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This paper presents a novel approach for the simultaneous modelling and forecasting of wind whereby
the wind field is considered as a vector of its speed and direction components in the field of complex
numbers C. To account for the intermittency and coupling of wind speed and direction, we propose to
use the recently introduced framework of augmented complex statistics. The augmented complex least
mean square (ACLMS) algorithm is introduced and its usefulness in wind forecasting is analysed.
Simulations over different wind regimes support the approach.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The modelling and forecasting of wind has been recognised as
a prerequisite towards the efficient operation of wind turbines
(WTs) and the optimal distribution of energy coming from wind
farms (WFs). Short-term wind prediction is crucial in the damage
protection and vibration control of WTs, whereas medium- to long-
term prediction serves as a basis for the integration of wind energy
into the grid. Clearly, the two aspects of wind forecasting operate
on different time scales, and due to the wind signal averaging for
longer-term prediction, the approaches addressing short- and long-
term wind forecasting are different in their nature. The power
generated by wind turbines is difficult to forecast, due to the con-
tinuous fluctuation of both the wind speed and direction. Various
field measurements have shown that the direction of wind as
compared with wind speed has less influence on WT power output
because each turbine is usually built to face into the wind when
operating. Consequently, and especially at stronger winds, there is
no significant difference in the power generated for different wind
directions. However, the impact of wind direction on output power
is more prominent at milder winds since they usually come from
much wider directions [1]. The importance of wind direction is of
further significance in spatial correlation studies which aim to
assess the influence of WT position in a wind park [1].
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Normally, studies on multivariate wind forecasts do not simul-
taneously model all of the wind parameters. While wind speed and
direction are shown to influence the turbine power simultaneously,
their separate forecasts introduce an error in both the wind
dynamics and wind power forecasts. All this emphasises the need
to process wind signal as a vector field defined by wind speed and
its direction, amongst other factors.

In our recent work [2,3], we have introduced a novel framework
for the analysis and modelling of vector fields, whereby the wind
vector is represented as a complex-valued quantity, and both wind
speed and direction are modelled simultaneously. Notice that this
way we inherently introduce heterogeneous fusion of the wind
speed and direction. The problem of building a data fusion model
via the complex vector space is illustrated in Fig. 1, where the top
diagram represents wind measurements as a vector of its speed v(k)
and direction 6(k) components, in the N-E coordinate system,
whereas the bottom diagram illustrates the distribution of wind
speeds over various directions. There is a clear inter-dependence
between wind signal components, a fact that is not taken into
account in the current approaches to wind forecasting. Although
both the speed and direction are integral components of the wind
signal, in practical applications, only the speed component is taken
into account, hence introducing a systematic error in forecasts [4].

With respect to processing signals in the complex domain, the
introduction of the complex-valued least mean square (CLMS)
algorithm [5] has initiated much work in applying complex-valued
algorithms to various adaptive linear and nonlinear predictors. In
fact, it has been shown that it is not only advantageous but also
natural to process some classes of real world data in C [6]. To design


mailto:d.mandic@imperial.ac.uk
mailto:soroush.javidi02@imperial.ac.uk
mailto:soroush.javidi02@imperial.ac.uk
mailto:vanessa.goh@shell.com
mailto:kuh@spectra.eng.hawaii.edu
mailto:aihara@sat.t.u-tokyo.ac.jp
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene

D.P. Mandic et al. / Renewable Energy 34 (2009) 196-201 197

N
A
Wind
speed
Wind
\direction
> E
90 20

270

Fig. 1. Wind recordings: (top) a complex-valued representation and (bottom) wind
lattice.

an algorithm suitable for forecasting in C, we need a precise
mathematical model that describes the evolution of system para-
meters. Hence, extensions of learning algorithms from R to C are
not trivial and often involve some constraints, for instance, sim-
plified models of complex statistics. This might prove sub-optimal
for classes of signals with significant correlation between the real
and imaginary parts, and we ought to seek alternative ways to
include the full second-order statistical information available.

Our aim here is to bring together the concepts of linear adaptive
forecasting in C with some new advances in complex statistics
[7-10], in order to provide enhanced short-term wind forecasting.
We have already addressed the theoretical background of this
problem [11,12]; in this article our aim is to introduce the aug-
mented complex statistics into linear sequential adaptive models
and to focus on the application in wind forecasting, for various
wind regimes and at various degrees of averaging. For generality,
our proposed model is a linear sequential least mean square (LMS)
type of predictor operating in the complex domain and enhanced
with so-called “augmented complex statistics”.

2. Analysis of wind characteristics and forecasting
architecture

To illustrate the problems faced in wind modelling, consider
data obtained from the lowa (USA) Department of Transport.! The
data were sampled at 1-, 3- and 6-h intervals. Table 1 shows the
statistical properties of the wind data sets considered.

! Real-life wind measurement is publicly available from “http://mesonet.agron.
iastate.edu/request/awos/1min.php”.

Table 1
Statistical properties of the wind data sets

Set

1h 3h 6h
Cumulative samples 1200 1200 1200
Minimum speed (m/s) 0 0 0
Maximum speed (m/s) 13.0582 12.2865 11.4663
Mean speed (m/s) 3.2905 3.2905 3.2905
Standard deviation (m/s) 2.3387 2.2653 2.1520

Clearly, the statistics of wind change with the degree of aver-
aging (or downsampling), for instance when averaging over 10 or
more samples the resulting distribution becomes approximately
Gaussian hence facilitating linear models.

Our recent work showed that wind signal components are only
locally predictable and correlated [13], which is a strong indication
that wind measurements could be treated as a complex-valued
compact signal rather than two separate univariate variables [14].
These approaches were based on nonlinear sequential models of
wind, which were used in order to facilitate its non-Gaussian na-
ture. Here, we propose to use some recent advances in complex
statistics, in order to be able to utilise enhanced linear models
which are capable of using the full statistical information from such
data.

2.1. Forecasting configuration

Forecasting of more than one step ahead can be achieved either
in a direct or a recursive manner. The approach used in this paper is
the recursive method [15], where at time instant k the predictor
predicts all the intermediate values up to (k+ T) steps ahead by
using the previously estimated values atk+1, ..., k+ N—1[16,17].
Fig. 2 shows the layout of a finite impulse response (FIR) filter, for
which the output is given by

y(k) = x"(kyw(k) (1)

where x(k)2 [x(k),...,x(k — M+ 1)]" denotes the complex input
signal vector, w(k)2[w;(k),...,wy(k)]T denotes the complex
weight vector, M the number of tap inputs, and (-)T denotes the
vector transpose operator. The error signal e(k) required for adap-
tation of the adaptive weights is obtained as

e(k) = d(k) —y(k) = e (k) + jel(k) (2)

where j = v/—1 and the superscripts (-)° and (-) denote,
respectively, the real and imaginary parts of a complex number.

The weight adaptation in a general complex-valued stochastic
gradient setting is given by

W(k+1) = W(k) — uVw](K)\w —wk) (3)

where u is the rate of adaptation and J(k) is the cost function
defined by [18]

J) = Sle(k)2= 3[etkre’ ()] (4)

where (-)* denotes the complex conjugation operator, and symbol
|-| denotes the absolute value of a complex number. Based on Eqgs.
(3) and (4) the weight update can be computed as [5]

w(k+1) = w(k) — uVwJ(k) (5)
= w(k) + pe(k)x* (k)

which concludes the overview of the complex-valued gradient
descent based least mean square (CLMS) algorithm.
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Fig. 2. Linear adaptive finite impulse response filter.

3. The augmented linear adaptive predictor

Consider two zero-mean complex-valued random vectors (RVs),
x=X"+jx' and y=y" +jy', for which the four possible covariance
matrices (real valued) are given by [7]

Pyy = COV[X", Y], Py = cov[x',y] )
Pyy: = cov[xly], Pyyi = cov[xly!]

These real-valued matrices have an equivalent compact, complex-
valued, representation given by

Py = E[xy"]. Py = Exy] (7)

where ()" denotes the Hermitian transpose. We can solve Eq. (7)
for Pxryr, Pyiyi, Pyiyr and Py.yi to obtain

1 3 1 3

1 : 1 :
Pxiyr = jI (ny + P,;(y)., eryi = jI( — Pxy + P;(y)

where the symbols R and Z denote, respectively, the real and
imaginary parts of a complex vector or matrix. In the literature,
nearly always only Pyy is considered, and is referred to as the
covariance matrix, whereas Py’ is called the pseudo-covariance
matrix.? By using the augmented states in the complex LMS setting,
similarly to the general augmented state estimation problem
outlined in Ref. [11], we aim at exploiting the full statistical
information from the complex representation of wind.

3.1. Augmented complex LMS (ACLMS) algorithm

In most practical applications, it is assumed that the theory of
complex-valued random variables (RVs) is not fundamentally dif-
ferent from the theory of real RVs, and consequently, the definition
of the covariance matrix of an RV x is modified from E[xx'] in R into
E[xx"] in € [18]. This assumption, however, is not fully justified;
instead some recent research [8,9] shows that the covariance ma-
trix E[xx"] will not completely describe the second-order statistical
behavior of X. Our aim is therefore to derive a complex-valued LMS
algorithm for FIR filters operating in C, which is based on the
augmented complex statistics and therefore has the potential to
fully utilise the available information within the data. To achieve
this, extending the standard derivation from Eqgs. (1) to (3), we
consider both the complex RV x and its conjugate x* to produce
a (2n x 1) vector x* =[x, x*]". Following the approaches from Refs.
[11,12], we shall now derive the ACLMS algorithm, whereby the
overall ‘augmented’ input to the FIR predictor x*(k) becomes

X3 (k) = {x(k),x*(k)]T 9)

2 A complex RV x is called proper if its pseudo-covariance P, vanishes [7]. For
convenience, in many applications, complex-valued random vectors (RVs) are
treated as proper. However, Py, may not necessarily vanish, in this case it is called
improper.

The corresponding augmented complex-valued weights of the
filters are given as

W) 2 [Wi (K)o g (K). W (K). ... Wiy ()] (10)

The output of the filter resulted from the augmented multiplication
of the augmented vectors is given by

y(k) = {x*} (kyw? (k) (11)

The error signal e(k) required for adaptation of adaptive weights is
obtained as

e(k) = d(k) — y(k) = e"(k) + je' (k) (12)

The ACLMS weight update equation can now be rewritten in the
same form as Eq. (5) to give

wa(k) = wA(k) + e (k) (x?)" (k) (13)

This completes the derivation of the augmented complex LMS
(ACLMS) algorithm.

4. Simulation results

To illustrate the benefits of the proposed approach, two sets of
experiments were conducted. In the first set of simulations, the
coarsely sampled wind data from lowa weather stations explained
above were used, whereas in the second experiment a finely
sampled set of 24-h data recorded at the Institute of Industrial
Science, University of Tokyo, were analysed.

4.1. Simulations using coarsely sampled lowa data

For the first data set, average wind data for 1h, 3h and 6 h,
denoted, respectively, by W-1, W-3 and W-6, were used as inputs
(Table 1). For training purposes, the recordings were standardised
to zero mean and unit variance. Initial weight values of the pre-
dictor were chosen randomly. The adaptive predictor was trained
with 1200 data points taken from the complex wind measure-
ments, as illustrated in Fig. 1.

Performance measure: The measurement used to assess the
performance was the prediction gain Ry, given by [19]

I a2
R, 210 logyo | 2% | [dB] (14)

Oe

where ¢ denotes the variance of the input signal {x(k)}, whereas Eg
denotes the estimated variance of the forward prediction error
{e(k)}. For rigour, one more performance index was used to mea-
sure the forecasting performance, whereby the error mean B and
the coefficient of multiple determination r were used [17]

1

B: Xa*;(\a

~l

T
>
a=1
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where T is the number of samples to be forecasted, x,, is the actual
signal value, X, is the forecasted value, and X is the mean of the
data. The error mean B is used to measure whether the predictor is
biased whereas the coefficient of multiple determination can have
several possible value ranges.

(16)

1, ifVeXa = Xq

5 0<r1r?<1, ifX,isa better forecast than X
0, if generallyx, = X
r2 <0, if X,is a worse forecast than X

The coefficient of multiple determination r for which the values are
close to unity indicates perfect prediction.

To quantify the benefits of the proposed approach, Table 2
shows the results of six steps ahead prediction for wind data
averaged at 1-, 3- and 6-h interval. The performance measures (12)
shown in Table 2 indicate small improvement in the performance
when the average interval of wind measurements increases, this is
because wind averaged at longer intervals approaches the Gaussian
distribution, for which standard complex-valued sequential algo-
rithms are well suited.

In all cases the predictors based on augmented statistics sig-
nificantly improved performance over the standard complex filter,
both in terms of bias and prediction accuracy.

4.2. Performance for the finely sampled 24-h urban wind data

The data set was taken using an ultrasonic anemometer and
sampled at 50 Hz. This was then passed through a moving average

Table 2
Performance measures for 1-, 3- and 6-h average of wind data for six steps ahead
prediction

Wind
1h 3h 6h
Algorithms  CLMS ACLMS CLMS ACLMS CLMS ACLMS
Bias 0.088934 0.073271 0.074041 0.018205 0.1107 0.062436
r 0.1149 0.3081 0.14988 0.32099 0.1258 0.4657
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Fig. 3. Complex wind signal magnitude. Three wind speed regions have been identi-
fied as low, medium and high.

filter to reduce the effects of high frequency noise; and then
resampled at 1 Hz. The window size wg of the moving average filter
varied according to

= {1,2,10,20, 60,300}

where the window size is given in seconds.

The data comprised of north-south (Vy) and east-west (V)
direction readings of wind speed, which was used to create the
complex wind signal V as follows:

a Prediction gain for 'low’, ’'medium’ and ’high’ wind activity regions
8
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_2 1 1 1 1 1
1 2 10 20 60 300 600
Moving Average window size (s)
b Difference between ACLMS and CLMS Prediction Gain (dB)
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Fig. 4. (a) Prediction gain of the ACLMS (thick line) and CLMS (thin line) algorithms in
the low (solid), medium (dashed) and high (dot-dash) regions. (b) Difference between
the prediction of the ACLMS and CLMS algorithms for the three regions.

Table 3
Prediction gain (dB) for the low, medium and high regions and according to window
size

Window size wg (s) Low Medium High

ACLMS CLMS ACLMS CLMS ACLMS CLMS
1 2.53 185 532 443 6.68 6.35
2 2.77 2.02 5.76 4,74 8.62 7.80
10 3.76 2.72 737 5.96 13.51 11.80
20 4.51 3.03 8.32 6.76 15.07 13.00
60 5.21 2.88 9.63 7.69 16.53 14.30
300 2.85 1.07 12.04 7.11 17.20 14.07
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Fig. 5. (a) Input and predicted signal of the high region using the ACLMS algorithm, (b) zoomed area of boxed portion of (a), (c) zoomed portion of (a) using the CLMS algorithm, and
(d) input and predicted signal of the medium region, comparing the performance of the ACLMS and CLMS after 5000 iterations.

v =,/V+ V3
= arctan @
¢ = Ve

V =ve

(17)

The complex wind data obtained are shown in Fig. 3. Throughout
the day, the wind strength changed, as labelled on the figure by
high, medium or low. To analyse the effect of wind speed, 5000
samples were taken from each region to train the adaptive pre-
dictor using one step ahead prediction. Simulation results are
shown in Fig. 4(a) and summarised in Table 3.

It is evident that the ACLMS algorithm has provided better
predictions compared to the CLMS algorithm in all the three con-
sidered regions. It is also seen that the best prediction was obtained
from the high region where the wind speed was strongest, having
a maximum prediction gain of 17.20 dB; this clearly indicated the
benefits of using augmented statistics for data with large dynamics.

The effect of the moving average window size can be seen in
Fig. 4(b) where the difference between the ACLMS and CLMS pre-
diction gain is given. The overall trend shows a direct proportion-
ality between the window size and the difference between the
prediction gain of the two algorithms, i.e. as the window size in-
creases, the ACLMS algorithm outperforms the CLMS algorithm by
larger amounts, with the exception of the low region.

Fig. 5(b) and (c) shows a more detailed graph of the high region
input and predicted signal of the boxed portion of Fig. 5(a) using,
respectively, the ACLMS and CLMS algorithms. Fig. 5(d) also com-
pares the performance of the two algorithms with data taken from
the medium region. It is seen that after 5000 iterations, the ACLMS
algorithm has outperformed CLMS.

5. Conclusions and discussions

This paper has introduced a novel approach for estimation of the
wind signal in the complex domain taking into account the strong
correlation between the two wind components, speed and
direction. Recent advances in complex statistics have been utilised
to provide a mathematical model for enhancing the performance of
linear predictors for complex data, the so-called augmented com-
plex LMS algorithm, by taking the pseudo-covariance matrix as
well as the covariance matrix.

Two sets of data were used to compare the performance of the
proposed method. At long sampling intervals due to averaging, the
data exhibit near Gaussian statistical properties, making the in-
crease of performance between the two algorithms relatively small.

However, it is seen that at shorter sampling intervals there is
a distinct increase in the performance of the ACLMS algorithm,
which is due to the different treatment of the underlying
covariance and pseudo-covariance matrices.
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