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The Quaternion LMS Algorithm for Adaptive
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Abstract—The quaternion least mean square (QLMS) algorithm
is introduced for adaptive filtering of three- and four-dimensional
processes, such as those observed in atmospheric modeling (wind,
vector fields). These processes exhibit complex nonlinear dynamics
and coupling between the dimensions, which make their compo-
nent-wise processing by multiple univariate LMS, bivariate com-
plex LMS (CLMS), or multichannel LMS (MLMS) algorithms in-
adequate. The QLMS accounts for these problems naturally, as it is
derived directly in the quaternion domain. The analysis shows that
QLMS operates inherently based on the so called “augmented” sta-
tistics, that is, both the covariance E {xx* } and pseudocovariance
E{xxT} of the tap input vector x are taken into account. In ad-
dition, the operation in the quaternion domain facilitates fusion of
heterogeneous data sources, for instance, the three vector dimen-
sions of the wind field and air temperature. Simulations on both
benchmark and real world data support the approach.

Index Terms—Adaptive multistep ahead prediction, data fusion
via vector spaces, multidimensional adaptive filters, quaternion
signal processing, wind modeling.

I. INTRODUCTION

UE to its simplicity and robustness, the least mean square

(LMS) algorithm has been at the core of adaptive filtering
applications [1], [2], and its online adaptive mode of opera-
tion makes it suited for the processing of nonstationary real-
world signals. These attractive properties have led to its applica-
tions in noise reduction, radar/sonar signal processing, channel
equalization for cellular mobile phones, echo cancelation, and
low delay speech coding [3]. The LMS update can be expressed
as

w(n + 1) = w(n) + pe(n)x(n) (1)

where w(n), e(n), p, and x(n) denote, respectively, the adap-
tive weight vector, instantaneous output error, step size, and the
input data vector of length L. Extensions proposed to improve
the performance of LMS include those based on the optimiza-
tion of the step size [4], filtering of error gradients [5], and adap-
tive filter length [6].
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To process bi-variate signals, such as those in digital com-
munications, chaotic maps [7], and vector fields [8], the LMS
algorithm was extended to the complex domain [9]. Recently,
Mandic et al. have exploited the bivariate model of wind [8],
[10] in this context; this was achieved by using the so-called
augmented statistics [11]. In many other fields, the simultaneous
processing of the two dimensions of a signal (radar, sonar) can
lead to a more efficient signal processing algorithm than pro-
cessing each dimension separately. As the quaternion domain
represents an extension of the complex field, it is natural to ask
whether we can extend the class of LMS algorithms to cater for
adaptive filtering of three- and four- dimensional (hyper-com-
plex) signals.

Quaternions can be regarded as a noncommutative extension
of complex numbers, and comprise at most four variables [12],
[13]. A quaternion variable ¢ € H which has a real/scalar part
R{q} (denoted with subscript a), and a vector part S{¢q} com-
prising of three imaginary parts (denoted with subscripts b, c,
and d), can be expressed as

q=[R{q},3{a}] = [¢a.q] €H
= [(I(m ((Ib, e, (](1)]
:qa+qbz+qc]+qd’{ {(Iav%vovqti € R} (2)

Quaternions have been used for more than 150 years (conceived
by Hamilton in 1843) and have found applications in computer
graphics, for the modeling of three-dimensional (3-D) rotations
[14], in robotics [15], and molecular modeling [16]. Within the
image and signal processing community, Pei and Cheng em-
ployed quaternions to process color images [17], Toyoshima
implemented efficient hyper-complex digital filters [18], Biilow
and Sommer used a hyper-complex representation in texture
segmentation [19], whereas Zarzoso utilized quaternions to help
solve source separation problems [20]. Le Bihan e al. used
quaternions in watermarking [21]; they also proposed quater-
nion algorithms for spectrum estimation, such as a fast com-
plexified quaternion Fourier transform [22], quaternion singular
value decomposition (QSVD) and MUSIC algorithm to process
polarized waves [23], [24]. Although the standard least squares
problem has also been addressed in the quaternion domain [16],
[25], [26], adaptive filtering algorithms for the processing of
quaternion valued signals are lacking.

The recent progress in technology, environmental sciences,
robotics, and biomedicine, has highlighted the need for adap-
tive filtering of several important classes of multidimensional
signals, for instance, 3-D wind field measured by three axis
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anemometers. By processing those data directly in the multidi-
mensional domain where they reside, we can exploit the corre-
lation and coupling between each dimension and therefore pro-
vide enhanced modeling. To this end, we propose the quaternion
least mean square (QLMS) algorithm. To cater for noncircu-
larly symmetric distributions in H, similarly to the widely linear
model in C [27], and augmented CLMS (ACLMS) [28], [29],
we also investigate the benefits of so called augmented statistics.

The organization of the paper is as follows; in Section II we
briefly review the elements of quaternion algebra necessary
for the development of QLMS adaptive filters. In Section III,
QLMS and its augmented version are derived. This is followed
by a statistical analysis on both QLMS and AQLMS algorithms
in Section IV. Section V compares the performances of the
proposed approaches against the univariate LMS, bivariate
CLMS and multichannel LMS [30]. Simulations are based on
both benchmark data and real world three-dimensional wind
field data. Section VI concludes the paper.

II. QUATERNION ALGEBRA

The properties of the orthogonal unit vectors, 2, j, xk de-
scribing the three vector dimensions of a quaternion are

1) =K
g =1
Kt =]
k=12 =2 =kr? = —1. 3)

Due to the noncommutativity of the quaternion, for example,
7 # 13, instead 2 = —k. Other elements of quaternion algebra
that are used in this work include the multiplication given by

qi1q2 = [qa,17 Q1][qa,2; QQ]
=[Ga,19a,2 — A1 - 92, Ga192 + Ga,2d1 + Q1 X Q2] (4)

TR

where ¢ = ¢u + @t + ¢t + qak = [¢a, q]. Symbols and
“x” denote respectively the dot-product and the cross-product,
the conjugate of a quaternion ¢* = [¢a,q]* = [¢a,—q], and
the norm ||¢||2 = g¢*. Note, that quaternion conjugation is anti-
involution, that is, (¢q1g2)* = ¢5¢F. A quaternion is said to be
pure, if its real part vanishes. The quaternion vector space H
forms a noncommutative normed division algebra, that is

q192 # ©2q1-

For an introduction to quaternions we refer to [31]; for a more
advanced reading, we recommend [32]. In this paper, unless oth-
erwise stated, all the quantities are quaternion-valued, for in-
stance w(n) is a vector of quaternions, while e(n) is a quater-
nion variable.

III. DERIVATION OF THE QLMS AND ITS VARIANT AQLMS

Based on the quaternion algebra, and standard stochastic gra-
dient approximation, we shall now derive the quaternion LMS
(QLMS) algorithm for quaternion-valued linear adaptive finite-
impulse-response (FIR) filters.
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A. The Quaternion LMS

The same real-valued quadratic cost function (the quaternion
norm) as in LMS and CLMS is used, that is

(n) + e;(n) + eZ(n) + ei(n) )

where the errorle(n) = d(n) — wl'(n)x(n), with d(n), w(n),
and x(n) denoting respectively the desired signal, the adaptive
weight vector, and the filter input. Symbols (-)Z, ()2, and (-)*
denote respectively the transpose, Hermitian, and quaternion
conjugate operator. Based on the cost function (5), within the
steepest descent optimization, the following gradients need to
be calculated?

Vw(e(n)e*(n)) = Vuw, (e(n)e*(n)) + Vw, (e(n)e*(n))s
+Vw. (e(n)e*(n))1+ Vw, (e(n)e*(n))s  (7)

where w = w, + W1 + W.J + Wyk and

Vow, (6(n)e* (1)) = () Vaw, (€ (1) + Vv, (e(m)) " (n)
Vw, (e(n)e*(n)) =e(n)Vw, (¢*(n)) + Vuw, (e(n))e*(n)
Vw. (e(n)e*(n)) =e(n)Vw, (*(n)) + Vuw, (e(n))e*(n)
Vw, (e(n)e*(n)) =e(n)Vw, (e*(n)) + Vw, (e(n))e*(n).
)

Subsequently, the update of the adaptive weight vector of QLMS
can be expressed as (the full derivation of the gradient can be
found in Appendix VIII-A)

w(n+1) = w(n) + p(2e(n)x*(n) — x*(n)e*(n)). (9

Due to the noncommutativity of the quaternion product, there
are two terms within the gradient of the cost function, that is,
2e(n)x*(n) and x*(n)e*(n). The QLMS update includes the
term pe(n)x*(n) which is similar to that within the complex
LMS [9], together with an additional term x*(n)e*(n) which

'In this work we use the formulation y(n) = w7 (n)x(n) following on
Widrow’s CLMS [9], however y(n) = x”(n)w(n) can also be used as a
starting point. Unlike the LMS and CLMS, due to the noncommutativity of
quaternion product, the formulation y(n) = x”(r)w(n) requires separate
derivation of QLMS, and can be addressed similarly to the correspondence be-
tween (9) and (39), when the cost function is written as [7(n) = e*(n)e(n)
instead of 7 (n) = e(n)e*(n).

2The noncommutativity of the quaternion product and the conjugation prop-
erties are taken into account, that is

Vo (1) = () (Vuw, (7 (1)) + T, (" (1))
+ Ve (¢7() 74 Ty (¢ (1))
+ (vwd (e(n)) +Va, (e(n))z
+ Ve, (e()) 7+ Vo, (e(m) ) )" (m)
# (1) (Vs (7)) + Vi, (e (m) )2
() )
+ e*(n)(vwa (e(n)) + Ve, (e(n))z
+ Vo ()14 Yy (em))r) - ©)
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is specific to the quaternion domain. To answer whether QLMS
simplify exactly into CLMS when quaternion-valued signals are
limited to two dimensions, let the imaginary parts 7 and x of
quaternions x(n) and e(n) vanish. The QLMS for such a case
simplifies into

win + 1) = w(n) + p(fea(n)Xa(n) + Bes(n)xs (n)
+1[—eq(n)xp(n) + 3ey(n)x4(n)]).

A comparison with the CLMS update

w(n +1) = w(n) + p(lea(n)xa(n) + ex(n)xy(n)]
+il—ea(n)xy(n) + ey(n)xq(n)])

shows that QLMS does not simplify exactly into CLMS, high-
lighting the direct multidimensional mode of operation. This is
also the case if any other combination of two dimensions of a
quaternion are made to vanish, however, it can be shown that if
the quaternion data are in the “isomorphic” form of ¢ = ¢, +
Qiy, where Q = \/q; + ¢ + qj, and i, = (qp14qe9+4qar)/ Q,
the derivation of QLMS is exactly identical to that of CLMS.

B. The Augmented QLMS (AQLMS)

Motivated by some recent developments in so-called aug-
mented complex statistics, we now derive the augmented QLMS
algorithm, which is capable of dealing with the generality of
quaternion data. Itis usually assumed that the statistics in C are a
simple extension of the statistics in R, obtained by replacing the
()T operator by the (-)# operator in the corresponding second
order statistical moments. For example, the covariance £ {xx”}
in the real domain is replaced by E{xx*} in the complex do-
main. This is, however, not adequate for noncircular data (for
more detail, see [10] and [33]). Recently, for the processing of
real world data which can be made complex by convenience of
representation, Goh and Mandic (for wind processing [10] and
[28]), Novey and Adali (for source separation applications [34]
and [35]) and, Schreier and Scharf (for communication appli-
cations [11]) have highlighted the need to adopt the so-called
“augmented statistics,” a concept introduced by Picinbono [36]
and [37]. The use of augmented statistics is crucially important
when processing noncircular complex signals; noncircularity or
improperness is a second order statistical property, which can
be defined as

Cax = B{xx} £0 P = E{xxT}#0  (10)

that is, the pseudocovariance Pxx does not vanish for a non-
circular complex signal.3 In the context of quaternion statistics,
properness (known as Q-properness) is defined as the invari-
ance of the probability density function (pdf) under some special
angle rotations [38], [39]. More recently, Amblard and Le Bihan

3For a complex circular signal, the pseudo-covariance Pxx vanishes, that is,
E{xx"} = E{x.x"}—E{x;x!}+i1E{x.x] } +1E{x;x"} = 0. This
is because for a circular signal, the real part x,. and the imaginary part x; have
the same covariance, but are uncorrelated.
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extended the definition of properness by proposing C-proper-
ness and H-properness [39]. There is, however, no explicit men-
tion of the role of pseudo-covariance in quantifying properness
of quaternions. More specifically, the pseudo-covariance does
not vanish even for a Q-proper signal.# Motivated by the aug-
mented CLMS [28], augmented CRTRL [40], and augmented
statistics for wind profile [8], we now investigate the benefits of
including the pseudocovariance Pxx into the QLMS algorithm.
In order for QLMS to cater for general quaternion processes, we
employ a quaternion-valued widely linear model [37], given by

y(n) = w" (n)x(n) + g* (n)x"(n). (11)
This model incorporates both the information contained in the
covariance and pseudocovariance (for more detail, see [27]). For
the quaternion scenario, the update for vector g in (11) can be
found similarly to that for QLMS, and is given by (full deriva-
tion can be found in Appendix VIII-B)

g(n+1) =g(n) + n(2e(n)x(n) — x(n)e*(n)).  (12)
Again, the noncommutativity of the quaternion products must
be taken into account during the derivation of the update (12).

Finally, (9) and (12) can be combined into a compact “aug-
mented” form as

(13)

and the weight update of the augmented QLMS (AQLMS), can
be expressed as

*

h"(n+1) = h*(n)+p[2e" (n)x® (n)—x* (n)e® (n)] (14)
where the augmented error and input vector are given by

e"(n) = d(n) —h*" (n)x"“(n) x"(n) =[x"(n) x"(n)]".
15)

In the complex domain, it has been shown that adaptive algo-
rithms based on augmented statistics exhibit advantages over
standard algorithms, for data which are not circularly symmetric
[40], [41].

IV. PROPERTIES OF QLMS ALGORITHMS

The noncommutativity of quaternion product make their al-
gebraic manipulation demanding. One way to circumvent this
problem is to treat the real/scalar ${-} and the vector ${-} part
of a quaternion separately, similarly to [42]. The analysis will
be based on the following two observations:

4For a Q-proper signal, the pseudo-covariance Pxx does not
vanish, that is, E{xx?} = FE{x.x!'} — E{x,x{'}—-E{x.x'} —
E{xxT}+2E{x.x} + RE{x.xT}+r2E{x,xT} # 0. This is
because for a @-proper signal, the scalar/real part x, and the vector/imaginary
part X; . 4 have equal variances, but are uncorrelated. This follows from
conditions (4) and (5) of [38, Theorem 2].
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1) Property I:

y=—y*iff R{y} =0. (16)

2) Property 2:

y=y" iff S{y} =0 (17
To analyze the QLMS algorithms, we shall now make the stan-
dard assumption in adaptive filtering that d(n) = w/  x(n)
[43]. Following the standard analysis of the convergence in the
mean [43], the weight error vector is defined as

V(n) = W(TL) — Wopt (18)
where W, is the optimal weight vector, while the error e(n)

between the desired signal d(n) and its estimate y(n) is given
by

e(n) = d(n) - y(n)
= w2 x(n) = w” (n)x(n)

= (wl = w'(n))x(n) = —v'(n)x(n).

(19)
A. Analysis of QLMS
From the QLMS update (9), the real part can be computed as

R{w(n+1)} = R{w(n)}

+R{ 1 (2e(n)x*(n) — x*(n)e*(n))}. (20)

By employing Property 2, it can be shown that (20) is equivalent
to

Rfw(n+ 1)} = R{w(n)}

LR {pu(e(n)x" (n)} — R{pe(n)x(n)}h. @1)
Substitute (19) into (21) to yield
R{w(n+ 1)} = R{w(n)} — 2R{uv" (n)x(n)x" (n)}
+ §R{MVT( )x(n)x(n)}
=R{w(n)} — 2R{p(v" (n)x(n) (n))T}
+ §)‘%{u( (n)x(n)x" (n))" }. (22)
Substract w,,¢ from both sides of (22) to give
R{v(n+1)}
= R{v(n)} — 20 {p(v" (m)x(n)x" (n)) " }
+ %{u(vT(n)x(n)xT(n))T}
R{vT(n+1)}
= %{v (I + 1 [x( )x ( )— 2x(n)xH(nZ])} (23)

-~

Real QLMS statistics
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From (23), we can see that in terms of statistics, QLMS
includes both the pseudocovariance Pyxyx = E{xx’} and
the covariance Cy, = E{xx}. This is a major difference
as compared with CLMS, and therefore, it is expected
that the QLMS and augmented QLMS will have similar
performance.

The vector part 3{-} of the QLMS update (9) can be analyzed
using Property 1 and (19), that is

S{w(n+1)} =S{w(n)}

+ S{ul2e(n)x*(n) — x*(n)e*(n)]} (24)
— S{w(n)} + S{u2e(n)x" (n)}
+ S{pe(n)x(n)}
=3{w(n)} — S{p2v’ (n)x(n)x" (n)]"}
=S{ulvT (n)x(n)x" (n)]"} (25)
yielding
S{wl(n+1)} = S{w'(n)}
=S{p2v" (n)x(n)x" (n)}=S{pv" (n)x(n)x" (n)}. (26)

Subtract w,p,¢ from both sides of (26) to give

ST (n+ 1))
= SV ()} — SV () ()}
() x(n)x" (n)}
= {70 (L4 ulzx(” ) = x|

'

Vector QLMS statistics

27)

Again, both the pseudocovariance and the covariance estimates
are involved in the weight update of QLMS. This indicates that
the “augmented” statistics is inherent to the QLMS, which is
a unique property of this class of algorithms. We next proceed
to establish the extent to which AQLMS has advantages over
QLMS.

B. Analysis of AQLMS

To investigate statistical properties of AQLMS, define the
error e(n) in terms of the “augmented” weight error vectors
Vw(n) and vg(n) to give

U

(n) = [w' (n)x(n) +

prt (n)+gZth (n )]
— [wT (n)x(n) + " (n)x*(n)]
— [V (n)x(n) + vg (n)x*(n)]

g" (n)x"(n)]

e(n) =

—

%

(28)
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where vy, (1) = W (1) — Wopt and vg(n) = g(n) — gopt. Based
on Property 2, the real/scalar part R{-} of the AQLMS update
of w(n) (9) can now be written as

R{w(n+1)} = R{w(n)}+uR{e(n) [2x"(n)—x(n)] }. (29)
Replace the error e(n) with its augmented counterpart, to give

R{w(n+ 1)}
= R{w(n)}—uR{ [vy, (n)x(n) + vg (n)x*(n)]
[2x* (n) — x(n)]}

= R{w(n)} — pR{vy (n)x(n) [2x* (n) — x(n)] }

—/ﬂt{vg(n)x* (n)[2x*(n) —x(n)] }. (30)
Substract Wop(n) from both sides of (30) to obtain
R{vi(n+1)}
= R{vI(n)[I - 2ux(n)x"(n) — px(n)x" (n)] }
- /ﬂ%{vg(n) [2x*(n)x" (n) — x*(n)xT(n)]}. (3D

Observe that the statistics of AQLMS include the covariance
x(n)xH (n), the pseudocovariance x(n)x” (n) and their conju-
gates. Similarly to the analysis of QLMS, we have

%{vg(n + 1)}
= R{v{ (n)[I - 2ux*(n)x" (n) — px* (n)x" (n)] }
— pR{vy (n) [2x(n)x" (n) — x(n)x" (n)] } (32)

S{Vz‘;(n-ﬁ- 1)}

= ST (m) [T = 2ux(m)x" (n) — pix(n)x" ()]}
- u%{vg(n) [2x*(n)x" (n) + x*(n)x"(n)]} (33)

%{ng(nJr 1)}

= S{vg (n)[I - 2ux*(n)x" (n) — px*(n)x (n)] }
— uS{vE(n) [2x(n)x" (n) + x(n)x"(n)]}. (34

It is shown in the simulations that the use of augmented statistics
provides minor improvement in the performance, (due to the
deterministic relationship between Cxx (Pxx) and Ciy (Piy)).

C. Choice of Parameters of QLMS

The choice of parameters of QLMS is crucial to its perfor-
mance, however, e.g., determining the range of step size is
not trivial, as it requires eigendecomposition of the correlation
matrix. The difficulty arises from the noncommutativity of the
quaternion product, which gives rise to the notion of the left
and right eigenvalue decomposition [13]. Furthermore, the left
eigenvalue decomposition of a quaternion is still an ongoing
research topic [44]. Variants of the proposed class of QLMS

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 4, APRIL 2009

algorithms are pretty much along those introduced for the LMS,
this is however beyond the scope of this paper.

V. SIMULATIONS

Since prediction is at the core of adaptive filtering, our
simulation was conducted in the prediction setting, for M -step
ahead prediction. For a quantitative assessment of the prediction
performance, we employ the prediction gain ), [45], given by

o2
R, =10log J—’g‘ (dB) (35)
where 02 and o2 denote respectively the estimated variances
of the input and the error. The prediction gain was measured at
the steady state. Two input processes were considered, the well-
known atmospheric motion inspired, chaotic signal-the Lorenz
attractor, and a real-world three-dimensional wind field. For
rigor, the performances of QLMS and AQLMS were compared
with multiple univariate LMS applied component-wise, CLMS
[9], and multichannel LMS [30]. Within the four-channel LMS
setting, the jth output of the multichannel adaptive filter is given
by [30]

4
yi(n) =Y hii(n)xi(n) j=1,....4  (36)
=1

where the adaptive weight vector h;;(n) =
[hij(n),...,hij(n — L + 1)]7 corresponds to the ith
input vector x;(n) = [z;(n),...,z;(n — L + 1)]7 and jth
output y;(n) channel. The update for each coefficient vector
h;;(n) is given by [30]
hij(n +1) =hi;(n) + Ahj;(n)

The error e (n) = d;(n)—y,(n) is a scalar instantaneous output
error corresponding to the jth channel y;(n).

A. Experiment 1: Lorenz Attractor—Atmospheric Convection
Rolls Prediction

The Lorenz attractor is a three-dimensional nonlinear system
used originally to model atmospheric turbulence, but also to
model lasers, dynamos, and the motion of waterwheel [7]. Math-
ematically, the Lorenz system can be expressed as a system of
coupled differential equations

ox

ot =a(y — )

% =z(p—2) -y

%:xy—ﬂz (38)

where «a, p, 8 > 0. Lorenz attractor, shown in Fig. 1, can be re-
garded as a pure quaternion, and is used as a benchmark signal
to test the performance of the QLMS algorithms. For a chaotic
behavior of Lorenz attractor, the parameters were selected as

Authorized licensed use limited to: Imperial College London. Downloaded on March 20, 2009 at 04:25 from IEEE Xplore. Restrictions apply.
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a = 10, p = 28, and # = 8/3. Fig. 2 demonstrates the per- prediction horizon M (with = 10~° constant) and the step
formance of LMS, QLMS, and AQLMS, as a function of the size (M = 1 constant) for varying filter length.
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Fig. 3. Three-dimensional wind signal.

The strong correlation between dimensions of the Lorenz at-
tractor explains the better performance of the QLMS approaches
over multiple univariate LMS applied componentwise, as shown
in Fig. 2.

B. Experiment 2: Wind Forecasting

Wind forecasting at short scales plays an important role in re-
newable energy, air pollution modeling and aviation safety [46].
In the simulations, 3-D wind speed data (a segment shown in
Fig. 3) were used,> together with air temperature measurements.

5The wind data were recorded by Prof. K. Aihara and his team at the Univer-
sity of Tokyo, in an urban environment. The wind data was initially sampled at
50 Hz, but resampled at 5 Hz for simulation purposes.
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2

(dB)

(]

Prediction Gain R_ of XY

Prediction Horizon M Filter length L

Fig. 4. Performance of CLMS, QLMS and AQLMS for the prediction of wind.
The R, was calculated based on the east (X) and north (Y) dimensions.

In the first set of experiments, wind was considered as a pure
quaternion, that is, the real part was zero. For a fair comparison
between QLMS and CLMS, the prediction gain I2,, was calcu-
lated based on two dimensions at a time and over a range of
the prediction horizons M and filter lengths L, keeping the step
size constant ;1 = 1073, Figs. 4-6 illustrate the performances
when the prediction gain I, was computed based on east-north,
east—vertical, and north—vertical directions, respectively. In all
the cases, QLMS and AQLMS outperformed standard CLMS.
Figs. 4-6 illustrate that both QLMS and AQLMS have similar
performance, with AQLMS outperforming QLMS, conforming
with the analysis in Sections IV-A and IV-B. The significant per-
formance advantage over CLMS is due to the fact that QLMS
and AQLMS fully exploit the information in the three dimen-
sions of the wind data. Another factor which contributes to the
enhanced performance of QLMS algorithms is that owing to
their quaternionic nature, the so called the “augmented” statis-
tics is inherent to the weight updates.

C. Experiment 3: Data Fusion Via Quaternion Spaces

To demonstrate the ability of quaternion models in the fusion
of heterogeneous data sources [47], the air temperature was used
as a scalar/real part of the quaternion, whereas the three wind
directions were the vector part. An experiment was conducted
to investigate whether the joint quaternionic model of the tem-
perature and 3-D wind vector would lead to improved perfor-
mance. Fig. 7 shows that the 4D quaternion model of wind pro-
vided enhanced performance for both the QLMS and AQLMS.
The next experiment comparing the performance of two CLMS
(combined into a quaternion output) against QLMS approaches
is illustrated in Fig. 8. This was achieved for the best empir-
ical choice of the parameters of the QLMS and a pair of CLMS.
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of XZ (dB)

P

Prediction Gain R

Prediction Horizon M Filter length L

Fig. 5. Performance of CLMS, QLMS and AQLMS for M step ahead pre-
diction of wind. The R, was calculated based on the east (X) and vertical (Z)
dimensions.

of YZ (dB)

P

Prediction Gain R

Filter length L

Fig. 6. Performance of CLMS, QLMS, and AQLMS for the M step ahead
prediction of wind. The 2, was calculated based on the north (Y) and vertical
(Z) dimensions.

The CLMS did not yield satisfactory prediction of the temper-
ature dimension, whereas both the QLMS and AQLMS algo-
rithms exhibited excellent performance. In the context of fil-
tering a quartet of signals, another aspect that needs to be ad-
dressed is the computational complexity, summarized in Table I.
The computational complexity of QLMS is seven times that of
LMS, three times that of CLMS, and less than two times that
of multichannel LMS [30]. For a fair comparison in terms of
computational complexity, the bottom plot of Fig. 9 compares
performances of QLMS (O(56L)) and the combined CLMS
(O(60L)), with the filter length L of CLMS three times that
of QLMS. The QLMS exhibited superior performance. In the
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@B)
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Prediction Gain R

Prediction Horizon M

Filter Length L

Fig. 7. Comparison of the performances of 3-D QLMS, 3-D AQLMS, 4D
QLMS, and 4D AQLMS for the “data fusion” model of wind. The use of
temperature as a scalar/real dimension and the 3-D wind data as the vector
dimensions resulted in a much improved performance.

TABLE I
COMPUTATIONAL COMPLEXITIES OF THE ALGORITHMS
Algorithms Additions  Multiplications
4x LMS 8L 8L+4
2x CLMS 12L 20L
1x MLMS 321 32L+16
1x QLMS 48L 56L
1x AQLMS 112L 96L

next set of simulations, the performance of multichannel LMS
(MLMS) [30] was compared against the QLMS algorithms, as
shown in Fig. 10. The performances were similar for small step
sizes; however, both QLMS and AQLMS outperformed MLMS
with an increase in filter length.

VI. CONCLUDING REMARKS

A class of quaternion least mean square (QLMS) stochastic
gradient adaptive filtering algorithms has been designed for
adaptive filtering of hyper-complex processes. Such three- and
four- dimensional processes (e.g., the 3-D Lorenz attractor,
and 4D wind model) exhibit complex nonlinear dynamics,
together with the coupling between their components, which
makes their processing by the multiple univariate LMS and a
pair of complex LMS (CLMS) inadequate. A rigorous analysis
has shown that QLMS incorporates both the covariance and
pseudocovariance terms within its update and can therefore
cater for noncircularly symmetric quaternion data. For rigor, the
augmented QLMS (AQLMS) has also been derived by taking
into account the so-called augmented second order statistics.
Further, it has been shown that the operation in the quaternion
domain allows for the fusion of heterogenous data sources.
Simulation results on both the benchmark 3-D data (Lorenz
attractor) and real world wind data support the approach.
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Fig. 8. One-step ahead prediction of the 4D wind using CLMS, QLMS and AQLMS. Note that the CLMS performance was not satisfactory when modeling the
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Fig. 9. Convergence of QLMS algorithms. Top: Absolute error curves. One
CLMS filter predicts the temperature and east wind direction, and another
CLMS filter predicts the north and vertical wind direction. Bottom: Perfor-
mances of QLMS (O(56L)) and CLMS (O(60L)) on the 4D wind signal.
The filter length of CLMS is three times that of QLMS to ensure they have
approximately the same computational complexity.

In this work, we have considered the cost function 7 (n)
lle(n)||3 = e(n)e*(n), however, the same cost function can
be expressed in a different way, that is, J(n) = |le(n)|? =

e*(n)e(n). Due to the noncommutativity of quaternion product,
this gives rise to a variant of QLMS given by

w(n+1) = w(n) + p(2x*(n)e(n) — e*(n)x*(n)). (39
Since the same cost function is being minimized, this results
in identical performance. Future work on the class of QLMS
algorithms will include algorithms with an optimal adaptive step

size, infinite impulse response (IIR) adaptive filters in H, and
algorithms with a time-varying filter length [6].

APPENDIX

Derivation of the Stochastic Gradient Update Within
QLMS: To calculate the derivatives of the error e(n) and its
conjugate with respect to the weight vector w(n), the terms
wT(n)x(n) and x (n)w*(n) that appear in the calculations,
can be expanded as (for space limitation, the time index ‘n’ is
omitted)

r aTxa — WbTXb — szxC — Wded
W (n)x(n) = | Wa X0 F N Xe bW XWX
a ~c c ®a 4Xb — Wy Xg
_wfxd + Wdea + ngc - wsz
i Wg;xa - fob - szc - ngd
xH(n)W*(n) _ —w;xb - nga — w;xd + W;:Xc
—W, X, — W, X, — Wy Xp + Wy Xg
L —fod — nga — W{XC + W?Xb
41
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Fig. 10. Dependence of the performance of multichannel LMS (MLMS),
QLMS and AQLMS on the choice of parameters. The experiments were
conducted on a 4D wind signal (3D wind speed and temperature).

Based on (40) and (41), the derivatives from (8) can be com-
puted as

Vw, (e(n)e*(n)) =e(n)(—x*(n)) + ( — x(n))e*(n)
= —e(n)x*(n) —x(n)e*(n)
Vw, (e(n)e*(n))1 = e(n)(xs + Xat — XaJ + Xck )1

(42)

+ (xb — Xa1 + Xq7 — xcn)e n)

=e(n) (—x(L + Xp2 + X) + Xgk

+ (x(L + Xpt — X)) — xdn) e*(n) (43)
V. (e(n)e*(n))g =e(n)(xe + Xat + Xa) = Xpk) 7
K

*

(
(
+ (xC — Xg1 — XoJ + X;,n)e (n)y
= e(n)(—x(L + xp2 + X + xdm)
+ (x(L — Xpt + Xc) — xdm) e*(n) (44)
Vw, (e(n)e*(n))k =e(n)(xq — Xct 4+ Xp) + Xqk)
+ (xd + X1 — XpJ — xam) e*(n)k
=e(n) (—xa + Xy + Xy + xlm)
+ (xa — Xpt — X))+ x(m) e*(n). (45)

Substituting (42)—(45) into (7), we obtain the final expression
for the gradient of the cost function (5) in the form [see equation
(46) at the top of the next page], where 8{x} denotes the real/
scalar part of x.

Derivation of the Stochastic Gradient Update Within
AQLMS: Similarly to the update for w in (9), the update
for g is derived by firstly expanding terms g(n)Tx*(n) and
xT(n)g*(n), to yield

[ 81 Xa + 8L Xy + 8L Xe + 8 Xd
—8L Xy + 8] Xq — 81 Xq + &) Xc
—g Xe + 81 X0 — 81 X1 + 8] X4

L—gl'xs+ glx, — gl x. +gl'xs

rglx, +gl'xp +glx. +glxq

glx, — gl xa +87Txa — gl %,

8l xe — 8l Xa + 8 Xy — 8 X4

-gfxd - g?;xa + ngXc - ggxb

(47)

. (48)

From (47) and (48), the quaternion gradients of the cost function
(5) with respect to g are computed as

Ve, (e(n)e”(n)) =e(n)(—x(n)) + (= x"(n))e"(n)
= —e(n)x(n) —x*(n)e*(n)
Ve, (e(n)e*(n))r =e(n)(—xy + Xat + X4) — Xck)2

+ (—xb — Xa1 — XqJ + XCH) e*(n)

(49)

=e(n)(—Xq — Xp1 — X0) — X4K)
+ (%0 — X312 + Xc) + xak)e*(n) (50)
Ve. (e(n)e*(n))g = e(n)(—%xc — Xa1 + XaJ + Xpk)
+ (=Xe + Xat — Xq) — Xpk)e*(n)y
= e(n)(—xa — Xpt — Xp] — xlm)
n

+ (Xa + X312 — Xc) + Xak) € (n) (51)
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n))t+ Vw, (e(n)e*(n)) g+ Vw, (e(n)e*(n))x]

=—e(n)x*(n) — x(n)e*(n) + [-3e(n)x*(n) + (3x, — xp2 — Xc) — xak) e (n)]

=—e(n)x*(n) — x(n)e*(n) + [-3e(n)x*(n) + x(n)e* (n) + 2R{x(n)}e*(n)]

=—4de(n)x*(n) + x*(n)e*(n) — x(n)e*(n) + 2R{x(n)}e*(n)

= —de(n)x*(n) + [x*(n) — x(n) + 2R{x(n)}]e*(n)

= —4e(n)x*(n) 4+ 2x*(n)e*(n) (46)
Ve(e(n)e*(n)) = Vg, (e(n)e*(n)) + [Vg, (e(n)e*(n))r + Vg, (e(n)e*(n))g + Vg, (e(n)e*(n))x]

=—e(n)x(n) — x*(n)e*(n) + [-3e(n)x(n) + (3xa + X1+ Xc) + Xak) e (n)]

=—e(n)x(n) — x"(n)e"(n) + [-3e(n)x(n) + x(n ) “(n) + 2R%{x(n)}e" (n)]

= —4e(n)x(n) + [x(n) — x*(n) + 2R{x(n)}]e*(n)

= —4e(n)x(n) + 2x(n)e*(n) (53)

Ve, (e(n)e*(n))k = e(n)(—Xa + Xct — Xp) + Xqk) &
+ (—xd — Xt + Xp) — xan)e*(n)n
= e(n)(—xa — Xpt — Xe) — x(m)
+ (xa + Xp1 + XeJ — xdra) e*(n) (52)

which yields [see equation (53) at the top of the page].
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