniques can assist with navigation.
egistration of images acquired intra-operatively and models built
reoperatively are crucial for real-time guidance and intervention.

t is feasible that biomechanical models obtained from the patient
ata can be simulated and displayed to the surgeon on demand,
owever, the difficulties of achieving real-time performance while
aintaining the required accuracy should not be under-estimated.

ncreasingly, the incorporation of biophotonics can provide sur-
eons with details of the tissue at a cellular level. However, the
ssue of how to manage this information effectively presents some
nique research opportunities.

In conclusion, medical simulation, manipulation and aug-
ented reality systems have made significant inroads into their

ractical clinical use but significant challenges are still lying ahead.
ne of the challenges to be tackled is the creation of a complete
ulti-modal image-guided MIS system for soft tissue interventions,

uch as tumor excision and beating heart surgery. Ideally, a dynamic
Please cite this article in press as: Lee S-L, et al. From medical images to min
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iomechanical model will have been built from preoperative data,
roviding a subject-specific model of the structures in question. The
isualization of the model in situ during a procedure will greatly
nhance orientation and improve accuracy and the incorporation
f real-time depth recovery can be used for haptic feedback and
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the definition of no-go zones, thus significantly improving patient
safety.

It is expected that tactile and haptic-enabled virtual fixtures
or active constraints will be an important research direction with
the aim of improving the fidelity of the interface between the
operator and surgical environment in robotic assisted MIS. We
envision that the synergistic use of dynamic active constraints
associated with sensory information will enhance the surgical per-
formance in terms of speed, safety and reliability. Research such as
gaze-contingent active constraints [90] is a new way of enhancing
the accuracy of instrument positioning by guiding and confining
the motion of the instrument end-effector based on visual sen-
sory information. With the emergence of hyper-redundant flexible
manipulators, systematic constraint analysis in this large robot con-
figuration space will be required. Many significant hurdles such as
excessive manipulation delay due to tele-operated control will also
need to be addressed.
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