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The prediction of wind direction is a prerequisite for the intelligent and efficient
operation of wind turbines. This is a complex task, due to the intermittent behaviour of
wind, its non-Gaussian and nonlinear nature, and the coupling between the wind speed
and direction. To provide improved wind direction forecasting, we propose a nonlinear
model with augmented information from an additional measurement point. This is
further enhanced by making use of both the speed and direction components of the wind
field vector. The analysis and a comprehensive set of simulations demonstrate that the
proposed approach achieves improved prediction performance over the standard and
persistent model. The potential of the proposed approach is justified by the fact that
even relatively small improvements in the forecasts result in large gains in the produced
output power.
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1. Introduction and motivation

Wind farm technology has played a part in electricity production for more than a
decade and is currently booming due to the global tendency to employ renewable
power sources. Indeed, governments of several developed countries have set
targets to increase the contribution of renewable sources up to 20% within the
next 20 years. Of all the renewable energy sources, wind is perhaps most
attractive, since it comes at no production or storage cost; the costs of the
production and maintenance of wind turbines (WTs), however, are still rather
prohibitive for large-scale deployment of this technology.
Phil. Trans. R. Soc. A (2008) 366, 591–607

doi:10.1098/rsta.2007.2112
Published online 13 August 2007
e contribution of 14 to a Theme Issue ‘Experimental chaos II’.

uthor and address for correspondence: Aihara Lab, Institute of Industrial Science, University of
yo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan (yoshito@sat.t.u-tokyo.ac.jp).

591 This journal is q 2007 The Royal Society



Y. Hirata et al.592
Owing to the intermittent nature of wind, and thus a relatively conservative
fashion in which wind farms are operated, at present WTs do not take the
maximum out of the available wind potential. Wind energy manufacturers usually
recommend shutting off wind turbines if the wind conditions are considered to
have high speed and large dynamics, which are capable of damaging the turbine.
In addition, the WTs are not turned on at rather mild winds, since it is difficult to
incorporate these power levels into the electricity grid.

The present mode of operation of WTs and wind farms (WFs) is therefore
rather restricted. Wind turbines are normally located so as to face the direction
of most frequent winds, and due to the distributed and frequency-sensitive
nature of the grid, such energy is taken into the grid under stringent constraints.
For example, energy providers commit to certain levels of service, and in order to
incorporate the wind produced energy, they would have to reduce the input from,
say, gas and oil operated power plants. Owing to the long times needed to cool
down such power plants and to heat up the vapour again in order to continue
energy production, WFs have been mostly used on small scales, when the
weather forecasts firmly confirm large and long-lasting wind fronts. The medium-
and long-time weather forecasts used are made using numerical weather
forecasting (NWF) techniques based on models of the global movements of the
atmosphere (for instance satellite aided).

Despite the importance of these global weather forecasts, it was also realized
that the modelling of power output in wind turbines needs to be performed
locally and in a real-time adaptive fashion. Although the NWFs are quite
accurate, they are designed to model large atmospheric movements; the wind
activity at a specific site has to be modelled locally and in a statistical manner
(Kantz et al. 2004a,b).

WFs can be considered as a distributed network of sources, and the integration
of such power into the grid ought to be performed in a predictive manner, based on
robust short-term power estimates. Further, real-time control of wind generators
and real-time vibration control need to be performed in a real-time adaptive way.
Although both the output power of a WT and the control mechanism are directly
dependent on wind, it is only recently that the modelling of wind has been
recognized as a prerequisite for robust and reliable modelling and control within
WFs (Roulston et al. 2003); this also highlights the need for the development of
new algorithms for short-term wind forecasting. Indeed, short-term wind
modelling has recently received much attention both in Europe and Japan
(Ragwitz & Kantz 2000; Manwell et al. 2002; Roulston et al. 2003; Goh & Mandic
2004, 2005; Kantz et al. 2004a,b; Goh et al. 2006; Hirata et al. 2006a,b).

Given that a WF ought to operate in an intelligent, real-time adaptive
manner, we set out to investigate whether efficient and local wind direction
modelling would help towards this goal. Indeed, there are three major reasons for
employing prediction and forecasting at different scales within an intelligent
wind farm operation framework, which are the following.

(i) To predict the expected production of electricity (Roulston et al. 2003;
Goh & Mandic 2004, 2005; Goh et al. 2006); for large WFs, this is
typically achieved by using medium-range weather forecasts (Roulston
et al. 2003). On a small scale, this is achieved based on historical data; this
is also in line with current trends in microwind turbines for home use.
Phil. Trans. R. Soc. A (2008)
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Figure 1. Power curve of a wind turbine. Region 1 with low wind speeds corresponds to no power
production by a WT; region 2 is the operation region; in region 3, for high winds, the power output
is subject to a threshold and ultimately the operation of a WT is stopped for high winds.
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(ii) To avoid damages to wind turbines caused by gusts (Ragwitz & Kantz
2000; Kantz et al. 2004a,b); this is usually achieved based on a combination
of short-term wind modelling and some sort of finite state machine.

(iii) To improve the efficiency of a WF and increase the power produced; this is
achieved by adjusting the yaw of the blades and the direction of WTs so as
to face the direction of the wind. It is now accepted that this should be
performed based solely on the modelling of the wind field (speed and
direction), since the output power of aWT is proportional to the cube of the
incident wind speed.

In this paper, we focus on the third purpose. The proposed approach is also
general enough to help with topics (i) and (ii) above; our analysis and simulations
will therefore be conducted in a short-term prediction setting.
(a ) Wind production model

It is nowadays widely accepted that in order to generate more electricity from
a wind turbine, we need to predict the wind direction and consequently adjust
the parameters of the wind turbine. Let us first introduce some parameters of
wind turbines: let P denote the expected power output, r is the air density, C is
the performance coefficient, parameter A is the area swept by the rotor and u is
the wind speed perpendicular to the face of the rotor. The relation between the
wind speed and the expected power output is given by Manwell et al. (2002)

P Z 1

2
rCAu3: ð1:1Þ

Since there is a cut-off wind speed in the actual WT operations for avoiding
damages to WTs, the relation between the wind speed and the actual power
output looks like that illustrated in figure 1. This relation as such gives only a
ballpark figure and is not always applicable; for instance, the rotor does not
always face the wind. This is, however, used as a standard in WT modelling,
since the turbines are generally built to face the most prominent wind direction.
In practice, the wind is coming from a much wider range of directions as
Phil. Trans. R. Soc. A (2008)
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Figure 2. Wind rose: directional distribution of wind for a coastal site (Goh et al. 2006). The
dataset for generating this graph was obtained from http://mesonet.agron.iastate.edu/request/
awos/1min.php.
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illustrated in figure 2. In order to achieve the real-time adaptivity and intelligent
operation of WFs, we need to have more accurate estimates of P. To that end, a
simple extension of equation (1.1) would be to assume that the wind direction
and the vector normal to the face of rotor are at an angle q, thus having
uZv cos q, where v denotes the absolute wind speed. In this way, equation (1.1)
can be rewritten as

P Z 1

2
rCAc3v3 cos3q: ð1:2Þ

Observe that for qZ208, the expected output power is 83% of the maximum
given in equation (1.1); for qZ458, this figure is 35%.

From figure 2 and equation (1.2), and since we cannot control the wind speed
(although we can predict it), the modelling and forecasting of the wind direction
is a prerequisite towards an intelligent operation of a WT and WF, a focus of this
work. Yet, the current control approach is based on the adjustment to the
direction of rotor after the wind direction has remained fixed for more than
10 min; this approach does not exploit all the available potential of wind and is
not robust enough for the reliable control of a WT.

Recall also that wind is an intermittent phenomenon exhibiting strong non-
Gaussianity, yet the available approaches to wind modelling are based on linear
models. Our aim is therefore to introduce a general methodology for wind direction
modelling, which will allow for a more proactive operation of WTs. Our focus is to
investigate whether wind forecasting based on nonlinear models has advantages
over linear approaches. This is a natural question due to the close relationship
between non-Gaussianity and data nonlinearity (Gautama et al. 2004).
Phil. Trans. R. Soc. A (2008)
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In addition, characteristic wind patterns, such as gusts, microbursts and
turbulence, are conveniently analysed in an applied chaos framework which is
inherently nonlinear; some recent results can be found in Goh et al. (2006).
Simulations on real-world wind data support the approach.
2. Wind intermittency, sufficient information and experimental chaos

An important origin of chaos theory was the seminal work by Lorenz (1963), who
analysed weather patterns. Subsequently, applications of chaos theory have been
developed (Aihara & Katayama 1995; Aihara 2002). In particular, several
approaches have analysed wind in the framework of nonlinear time series (Kantz &
Schreiber 2003) and chaos (Kantz et al. 2004b).

Despite the mathematical elegance, it was soon realized that chaos is not
readily applicable to real-world phenomena, which are prone to noise,
uncertainty and time-varying statistics. Rejecting chaos totally as a framework
for the analysis of real-world signals would be wrong; it has led to the
development of chaos engineering and chaos-inspired real-world concepts such as
those of bio-chaos and chaotic neuron (Aihara 2002).

Observe from figure 2, the coupling between the wind speed and direction
components and recall the intermittent and hence non-Gaussian and nonlinear1

nature of wind. It is in fact natural to consider wind modelling on short scales within
the framework of experimental chaos,2 given that characteristicwind episodes suchas
turbulence, microbursts and gusts, exhibit some sort of regularity in phase space.

Before proceeding with the analysis of wind prediction strategies, let us address
some statistical properties ofwind.Following the approaches fromHirata et al. (2004,
2005, 2007) and Goh et al. (2006), our findings show that:

(i) windmeasurements considered as a time series have serial dependence (Hirata
et al. 2005, 2007); this clearly justifies the modelling of such data within the
framework of nonlinear regression and

(ii) depending on the wind regime and degree of averaging, wind time series
may exhibit various degrees of nonlinear behaviour (Hirata et al. 2005; Goh
et al. 2006).

Despite being somewhat inconclusive, these results provide evidence that wind
is predictable on both the short and long scales.

From figure 2 and a number of our own experiments (Hirata et al. 2005), it was
established that wind as a phenomenon is spatially local and temporally correlated,
and that the components of such a signal are coupled. For instance, in figure 2, the
highest wind speeds are recorded around the angle of 2408, whereas for the directions
in the range betweenK708 and 2108 there is hardly any wind activity.

1 For more detail on the of signals in terms of their nonlinearity, see Gautama et al. (2003, 2004).
2Wind data are usually sampled with high sampling rate and then averaged to suit the needs of
long-term wind forecasting. By averaging, the non-Gaussian nature of wind and hence nonlinearity
are largely being lost. It therefore only makes sense to consider the raw, finely sampled wind data
within the framework of experimental chaos, that is, in the applications of short term on-line
adaptive wind modelling.

Phil. Trans. R. Soc. A (2008)
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It is therefore natural to ask ourselves what would be a ‘sufficient information’
or ‘sufficient statistics’, that is what would be the span of temporal regression
(memory) and spatial dimension (degrees of freedom) for such data.

A series of our earlier results, both in terms of applied chaos and nonlinear
signal processing, have illustrated that

— it is not possible to predict the wind profile sufficiently well using only
observations at one measured point; and

— it is possible to improve wind forecasts if there is at least one more measured
point upwind from the original one.

To date, it is unclear the extent to which the use of a nonlinear forecasting
model and multiple measurement points improves the prediction. We shall
therefore focus on the problem of wind direction forecasting based on observations
from two different measurement points.
3. Predicting the wind direction using two observation points

The so-called persistent model is a de facto standard in WF operation,
whereby it is assumed that the predicted wind speed will be the same as the
current speed (zeroth-order model). It is therefore our initial aim to establish
whether the nonlinear prediction of wind based on two observations taken at
separate points provides better prediction performance as compared to the
persistent prediction.
(a ) Observation set-up

The data analysed were wind data observed over 24 hours, on 24 October 2005,
starting from 14.00. The experiment was conducted in an urban environment at
the Institute of Industrial Science, The University of Tokyo. Two matched
ultrasonic anemometers were used, which were located along the north–south axis
and located 5 m apart, as illustrated in figure 3. The wind measurements were
three-dimensional and sampled at 50 Hz, that is, in the east–west, north–south and
upward–downward directions. This particular setting was used in order to
simulate a 1/100 scale of an actual wind farm.
Phil. Trans. R. Soc. A (2008)
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For the preprocessing of the data, a moving average filter on 2 s windows was
used, the data were then resampled at 2 s intervals. For convenience, we ignored
the upward–downward direction and conducted our analysis only in the plane
spanned by the east–west and north–south direction.

Figure 4 and table 1 provide a comprehensive account of the statistics for the
24 hours of wind data considered. Both quantitative and qualitative measures
describing such a process (including spatial distributions) are illustrated.

Figure 4a illustrates wind as a vector field, described by its speed and direction.
Alternatively, we can base our modelling on the projections of this vector on the
north and east axes. The representation for wind also depends on the way wind
data are recorded: standard cup anemometers provide the speed–direction
information, whereas modern ultrasonic instruments have a much wider range of
options. This is illustrated in figure 4b, where by inspection, wind was relatively
strong in the intervals between 14.00 and 16.00; 22.00 and 02.00; and 10.00 and
14.00 (figure 4b(i)(ii)). As for the wind direction, figure 4b(iii) shows that between
22.00 and 02.00 and between 10.00 and 14.00, the dominant wind direction was
from the north, whereas between 14.00 and 16.00, the dominant wind direction
was from the south.

A more convenient way to visualize these four time series is shown in figure 4c,
in the form of wind lattice (wind rose similar to figure 2), where for every time
instant the tip of the wind vector is represented by a dot. Observe a clear coupling
between strong winds and the north–south direction. To further depict the range
of wind directions, the histogram of figure 4d exhibits two peaks: the peak
associated with the easterly wind is related to the quiet periods between 18.00 and
22.00 and between 02.00 and 10.00. The peak related to the northerly wind is
related to high winds between 22.00 and 02.00 and between 10.00 and 14.00.

Theautocorrelationbasedonthe increments ofwinddirection fromfigure4e shows
anticorrelation at a lag between 2 and 6 s. Owing to the experiment having been
conducted in an urban environment, for approximately 40% of the measured time,
the wind speed was rather low and in the range between 0 and 0.2 m sK1 as shown in
the histogram in figure 4f. The variation of the wind speed showed large fluctuations
since the mean speed and its standard deviation were almost equal (table 1).

From the above analysis, it is clear that it is the forecasting of the wind
direction that will have a major contribution in the intelligent operation of a WT.
Since our underlying aim is to predict the wind direction, a straightforward
approach would be to construct a prediction model based on the past values of the
wind direction only. However, since wind speed and direction are coupled, our
proposed model will take advantage of the available wind speed information, in
order to predict direction only. The schematic graph is shown in figure 5. This task
may be considered within the framework of experimental chaos. In fact, the
embedding parameters and the different wind dynamics have been analysed in our
previous work (Goh et al. 2006).

Let y1,1(t) and y1,2(t) be the wind direction and speed at time t for anemometer 1
(A1) and y2,1(t) and y2,2(t) those for anemometer 2 (A2), and let us consider a
model that predicts the future wind direction at A2 based on the observed wind
direction and speed from both the north and south (A1 and A2), as illustrated in
figure 3. Based on an extension of the approach proposed by Judd and Mees
(Hirata et al. 2006b), the maximum delay of 60 s was used for each element of y;
the initial ‘optimal’ set z(t) of such delays used in the prediction can therefore be
Phil. Trans. R. Soc. A (2008)
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Table 1. Statistical properties of the dataset.

minimum speed 0 (m sK1)
maximum speed 5.25 (m sK1)
mean speed 0.41 (m sK1)
standard deviation of speed 0.44 (m sK1)
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Figure 5. Illustration of the direction–speed model.
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expressed as

zðtÞZ ðy1;1ðtK t1;1;1Þ; y1;1ðtK t1;1;2Þ;.; y1;1ðtK t1;1;k1;1Þ;
y1;2ðtK t1;2;1Þ; y1;2ðtK t1;2;2Þ;.; y1;2ðtK t1;2;k1;2Þ;
y2;1ðtK t2;1;1Þ; y2;1ðtK t2;1;2Þ;.; y2;1ðtK t2;1;k 2;1

Þ;
y2;2ðtK t2;2;1Þ; y2;2ðtK t2;2;2Þ;.; y2;2ðtK t2;2;k 2;2

ÞÞ:

ð3:1Þ

To facilitate the nonlinear mode of operation, we next investigate an affineCradial
basis function model with 100 radial basis functions as proposed by Judd & Mees
(1995) with the normalized maximum likelihood (Rissanen 2000) as the
information criterion.

There are two basic ways of multiple step ahead prediction: the direct and
iterated mode, where the iterated mode suits feedback prediction models. Owing to
the choice of our computing model, we used direct predictions, for which p step
ahead prediction model has the form of

y2;1ðtCpÞzfpðzðtÞÞZ apCbp$zðtÞC
X100
jZ1

cp;jexp K
jjzðtÞKdp;j jj2

2s2p

 !
; ð3:2Þ

where ap, bp, cp,j, dp,j and sp are parameters of the model.
In the model evaluation set-up, the performance of the proposed direction–speed

model was compared to that of a persistent model, for which the wind direction at
2 s before the actual point of interest was used as a persistent prediction.

Our proposedmodel was built based upon the first 2000 points of the data and the
performance was evaluated on the subsequent 200 data points. To cover all the
available data, these data windows were shifted by 200 points after every prediction
and this process was repeated for 206 times.
Phil. Trans. R. Soc. A (2008)
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The performance comparison shown in figure 6 shows that for this rather raw
case, the persistent model exhibited better performance than the proposed
direction–speed model. This result may be explained by the fact that the direction
signal has a circular nature, hence experiencing problems around the singular
points, where such prediction is totally unreliable.

(b ) The two-dimensional model

To overcome the problem with the discontinuity associated with a circular
nature of wind direction, we propose a two-dimensional model, whereby the winds
coming from east and north were predicted at the south anemometer and then the
wind directions were calculated from these predictions. The predictions were based
on the observations from both the south and north anemometer (figure 7). The
procedures for making a predictive model were the same as those used in the
speed–direction model. We found that the two-dimensional model was likely to be
better than the persistent model as illustrated in figure 8a, where the majority of
the points are located below the bisector line. This result is consistent with our
previous study (Hirata et al. 2006a), where the observations from the predicted
point only were used for the prediction. Even in the case of a 20 s ahead direct
prediction, this tendency continued (figure 8b). Over all the tested intervals, the
two-dimensional model showed tendency to have a smaller prediction error than
the persistent model. In figure 9, the probability that the two-dimensional model
has a smaller prediction error than the persistent model is above 0.5 for all the
tested prediction horizons, thus indicating superiority of the two-dimensional
model over the persistent model. The direction–speed model exhibited worse
performance than the persistent model when the prediction horizon was less
than 5 s.
Phil. Trans. R. Soc. A (2008)
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4. Factors in the prediction of the wind direction

The performance of a prediction model heavily leans on the amount and spatial
distribution of the data, number of observation points and the choice of model
(linear and nonlinear).
(a ) Choice of the number of measurement points

Closely related to the concept of data fusion and sufficient information (Mandic
et al. 2007), we have gathered both the theoretical and empirical evidence that the
prediction performance improved when measurements from two spatially
distributed anemometers were used. Indeed, for the wind direction prediction
experiment for the south anemometer, the additional information coming from the
north anemometer improved the prediction error. This is illustrated in figure 10a,
where the majority of the points are below the bisector line. On the other hand,
when the wind direction at the north anemometer was predicted based on the
measurements from the north and south anemometer, the second set of
observations coming from the south point did not improve the prediction, as
illustrated in figure 10b.

Over all the tested prediction intervals, the second observation coming from
upwind enhanced the prediction: according to figure 11, when using additional
observations upwind, the probability that themodel using observations upwindhas
a smaller prediction errorwas always above 0.5.Whenobservations fromdownwind
were taken, the probability that the model using those observations has a smaller
prediction error than thatwithout themwas approximately 0.5. It therefore did not
make much difference whether the downwind observations were used.
Phil. Trans. R. Soc. A (2008)
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(b ) Nonlinear versus linear models

The performance of our proposed nonlinear model was next compared against
that of the linear model. The linear model, in the form of apCbp$z(t), was used in
the same simulation set-up as the nonlinear affineCradial basis function model.

The nonlinear model did not exhibit a significant difference in the performance
over the linear model; this is illustrated in figure 12, where the points in the scatter
diagram are distributed around the bisector line. The probability that for each
prediction horizon the nonlinear model has a smaller prediction error than the
linear model is shown in figure 13.

When predicting the wind direction 2 s ahead, we found that the nonlinear
model was likely to be more suitable than the linear one, since when the wind
direction was being predicted 2 s ahead, the probability that the prediction error
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Figure 11. Comparison of the prediction performance between the two-dimensional model based on
two observation points and that based on a single observation point. Letting m be the number of
windows for which the prediction error for the model using observations upwind (downwind) is
smaller than that obtained without them and n being the total number of windows, we calculated
the ratio m/n for each prediction horizon.
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Figure 12. Comparison of the linear and nonlinear wind direction prediction models at the south
point using our two-dimensional model and observations at both points (20 s ahead). The
horizontal axis is the root mean square error (r.m.s.e.) of linear model and the vertical axis
corresponds to the r.m.s.e. of nonlinear model.
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for the nonlinear model was smaller than that for the linear model was above 0.5.
This tendency was also observed in other datasets. In the short time ranges, the
increments for the wind direction are anticorrelated (figure 4e) and the
nonlinearity of the short-term prediction may be due to this anticorrelation.
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Figure 13. Comparison of the prediction performance between the nonlinear and linear model.
Letting m be the number of windows for which the prediction error for the nonlinear model is
smaller than that for the linear model and n the total number of windows, we calculated the ratio
m/n for each prediction horizon.
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Figure 14. First approximation of the power curve from figure 1.
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5. Benefits of the proposed nonlinear multiobservation model

Although the difference in the prediction errors between the two-dimensional and
persistent model was small, this produced a significant difference in the expected
electricity production. To quantify this, in the following simulation, we used the
predicted wind directions and speeds for the control of a wind turbine and
subsequently estimated the expected amount of produced electricity using the actual
data. In the simulation, we used the simplified power curve given in figure 14.
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Table 2. Expected electricity production from each combination of methods.

direction speed energy estimated (arb. unit)

speed–direction speed–direction 1546.9
persistent persistent 1608.7
two-dimensional persistent 1611.3
persistent two-dimensional 1690.2
two-dimensional two-dimensional 1721.9

Y. Hirata et al.606
In this experiment, we also compared some existing methods, as shown in
table 2 where when two-dimensional models were used for the modelling of wind
directions and speeds, the improvement in the total amount of energy was 7% in
the case when the persistent models were used for predicting the wind directions
and speeds, and 2% in the case when using the persistent model for predicting the
wind directions and the two-dimensional model for predicting wind speeds.
6. Conclusions

We have introduced a novel theoretical and experimental framework for the
prediction of wind direction based on a two-dimensional wind vector representation.
The benefits of the proposed approach are based on the use of two observation
points which has led to the consistently improved performance as compared to the
persistent model. Although the difference in quantitative performance between the
proposed method and the persistent prediction is relatively small, this makes a
significant difference in the expected production of electricity.

This study was partially supported by the Industrial Technology Research Grant Program in 2003,
from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. The
work of D.P.M. was supported by EPSRC (EP/D061709/1).
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Goh, S. L., Chen,M., Popović, D. H., Aihara, K., Obradovic, D.&Mandic,D. P. 2006Complex-valued
forecasting of wind profile. Renew. Energ. 31, 1733–1750. (doi:10.1016/j.renene.2005.07.006)
Phil. Trans. R. Soc. A (2008)

http://dx.doi.org/doi:10.1109/JPROC.2002.1015014
http://dx.doi.org/doi:10.1145/219717.219801
http://dx.doi.org/doi:10.1145/219717.219801
http://dx.doi.org/doi:10.1103/PhysRevE.67.046204
http://dx.doi.org/doi:10.1016/j.physd.2003.11.001
http://dx.doi.org/doi:10.1016/j.physd.2003.11.001
http://dx.doi.org/doi:10.1162/0899766042321779
http://dx.doi.org/doi:10.1109/TSP.2005.845462
http://dx.doi.org/doi:10.1016/j.renene.2005.07.006


607Wind direction modelling
Hirata, Y., Suzuki, H., Aihara, K., Abe, R., Kanie, K., Yamada, T. & Takahashi, J. 2004 Looking for
nonlinearity in the dynamics of surface wind using surrogate data. In Proc. 2004 Int. Symp.
on Nonlinear Theory and its Applications (NOLTA 2004), Fukuoka, Japan, November 2004,
pp. 207–210.

Hirata, Y., Suzuki, H. & Aihara, K. 2005 Predicting the wind using spatial correlation. In Proc. 2005
Int. Symp. on Nonlinear Theory and its Applications (NOLTA 2005), Bruges, Belgium, October
2005, pp. 634–637.

Hirata, Y., Suzuki, H. & Aihara, K. 2006a Predicting wind direction using nonlinear models and time
series data. In 2006 Annual Meeting Record I.E.E. Japan, vol. 7, p. 87.

Hirata, Y., Suzuki, H. & Aihara, K. 2006b Reconstructing state spaces from multivariate data using
variable delays. Phys. Rev. E 74, 026202. (doi:10.1103/PhysRevE.74.026202)

Hirata, Y., Horai, S., Suzuki, H. & Aihara, K. 2007 Testing serial dependence by Random-shuffle
surrogates and the Wayland method. Phys. Lett. A 370, 265–274. (doi:10.1016/j.physleta.2007.05.
061)

Judd, K. & Mees, A. 1995 On selecting models for nonlinear time series. Physica D 82, 426–444.
(doi:10.1016/0167-2789(95)00050-E)

Kantz, H. & Schreiber, T. 2003 Nonlinear time series analysis. Cambridge, UK: Cambridge
University Press.

Kantz, H., Holstein, D., Ragwitz, M. & Vitanov, N. K. 2004aMarkov chain model for turbulent wind
speed data. Physica A 342, 315–321. (doi:10.1016/j.physa.2004.01.070)

Kantz, H., Holstein, D., Ragwitz, M. & Vitanov, N. K. 2004b Extreme events in surface wind:
predicting turbulent gusts. In Proc. 8th Experimental Chaos Conference, Florence, Italy, 14–17
June 2004, vol. 742 (ed. S. Boccaletti). AIP Conference Proceedings, pp. 315–324. New York, NY:
American Institute of Physics.

Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 26, 130–141. (doi:10.1175/1520-
0469(1963)020!0130:DNFO2.0.CO;2)

Mandic, D. P., Goh, S. L. & Aihara, K. 2007 Sequential data fusion via vector spaces: fusion of
heterogeneous data in the complex domain. Int. J. VLSI Signal Process. Syst. 48, 99–108. (doi:10.
1007/s11265-006-0025-6)

Manwell, J. F., McGowan, J. G. & Rogers, A. L. 2002 Wind energy explained: theory, design and
application. New York, NY: Wiley.

Ragwitz, M. & Kantz, H. 2000 Detecting non-linear structure and predicting turbulent gusts in
surface wind velocities. Europhys. Lett. 51, 595–601. (doi:10.1209/epl/i2000-00379-x)

Rissanen, J. 2000 MDL denoising. IEEE Trans. Inform. Theory 46, 2537–2543. (doi:10.1109/18.
887861)

Roulston, M. S., Kaplan, D. T., Hardenberg, J. & Smith, L. A. 2003 Using medium-range weather
forecasts to improve the value of wind energy production. Renew. Energ. 28, 585–602. (doi:10.
1016/S0960-1481(02)00054-X)
Phil. Trans. R. Soc. A (2008)

http://dx.doi.org/doi:10.1103/PhysRevE.74.026202
http://dx.doi.org/doi:10.1016/j.physleta.2007.05.061
http://dx.doi.org/doi:10.1016/j.physleta.2007.05.061
http://dx.doi.org/doi:10.1016/0167-2789(95)00050-E
http://dx.doi.org/doi:10.1016/j.physa.2004.01.070
http://dx.doi.org/doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
http://dx.doi.org/doi:10.1007/s11265-006-0025-6
http://dx.doi.org/doi:10.1007/s11265-006-0025-6
http://dx.doi.org/doi:10.1209/epl/i2000-00379-x
http://dx.doi.org/doi:10.1109/18.887861
http://dx.doi.org/doi:10.1109/18.887861
http://dx.doi.org/doi:10.1016/S0960-1481(02)00054-X
http://dx.doi.org/doi:10.1016/S0960-1481(02)00054-X

	Wind direction modelling using multiple observation points
	Introduction and motivation
	Wind production model

	Wind intermittency, sufficient information and experimental chaos
	Predicting the wind direction using two observation points
	Observation set-up
	The two-dimensional model

	Factors in the prediction of the wind direction
	Choice of the number of measurement points
	Nonlinear versus linear models

	Benefits of the proposed nonlinear multiobservation model
	Conclusions
	This study was partially supported by the Industrial Technology Research Grant Program in 2003, from the New Energy and Industrial Technology Development Organization (NEDO) of Japan. The work of D.P.M. was supported by EPSRC (EP/D061709/1).
	References


