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An augmented complex-valued extended Kalman filter (ACEKF) algo-
rithm for the class of nonlinear adaptive filters realized as fully con-
nected recurrent neural networks is introduced. This is achieved based
on some recent developments in the so-called augmented complex statis-
tics and the use of general fully complex nonlinear activation functions
within the neurons. This makes the ACEKF suitable for processing gen-
eral complex-valued nonlinear and nonstationary signals and also bivari-
ate signals with strong component correlations. Simulations on bench-
mark and real-world complex-valued signals support the approach.

1 Introduction

Recent progress in biomedicine, wireless and mobile communications, seis-
mics, and sonar and radar signal processing has brought to the light new
problems, where data models are often complex valued or have a higher-
dimensional compact representation (Mandic & Chambers, 2001; Haykin,
1994). To process such signals, research has largely been directed toward
extending the results from real-valued adaptive filters to those operating
in the complex plane, C. One such algorithm is the complex least mean
square (CLMS) algorithm for linear finite impulse response (FIR) adaptive
filters, introduced in 1975 (Widrow, McCool, & Ball, 1975). More recently,
complex-valued learning algorithms have been introduced for training of
neural networks (NNs) (Kim & Adali, 2001; Leung & Haykin, 1991; Treich-
ler, Johnson, & Larimore, 1987; Goh & Mandic, 2004).

Fully connected recurrent neural networks (FCRNNs) have been em-
ployed as nonlinear adaptive filters1 (Mandic & Chambers, 2001; Medsker

1 Nonlinear autoregressive (NAR) processes can be modeled using feedforward net-
works, whereas nonlinear autogressive moving-average (NARMA) processes can be rep-
resented using RNNs.
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& Jain, 2000) where for real-time applications, the real-time recurrent learn-
ing (RTRL) algorithm (Williams & Zipser, 1989) has been widely used to
train FCRNNs. In the complex domain, a recently proposed fully complex
real-time recurrent learning (CRTRL)2 algorithm (Goh & Mandic, 2004; Goh,
Popovic, & Mandic, 2004) has been applied to forecasting of the complex-
valued wind field. These initial results were promising, but it was also
realized that gradient-based learning may experience problems when pro-
cessing signals with rich dynamics (for instance, intermittent signals).

Following the established approaches from the real domain R, a pos-
sible solution to this problem may be based on Kalman filters (Puskorius
& Feldkamp, 1994), which have been shown to exhibit superior perfor-
mance in several applications, including state estimation for road naviga-
tion (Obradovic, Lenz, & Schupfner, 2004), parameter estimation for time-
series modeling, and neural network training (Puskorius & Feldkamp, 1991;
Julier & Uhlmann, 2004; Haykin, 2001). Kalman filtering (Kalman, 1960) is
known to give the optimal solution to the linear gaussian sequential state
estimation problem in the domain of second order statistics. However, for
a nonlinear or nongaussian state tracking problem with possibly an infi-
nite number of states, no such general optimal algorithm exists. Extensions
of the class of Kalman filter algorithms that cater to this case are termed
the extended Kalman filter (EKF). The EKF (Feldkamp & Puskorius, 1998;
Grewal & Andrews, 2001) is based on a truncated Taylor series expansion,
which linearizes the system model locally, and the subsequent use of a lin-
ear Kalman filter. The EKF algorithms have been used to train temporal
neural networks (Obradovic, 1996; Baltersee & Chambers, 1998; Mandic,
Baltersee, & Chambers, 1998), with promising results.

Recently, EKF training of NNs has been extended to the complex do-
main (Huang & Chen, 2000). Notice that in order to design an algorithm
suitable for the complex domain, we need a precise mathematical model
that describes the evolution of system parameters. Hence, extensions of
learning algorithms to the complex domain are not trivial and often in-
volve some constraints, for instance, a simplified model of both complex
statistics and complex nonlinearities within neurons. This might be subop-
timal for classes of signals with significant correlation between the real and
imaginary parts, which affects both the choice of the complex activation
function and complex statistics.

To tackle this problem, we first provide mathematical foundations for
complex-valued second-order statistics and highlight the need to consider

2 The CRTRL algorithm uses a fully complex activation function (AF) that is analytical
and bounded almost everywhere in C. In a split-complex AF, the real and imaginary
components of the input signal x are separated and fed through the real-valued activation
function fR(x) = f I (x), x ∈ R. A split-complex activation function is therefore given as
f (x) = fR(Re(x)) + j f I (I m(x)), for example, f (x) = 1

1+e−β(Re(x)) + j 1
1+e−β(I m(x)) .
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the so-called augmented statistics in the derivation of such learning algo-
rithms. Next, both the augmented complex-valued Kalman filter (ACKF)
and the the augmented extended complex-valued Kalman filter (ACEKF)
algorithm are derived, whereby the recently developed CRTRL algorithm
is used to compute the Jacobian matrix within the ACEKF. For rigor, this is
achieved for a fully complex nonlinear activation function of a neuron. The
potential of such an ACEKF for training of FCRNNs is analyzed, and a com-
parison with the CRTRL is provided. The analysis is comprehensive and
is supported by simulation examples on benchmark complex-valued non-
linear and colored signals, together with simulations on complex-valued
real-world radar and environmental measurements. Finally, possible direc-
tions for future research are highlighted.

2 Complex-Valued Second-Order Statistics

Before deriving the ACEKF algorithm for complex FCRNNS, we introduce
some important notations from complex second-order statistics. The covari-
ance matrix for two real-valued RVs x and y is defined as (Anton, 2003)

Pxy = cov[x, y] = E
[
(x − E [x])

(
y − E

[
y
])T

]
, (2.1)

where E(·) represents the statistical expectation operator. Similarly, the four
covariance matrices of two complex-valued RVs, x = xr + jxi and y = yr +
jyi , are given by (Neeser & Massey, 1992)

Pxr yr = cov[xr , yr ] Pxr yi = cov[xr , yi ]

Pxi yr = cov[xi , yr ] Pxi yi = cov[xr , yi ], (2.2)

where j = √−1, (·)T denotes the vector transpose operator, and superscripts
(·)r and (·)i denote, respectively, the real and imaginary part of a complex
number or complex vector. These four real-valued matrices are equivalent
to the following two complex-valued matrices, given by (Neeser & Massey,
1992),

Pxy = E
[
(x − E [x])

(
y − E

[
y
])H

]
Pξ

xy = E
[
(x − E [x])

(
y − E

[
y
])T

]
(2.3)

where

Pxy = Pxr yr + Pxi yi + j(Pxi yr − Pxr yi )
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Pξ

xy = Pxr yr − Pxi yi + j(Pxi yr + Pxr yi ), (2.4)

and the symbol (·)H denotes the Hermitian transpose operator. We can solve
for Pxr yr , Pxi yi , Pxi yr , and Pxr yi to obtain

Pxr yr = 1
2

R
(
Pxy + Pξ

xy
)

Pxi yi = 1
2

R
(
Pxy − Pξ

xy
)

Pxi yr = 1
2

I
(
Pxy + Pξ

xy
)

Pxr yi = 1
2

I
( − Pxy + Pξ

xy
)
, (2.5)

where symbols R and I denote, respectively, the real and imaginary part of
a complex quantity. It is clear that the four real-valued covariance matrices,
equation 2.5, are in a one-to-one relationship with the two complex-valued
covariance matrices in equation 2.4. In the literature, nearly always only
Pxy is considered and is referred to as the covariance matrix, whereas Pξ

xy is
termed the pseudocovariance matrix.

2.1 Augmented Covariance Matrix. It is often assumed that the theory
of complex-valued random vectors (RVs) is no different from that of the real
RVs, as long as the definition of the covariance matrix of an RV x is changed
from E[xxT ] in the real case to E[xxH] in the complex case (Schreier & Scharf,
2003; Picinbono, 1996). This assumption, however, is not justified since the
covariance matrix E[xxH] will not completely describe the second-order
statistical behavior of x.

For complex-valued gaussian random variables, we therefore need to
consider both the variable x and its complex conjugate x∗ in order to make
full use of the available statistical information. This additional information
is contained in the cross-moments, and to design mathematically well-
founded complex learning algorithms, a study of these moments and their
implications on learning is required (Neeser & Massey, 1992).

We therefore set out to derive a complex-valued Kalman filter that
takes into account the augmented complex statistics and thus provides
a general framework for nonlinear adaptive filtering in C. To achieve
this, instead of a complex RV x, we consider an “augmented” (2n × 1)-
dimensional vector xa = [x, x∗]. In addition, for “improper” (see appendix
A for more detail) vectors, it is the augmented (2n × 2n)-dimensional covari-
ance matrix Pxa xa = E[xa (xa )T ] (rather than the (n × n)-dimensional matrix
Pxx = E[xxH]) that contains the complete second-order statistical informa-
tion. Such an augmented covariance matrix is given by (Schreier & Scharf,



A Complex EKF for RNNs 1043

2003)

Pxa xa = E
[

x
x∗

] [
xT xH] =

[
Pxx Pξ

xx
Pξ∗

xx P∗
xx

]
. (2.6)

Notice that the covariance matrix Pxa xa is invertible and thus positive defi-
nite. Besides Pxx being positive semidefinite (PSD) and Pξ∗

xx being symmet-
ric, the Schur complement P∗

xx − Pξ∗
xxP−1

xxPξ

xx must be PSD to ensure that
Pxa xa is PSD and thus a valid covariance matrix for xa (Neeser & Massey,
1992).

3 The Augmented Complex-Valued Kalman Filter Algorithm

Based on the analysis of augmented complex statistics, we first derive a
Kalman filter learning algorithm for complex-valued inputs using the aug-
mented states and augmented covariance matrix. Consider a general state-
space model given by (Haykin, 2001),

xk+1 = Fk+1xk + ωk

yk = Hkxk + νk, (3.1)

where ωk and vk are independent, zero-mean, complex-valued gaussian
processes of covariance matrices Qk and Rk , respectively, and F and H are
the transition and measurement matrix. From equation 3.1, the augmented
state-space model is obtained as

xa
k+1 = Fa

k+1xa
k + ωa

k

ya
k = Ha

k xa
k + νa

k , (3.2)

where xa
k = [xk, x∗

k ], ya
k = [yk, y∗

k ], Fa
k = [Fk, F∗

k ], Ha
k = [Hk, H∗

k ], ωa
k =

[ωk,ω
∗
k ], and νa

k = [νk, ν
∗
k ]. The augmented covariance matrices of the zero-

mean complex-valued gaussian noise processes are denoted respectively
by Qa

k and Ra
k .

In the initialization of the algorithm (k = 0), we set

x̂a
0 = E

[
xa

0

]
,

P0 = E
[(

xa
0 − E

[
xa

0

]) (
xa

0 − E
[
xa

0

])T
]
. (3.3)

The computation steps for k = 1, . . . , L are given below (for clarity, we use
notation similar to that from (Haykin, 2001):
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State estimate propagation:

x̂a−
k = Fa

k,k−1x̂a−
k−1 (3.4)

Error covariance propagation:

P−
k = Fa

k,k−1Pk−1
(
Fa

k,k−1

)H + Qa
k−1 (3.5)

Kalman gain matrix:

Gk = P−
k

(
Ha

k

)H
[
Ha

k Pk
(
Ha

k

)H + Ra
k

]−1
(3.6)

State estimate update:

x̂a
k = x̂a−

k + Gk
(
ya

k − Ha
k x̂a−

k

)
(3.7)

Error covariance update:

Pk = (
I − GkHa

k

)
P−

k (3.8)

This completes the description of the augmented complex-valued
Kalman filter.

4 FCRNN Trained with Augmented Extended Complex-Valued Kalman
Filter

4.1 FCRNN Architecture. Figure 1 shows an FCRNN, which consists
of N neurons with p external inputs and N feedback connections. The
network has two distinct layers: the external input-feedback layer and a
layer of processing elements. Let yl,k denote the complex-valued output of
a neuron, l = 1, . . . , N at time index k and sk the (1 × p) external complex-
valued input vector. The overall input to the network uk then represents a
concatenation of vectors yk , sk and the bias input (1 + j), and is given by

uk = [sk−1, . . . , sk−p, 1 + j, y1,k−1, . . . , yN,k−1]T

un,k ∈ uk = ur
n,k + jui

n,k, n = 1, . . . , p + N + 1. (4.1)

For the lth neuron, its weights form a (p + N + 1) × 1–dimensional weight
vector wT

l = [wl,1, . . . , wl,p+N+1], l = 1, . . . , N, which are encompassed in
the complex-valued weight matrix of the network W = [w1, . . . , wN].

The output of every neuron can be expressed as

yl,k = �(netl,k), l = 1, . . . , N, (4.2)
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Figure 1: A fully connected recurrent neural network for prediction.

where � is a complex nonlinear activation function of a neuron and

netl,k =
p+N+1∑

n=1

wl,nun,k (4.3)

is the net input to lth node at time index k.
In order to establish a mathematical framework for Kalman filter-based

training of FCRNNs, the dynamical behavior of the FCRNN by a state-space
model is given by

wa
k+1 = wa

k + ωa
k (4.4)

ya
k = h(wa

k , uk) + νa
k , (4.5)
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where h is a nonlinear operator associated with observations, wa
k is the

augmented weight vector, and ya
k is the augmented output of the network.

The underlying idea here is to linearize the state-space model for every time
instant k. Once such a local linear model is obtained, the standard ACKF
approach can be applied. In practice, the process noise covariance Qa

k and
measurement noise covariance Ra

k matrices might be time varying, but here
we assume they are constant. Notice that the Jacobian Ha

k is defined as a
set of partial derivatives of the outputs with respect to the weights, wa

k , and
needs to be updated at every time instant during learning.

4.2 Derivation of the Augmented Complex-Valued Extended Kalman
Filter Algorithm. When operating in the complex domain, similar to the
real EKF, the nonlinear state and measurement equations ought to be lin-
earized about the current state in order to subsequently employ a standard
Kalman filter. Since this linearization is dynamical in its nature, the per-
formance of such EKF cannot be assessed beforehand. Indeed, there is a
chance that the updated trajectory estimate will be poorer than the nominal
one, which leads to inaccuracy in the estimates, causing further error accu-
mulation (Brown & Hwang, 1997). The derivation of the required complex-
valued Jacobian matrix is nontrivial, and the linearization can lead to a
highly unstable performance (Julier & Uhlmann, 2004). Therefore, careful
parameter selection is required when using the ACEKF algorithm. With
this in mind, we proceed with the derivation of the ACEKF as an extension
from the ACKF presented in the previous section.

The following expressions summarize the proposed ACEKF:

Gk = P−
k (Ha

k )H [
Ha

k P−
k (Ha

k )H + Ra
k

]−1
(4.6)

ŵa
k = ŵa−

k + Gk
[
ya

k − h(ŵa−
k , uk)

]
(4.7)

Pk = (I − GkHa
k ) P−

k + Qa
k . (4.8)

The ACEKF is initialized by

ŵa
0 = E [w0]

P0 = E
[(

wa
0 − E

[
wa

0

]) (
wa

0 − E
[
wa

0

])T
]
. (4.9)

For generality, the augmented Jacobian matrix Ha
k is computed

using the augmented CRTRL algorithm3 for recurrent networks (Goh &
Mandic, 2004) (using fully complex nonlinearities within the network; see
appendix B). The vector ŵa

k denotes the estimate of the augmented state of

3 Matrix Ha
k denotes the matrix of partial derivatives of the network’s augmented

output ya
k with respect to weight parameters (see appendix B).
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the system update at step k. The Kalman gain matrix Gk is a function of the
estimated error covariance matrix Pk , the Jacobian matrix Ha

k , and a global
scaling matrix Ha

k P−
k (Ha

k )H + Ra
k .

5 Simulations

For the experiments, the nonlinearity at the neuron was chosen to be the
complex tanh function,

�(x) = eβx − e−βx

eβx + e−βx
, (5.1)

where x ∈ C. The value of the slope of �(x) was β = 1. The architecture of
the FCRNN (see Figure 1) consisted of N = 3 neurons with the tap input
length of p = 5. To support the analysis, we tested the ACEKF on a wide
range of signals, including complex linear and complex nonlinear signals.
To further illustrate the approach and verify the advantage of using the
ACEKF over CEKF and the CRTRL, additional single-trial experiments
were performed on real-world complex-valued wind4 and radar5 data.

In the first experiment, the input signal was a stable complex linear AR(4)
process given by

r (k) = 1.79r (k − 1) − 1.85r (k − 2) + 1.27r (k − 3) + 0.41r (k − 4) + n(k),

(5.2)

with complex white gaussian noise (CWGN) n(k) ∼ N (0,1) as the driv-
ing input. The CWGN can be expressed as n(k) = nr (k) + jni (k). The real
and imaginary components of CWGN are mutually independent sequences
having equal variances, so that σ 2

n = σ 2
nr + σ 2

ni . For the second experiment,
we used a complex benchmark nonlinear signal (Narendra & Parthasarathy,
1990),

z(k) = z2(k − 1)(z(k − 1) + 2.5)
1 + z(k − 1) + z2(k − 2)

+ r (k − 1). (5.3)

4 Publicly available online from http://mesonet.agron.iastate.edu/. The wind vector
can be expressed in the complex domain C as v(t)e jθ(t) = vE (t) + vN(t). Here, the two
wind components, the speed v and direction θ , which are of different natures, are modeled
as a single quantity in a complex representation space (Mandic and Goh, 2005).

5 Publicly available online from http://soma.ece.mcmaster.ca/ipix/.
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Table 1: Comparison of Prediction Gains Rp , MSE, and SNR for the Various
Classes of Signals.

Signal Nonlinear AR4 Wind Radar

Rp [dB] (ACEKF) 6.24 4.77 12.65 10.58
Rp [dB]
(standard CEKF)

5.55 3.98 10.24 9.91

Rp [dB] (CRTRL) 3.76 3.54 6.12 7.22
SNR [dB] 5 5 3 3

To assess the performance, standard prediction gain Rp was employed and
is given by (Haykin & Li, 1995),

Rp(k) �= 10 log10

(
σ 2

x

σ̂ 2
e

)
[d B], (5.4)

where σ 2
x denotes the variance of the input signal x(k), and σ̂ 2

e denotes the
estimated variance of the forward prediction error e(k).

Table 1 shows a comparison of the prediction gains Rp [dB] between the
ACEKF, standard complex-valued (CEKF) (without considering the aug-
mented states), and CRTRL for various classes of signals, and also the
signal-to-noise ratio (SNR) for various experiments. In all the cases, there
was a significant improvement in the performance when ACEKF was em-
ployed over that of CRTRL and CEKF. Figures 2 and 3 show a subsegment of
the predictions generated by the ACEKF and CRTRL for complex-valued
colored (see equation 5.2) and nonlinear (see equation 5.3) signals. The
ACEKF outperformed CRTRL for both cases.

To further illustrate the advantage of ACEKF over CRTRL, we compared
the performances of FCRNNs trained with these algorithms in experiments
on real-world radar and wind data. Figure 4 shows the prediction per-
formance of the ACEKF applied to the complex-valued real-world (veloc-
ity and angle components) wind signal. Simulation results for radar data
are shown in Figure 5. In both cases, the AECKF outperformed the other
algorithms considered (for a quantitative performance comparison, see
Table 1).

6 Discussion and Conclusion

The augmented complex-valued extended Kalman filter (ACEKF) has been
introduced for nonlinear adaptive filtering in the complex domain. For
generality, this has been achieved for nonlinear adaptive filters realized
as fully connected recurrent neural networks (FCRNNs), and the ACEKF
has been derived using the augmented complex-valued statistics, whereby
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Figure 2: Comparison of one-step-ahead prediction performance between the
ACEKF and CRTRL for nonlinear signal (see equation 5.3).
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Figure 3: Comparison of one-step-ahead prediction performance between the
ACEKF and CRTRL for colored signal (see equation 5.2).
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Figure 4: Prediction performance for complex wind signal using ACEKF.
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Figure 5: Prediction performance for complex radar signal using ACEKF.

a complete second-order statistics for complex-valued quantities is taken
into account. The performance of the ACEKF has been evaluated on bench-
mark complex-valued nonlinear and colored signals and also on real-life
complex-valued wind and radar signals. Experimental results have justi-
fied the potential of ACEKF in nonlinear complex-valued neural adaptive
filtering applications. It should be noted that the computational cost of the
ACEKF is relatively more expensive than that of the CRTRL. To mitigate this
problem, a decoupled extended Kalman filter (DEKF) algorithm (Puskorius
et al. 1991) may be used; however, the reduction in computational complex-
ity may lead to poorer performance of the algorithm in the domain of
augmented complex statistics. This is due to the fact that the DEKF is de-
rived from EKF by approximating the second-order information between
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weights so that they belong only to mutually exclusive groups; correlations
between weights estimates can be neglected, which leads to a sparser error
covariance matrix Pk . The decoupling methods for processes described by
augmented complex statistics are an area for future research, especially if
the main concern is the computational complexity of augmented EKF.

Appendix A: Proper and Improper Complex Random Vectors

A complex RV x is called proper if its pseudocovariance Pξ

xx vanishes
(Neeser & Massey, 1992; Schreier & Scharf, 2003). For a proper complex-
valued random vector x, we have

Pxr xr = Pxi xi , Pxi xr = −PT
xi xr . (A.1)

This means that the real and imaginary parts of x are uncorrelated. The
vanishing of Pξ

xx does not imply that the real part of xm ∈ x and the imag-
inary part of xn ∈ x are uncorrelated for m �= n. When RVs are proper, the
probability density function (PDF) of a gaussian RV takes a form similar
to that from the real case. Let x ∈ C

n be a proper complex-valued gaussian
random variable with mean µ and nonsingular covariance matrix Pxx. Then
the PDF of x is given by (Picinbono, 1998)

f (x) = 1
det(πPxx)

e−(x−µ)T P−1
xx(x−µ), (A.2)

where P−1
xx is some Hermitian and positive-definite matrix. For convenience,

in many applications, complex-valued RVs are treated as proper. However,
Pξ

xx may not be necessarily zero, and the results obtained this way are
suboptimal.

Appendix B: An Augmented CRTRL Algorithm for the FCRNN

The augmented CRTRL algorithm for training the FCRNN is briefly de-
scribed. The cost function of the recurrent network is given by Jk = 1

2 ekeT
k .

The instantaneous output error is defined as

ek = da
k − ya

k , (B.1)

where da
k denotes the augmented desired output vector. The augmented

weight matrix update becomes

�wa
k = −η

∂ Jk

∂wa
k

= −ηek
∂ya

k

∂wa
k
. (B.2)
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We introduce three new matrices—the 2N × (2N + p + 1) matrix �a
l,k , the

2N × (2N + p + 1) matrix Ul,k , and the 2N × 2N diagonal matrix Sk—as
(Haykin, 1994)

�a
l,k = ∂ya

k

∂wa
k
, ya = [

y1,k, . . . , yN,k, y∗
1,k, . . . , y∗

N,k

]
, l = 1, 2, . . . , N

(B.3)

Ul,k =




0
...

uk
...
0



← lth row, l = 1, . . . , N (B.4)

S(k) = diag
(
�′ (uT

k wa
1,k

)
, . . . , �′ (uT

k wa
N,k

))
(B.5)

�a
l,k+1 = S∗

k

[
U∗

l,k + (
Wa

f,k

)H
�a

l,k

]
, (B.6)

where W f denotes the set of those entries in W that correspond to the
feedback connections.

Acknowledgments

We thank Dragan Obradovic from Siemens Corporate Research for his crit-
ical comments and lengthy discussions.

References

Anton, H. (2003). Contemporary linear algebra. New York: Wiley.
Baltersee, J., & Chambers, J. A. (1998). Nonlinear adaptive prediction of speech

signals using a pipelined recurrent network. IEEE Transactions on Signal Processing,
46(8), 2207–2216.

Brown, R. B., & Hwang, P. Y. C. (1997). Introduction to random signals and applied
Kalman filtering. New York: Wiley.

Feldkamp, L. A., & Puskorius, G. V. (1998). A signal processing framework based on
dynamical neural networks with application to problems in adaptation, filtering
and classification. IEEE Transactions on Neural Networks, 86, 2259–2277.

Goh, S. L., & Mandic, D. P. (2004). A complex-valued RTRL algorithm for recurrent
neural networks. Neural Computation, 16(12), 2699–2713.

Goh, S. L., Popovic, D. H., & Mandic, D. P. (2004). Complex-valued estimation
of wind profile and wind power. In Proceedings of the 12th IEEE Mediterranean
Electrotechnical Conference, MELECON 2004 (Vol. 3, pp. 1037–1040). Piscataway,
NJ: IEEE Press.



1054 S. Goh and D. Mandic

Grewal, M. S., & Andrews, A. P. (2001). Kalman filtering: Theory and practice. New
York: Wiley.

Haykin, S. (1994). Neural networks: A comprehensive foundation. Upper Saddle River,
NJ: Prentice Hall.

Haykin, S. (2001). Kalman Filtering and neural networks. New York: Wiley.
Haykin, S., & Li, L. (1995). Nonlinear adaptive prediction of nonstationary signals.

IEEE Transactions on Signal Processing, 43(2), 526–535.
Huang, R. C., & Chen, M. S. (2000). Adaptive equalization using complex-valued

multilayered neural network based on the extended Kalman filter. In Proceedings
of Signal Processing, International Conference on WCCC-ICSP (Vol. 1, pp. 519–524).
Piscataway, NJ: IEEE Press.

Julier, S. J., & Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, 92(3), 401–422.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
Transaction of the ASME–Journal of Basic Engineering, 82, 35–45.

Kim, T., & Adali, T. (2001). Approximation by fully complex MLP using elementary
transcendental activation functions. In Proceedings of XI IEEE Workshop on Neural
Networks for Signal Processing (pp. 203–212). Piscataway, NJ: IEEE Press.

Leung, H., & Haykin, S. (1991). The complex backpropagation algorithm. IEEE Trans-
actions on Signal Processing, 39(9), 2101–2104.

Mandic, D., Baltersee, J., & Chambers, J. (1998). Non-linear adaptive prediction
of speech with a pipelined recurrent neural network and advanced learning
algorithms. In A. Prochazka, J. Uhlir, P. W. Rayner, & N. G. Kingsbury (Eds.), Signal
analysis and prediction. Boston: Birkhauser.

Mandic, D. P., & Chambers, J. A. (2001). Recurrent neural networks for prediction:
Learning algorithms, architectures and stability. New York: Wiley.

Mandic, D. P., & Goh, S. L. (2005). Sequential data fusion via vector spaces: Complex
modular neural network approach. In Proceedings of the IEEE Workshop on Machine
Learning Signal Processing (pp. 147–151). Piscataway, NJ: IEEE Press.

Medsker, L. R., & Jain, L. (2000). Recurrent neural networks: Design and applications.
Boca Raton, FL: CRC Press.

Narendra, K. S., & Parthasarathy, K. (1990). Identification and control of dynamical
systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4–27.

Neeser, F., & Massey, J. (1992). Proper complex random processes with applications
to information theory. IEEE Transactions on Information Theory, 39(4), 1293–1302.

Obradovic, D. (1996). On-line training of recurrent neural networks with continuous
topology adaptation. IEEE Transactions on Neural Networks, 7(1), 222–228.

Obradovic, D., Lenz, H., & Schupfner, M. (2004). Sensor fusion in Siemens car nav-
igation system. In Proceedings of the IEEE Signal Processing Society Workshop on
Machine Learning for Signal Processing (pp. 655–664). Piscataway, NJ: IEEE Press.

Picinbono, B. (1996). Second-order complex random vectors and normal distribu-
tions. IEEE Transactions on Signal Processing, 44(10), 2637–2640.

Picinbono, B. (1998). On circularity. IEEE Transactions on Signal Processing, 42(12),
3473–3482.

Puskorius, G. V., & Feldkamp, L. A. (1991). Decoupled extended Kalman filter train-
ing of feedforward layered networks. IJCNN91 Settle International Joint Conference
on Neural Networks (Vol. 1, pp. 771–777). Piscataway, NJ: IEEE Press.



A Complex EKF for RNNs 1055

Puskorius, G. V., & Feldkamp, L. A. (1994). Neurocontrol of nonlinear dynamical sys-
tems with Kalman filter trained recurrent networks. IEEE Transactions on Neural
Networks, 5(2), 279–297.

Schreier, P. J., & Scharf, L. L. (2003). Second-order analysis of improper complex
random vectors and processes. IEEE Transactions on Signal Processing, 51(3), 714–
725.

Treichler, J. R., Johnson, J. C. R., & Larimore, M. (1987). Theory and design of adaptive
filters. New York: Wiley.

Widrow, B., McCool, J., & Ball, M. (1975). The complex LMS algorithm. Proceedings
of the IEEE, 63, 712–720.

Williams, R. J., & Zipser, D. A. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2), 270–280.

Received August 22, 2005; accepted July 9, 2006.


