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a b s t r a c t

A split quaternion learning algorithm for the training of nonlinear finite impulse response adaptive filters
for the processing of three- and four-dimensional signals is proposed. The derivation takes into account
the non-commutativity of the quaternion product, an aspect neglected in the derivation of the existing
learning algorithms. It is shown that the additional information taken into account by a rigorous treatment
of quaternion algebra provides improved performance on hypercomplex processes. A rigorous analysis of
the convergence of the proposed algorithms is also provided. Simulations on both benchmark and real-
world signals support the approach.
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1. Introduction

Recent advances in sensor technology and the increasing num-
ber of corresponding applications (sensor networks, data fusion)
have highlighted the need for efficient multidimensional adaptive
signal processing algorithms to efficiently deal with such multi-
dimensional data. To ensure optimal processing power, instead of
treating each dimension separately, the signal needs to be pro-
cessed as a whole, thus fully exploiting the available information.
A number of machine learning algorithms have been developed
to fulfill this objective, especially in the area of neural net-
works (Arena, Fortuna, Muscato, & Xibilia, 1998; Nitta, 1993; Nitta
& de Garis, 1992). One convenient approach is to represent mul-
tidimensional signals as vectors in Rn, leading to one of the first
multidimensional learning algorithms for neural networks, the
Three-Dimensional Vector Back-Propagation (3DV-BP) (Nitta & de
Garis, 1992). However, there are also problems associated with
vectorial approaches, for instance, the matrix operation in Nitta
and deGaris (1992) does not fully exploit the coupling between the
three dimensions. Improvements include the Vector Product Back-
Propagation (VP-BP), which addresses this issue through the use of
vector products (Nitta, 1993). However, this algorithm cannot up-
date theweights in the presence of non-zero error. Both these algo-
rithms use a split quaternion logistic activation function whereby
each component is processed independently. The universal func-
tion approximation capabilities for both algorithms has not been
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investigated as no density theorem has been proved for real vector
spaces (Arena et al., 1998, pp 67–71).
When dealing with three- and four-dimensional signals such as

signals in optics,vector fields, and three-dimensional motion data,
it is natural to consider the processing in the quaternion domain
H. Quaternions were first conceived by Hamilton in 1843, and
have found applications in robotics (Biamino, Cannata, Maggiali, &
Piazza, 2005), molecular modelling (Karney, 2007), and computer
graphics (Choe & Faraway, 2004). The dilemma of the modelling in
the quaternion domain versus the modelling in R4 has been long
present (Heaviside, 1893;MacFarlane, 1893; Silva &Martins, 2002)
and traditionally, quaternion based adaptive signal processing has
not been as prominent as that based on vectors.
In the area of neural networks, quaternion adaptive signal pro-

cessing started with the introduction of the Quaternion-valued
Multilayer Perceptron (QMLP) and the benefits stemming from
the algebraic properties of the quaternion domain led to an en-
hanced performance over previous algorithms of this kind (Arena
et al., 1998). Although the QMLP applies a split quaternion lo-
gistic function similar to that used in the previous algorithms,
unlike the vectorial approaches in R3 and R4, its approximation
capabilities are well understood as the density theorem in H has
been proven (Arena et al., 1998, pp 67–71). One of the applications
of QMLP was in polarized signal classification (Buchholz & Bihan,
2008). Despite the satisfactory results obtained, the algorithm for
the training of QMLP ignores the non-commutativity of the quater-
nion product and cannot reach theoretical performance limits.
Recently, for adaptive filtering of three- and four-dimensional

signals, the Least Mean Square (LMS) algorithm has been extended
to the quaternion domain, with the introduction of the Quaternion
Least Mean Square (QLMS) algorithm (Cheong-Took & Mandic,
2009). The QLMS algorithm exhibits a superior performance over
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the standardmultichannel LMS algorithm for the filtering of hyper-
complex processes, as the use of quaternion algebra naturallymod-
els the coupling between the components (Cheong-Took&Mandic,
2009). However, the linear nature of the quaternion finite impulse
response (FIR) filter renders the QLMS algorithm suboptimal for
the processing of nonlinear multidimensional signals (Arena et al.,
1998; Mitsubori & Saito, 1994). To this end, we here introduce a
‘‘split quaternion’’ nonlinear adaptive filtering algorithm.
The aim of this article is to introduce a three- and four-

dimensional valued nonlinear FIR adaptive filter suitable for the
processing of nonlinear signals and modelling of nonlinear sys-
tems. Due to a number of open issues in the analysis of nonlinear
quaternion-valued functions, it is difficult to extend the corre-
sponding approaches from C to H, as the only analytic quater-
nion function is a linear quaternion function (Sudbery, 1979).
We, therefore, resort to applying nonlinearities component-wise.
The learning algorithms introduced, the Split Quaternion Nonlin-
ear Adaptive Filtering Algorithm (SQAFA) and the Adaptive Am-
plitude Split Quaternion Nonlinear Adaptive Filtering Algorithm
(AASQAFA), are derived rigorously in order to explicitly address
the non-commutativity of the quaternion product and to tackle the
problems associated with a large dynamical range of the quater-
nion signal.
The article is organized as follows. In Section 2, we briefly re-

view the basics of quaternion algebra. This is followed by a brief
discussion of the analyticity of nonlinear functions in H. The pro-
posed SQAFA and AASQAFA are derived in Section 4. Section 5
analyzes the convergence of the proposed algorithms. The perfor-
mances of SQAFA algorithm and AASQAFA algorithm are compared
against QMLP and the corresponding complex and multidimen-
sional real-valued algorithms, through comprehensive simulations
on both benchmark and real-world multidimensional data. Sec-
tion 6 gives a discussion of the results obtained. Finally, the article
concludes in Section 7.

2. Nonlinear functions in H

A basic quaternion variable q ∈ H has a scalar part, or equiva-
lently the real part, and a vector part comprising three imaginary
parts, which can be represented as

q = [qa, q]
= qa + qbı+ qc ȷ+ qdκ (1)

where qa, qb, qc, qd ∈ R and ı, ȷ, κ are orthogonal unit vectors.
The relationship between the orthogonal unit vectors ı, ȷ, κ are

ıȷ = κ; ȷκ = ı; κ ı = ȷ;

ıȷκ = ı2= ȷ2 = κ2 = −1 (2)

A quaternion operation which needs to be carefully considered
is the multiplication, given by

wx = [wa,w][xa, x]
= [waxa −w · x, wax+ xaw+w× x] (3)

where the symbols ‘‘·’’ and ‘‘×’’ denote, respectively, to the dot-
product and cross-product. The non-commutativity of the quater-
nion product wx 6= xw, arises due to the presence of the outer
product. Similar to the complex case, the conjugate of a quater-
nion q is q∗ = [qa, q]∗ = [qa,−q], and the norm ‖q‖22 = qq

∗. From
here onwards, all quantities are treated as quaternion valued, un-
less stated otherwise.
The choice of a quaternion-valued nonlinearity in adaptive sig-

nal processing is an open issue. In order for a nonlinear func-
tion to be analytic in the quaternion domain, it must satisfy the
Cauchy–Riemann–Fueter (CRF) equation, which is an extension of
the Cauchy–Riemann equation in C (Sudbery, 1979).
Fig. 1. Nonlinear adaptive finite impulse response (FIR) filter.

For a complex function f (z) = u(x, y) + v(x, y)ı, the Cauchy–
Riemann conditions are given by

∂u
∂x
=
∂v

∂y
;

∂v

∂x
= −

∂u
∂y

(4)

that is, for a complex function f (z) to be analytic in C, we have

∂ f
∂x
+
∂ f
∂y
ı = 0. (5)

In practice, conditions (4) are very convenient and simplify the
derivation of learning algorithms for nonlinear adaptive filtering
in C (Mandic & Goh, 2009).
On the other hand, the CRF condition inH states that for a func-

tion f (q) to be analytic in H (Sudbery, 1979), it must satisfy

∂ f
∂t
+
∂ f
∂x
ı+

∂ f
∂y
ȷ+

∂ f
∂z
κ = 0 (6)

where q = t + xı+ yȷ+ zκ .
However, in order to provide a genuine extension of nonlinear

adaptive filtering algorithms fromC toH, we should have a nonlin-
earity that satisfies the CRF condition. This is not straightforward;
for example, applying the CRF equation (6) to the elementary tran-
scendental tanh function gives

∂ tanh(q)
∂q

6= 0. (7)

Thus, the tanh function is not analytic, rendering it unsuitable for a
nonlinearity within a nonlinear quaternion-valued adaptive filter.
To design quaternion-valued feedforward adaptive filters, and

yet to maintain the nonlinearity of architectures, analogous to
split complex filtering in C (Georgiou & Koutsougeras, 1992; Kim
& Adali, 2003), we propose to use ‘‘split quaternion’’ nonlinear
function, where a real nonlinearity is applied independently
to each component of the quaternion-valued signal. Since the
nonlinear tanh function employed as the nonlinear function is
odd-symmetric, that is, Φ

(
−wT (n)x(n)

)
= −Φ

(
wT (n)x(n)

)
, this

odd-symmetry yields

Φ ′∗
(
wT (n)x(n)

)
= Φ ′

(
xH(n)w∗(n)

)
(8)

which is exploited in the derivation of learning algorithms for
quaternion-valued nonlinear filters; symbols (·)H and (·)T denote
the Hermitian and vector transpose operator.
Due to its component-wise operation, the proposed ‘‘split

quaternion’’ approach is not analytic in H as it does not satisfy
the CRF condition (6). However, the proposed approach is analytic
component-wise and is bounded, making it suitable as a nonlin-
earity in neural architectures.

3. Nonlinear adaptive filtering in H

In this section, we highlight the problems associated with the
existing quaternion-valued learning algorithms for nonlinear fil-
ters, and provide rigorous derivation of the proposed algorithms,
which fully utilize the available second order statistical informa-
tion. The architecture of a nonlinear adaptive FIR filter considered
is given in Fig. 1.
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The standard cost function in quaternion-valued adaptive filter-
ing is given by

E(n) = e2a(n)+ e
2
b(n)+ e

2
c (n)+ e

2
d(n) (9)

= e(n)e∗(n) (10)

where the error e(n) = d(n)−y(n) and y(n) = Φ(s(n)), with d(n),
y(n), and Φ(·) denoting, respectively, the desired signal, output
signal and split quaternion nonlinear function. The ‘‘net’’ input s(n)
is defined as s(n) = wT (n)x(n), where w(n) and x(n) correspond,
respectively, to the adaptive weight vector and the filter input,
and symbols (·)T and (·)∗ denote the transpose and quaternion
conjugate operator. Analogous to the split complex approach,
whereby each component is processed independently (Leung &
Haykin, 1991), the split quaternion nonlinear function is defined as

Φ(q) = Φa(q)+ Φb(q)ı+ Φc(q)ȷ+ Φd(q)κ (11)

where Φa is a real-valued nonlinear activation function applied to
the real part of the quaternion qa,Φb to the ı part qb,Φc to the ȷ part
qc , andΦd to the κ part qd.
Thus, the output of the adaptive filter considered in this work is

given by

y(n) = Φa(wT (n)x(n))+ Φb(wT (n)x(n))ı

+Φc(wT (n)x(n))ȷ+ Φd(wT (n)x(n))κ. (12)

3.1. Derivation of the learning algorithm for FIR quaternion- valued
nonlinear adaptive filters

The standard learning algorithm for QMLP minimizes the cost
function (9), through a gradient descent update of the coefficients,
given by w(n + 1) = w(n) − µ∇wE(n). When this algorithm is
applied to a single perceptron (nonlinear FIR filter considered in
this work), we have the error gradient given by (Arena et al., 1998)

∇wE(n) = 2e(n)
de∗(n)
dw(n)

= −e(n)Φ ′
(
wT (n)x(n)

)(
−2x∗(n)

)︸ ︷︷ ︸
∇wy(n)

(13)

whereΦ ′(·) denotes the derivative of the activation functionΦ(·)
(Fig. 1) with respect to s(n). However, if the non-commutativity
of the quaternion product is considered as in our proposed
algorithms, the error gradient becomes

∇wE(n) = e(n)
de∗(n)
dw(n)

+
de(n)
dw(n)

e∗(n). (14)

Comparing (13) with (14), the additional term de(n)
dw(n)e

∗(n) in
(14) helps to make full use of the available second order statistical
information. From (13), it is clear that ∇wE(n) is also a function of
∇wy(n) (the derivation is given in Appendix), that is

∇wy(n) = Φ ′
(
wT (n)x(n)

)(
−2x∗(n)

)
(15)

This yields the weight update

w(n+ 1) = w(n)− µ
(
e(n)Φ ′

(
wT (n)x(n)

)
x∗(n)

)
. (16)

Hence, we propose to calculate the gradient of E(n) (see Appendix)
based on

∇wE(n) = e(n)
de∗(n)
dw(n)

+
de(n)
dw(n)

e∗(n)

= −

(
e(n)∇wy∗(n)+∇wy(n)e∗(n)

)
(17)
which clearly demonstrates that the gradient ∇wE(n) is also a
function of ∇wy∗(n). Similarly, as in (15), it can be shown that

∇wy∗(n) = Φ ′
(
xH(n)w∗(n)

)(
4x∗(n)

)
. (18)

This was not considered in previously introduced algorithms for
quaternion-valued filter (Arena et al., 1998).
For mathematical rigour, it is, therefore, crucial to consider the

expression (14) instead of (13), in order to comply with the non-
commutativity of the quaternion product.

3.2. Derivation of the split quaternion adaptive filtering algorithm
(SQAFA)

Based on the properties of quaternion algebra, the SQAFA for FIR
adaptive filters is derived based on the cost function (10), which
can be expressed as

E(n) =
(
d(n)− y(n)

)(
d∗(n)− y∗(n)

)
= d(n)d∗(n)− d(n)y∗(n)− y(n)d∗(n)+ y(n)y∗(n). (19)

The error gradient of (19) can now be calculated from

∇wE(n) = −d(n)∇wy∗(n)−∇wy(n)d∗(n)

+ y(n)∇wy∗(n)+∇wy(n)y∗(n). (20)

Replacing the expression for the gradient∇wy(n) from (15) and
∇wy∗(n) from (18) into (20) yields

∇wE(n) = −4e(n)Φ ′
(
xH(n)w∗(n)

)
x∗(n)

+ 2Φ ′
(
wT (n)x(n)

)
x∗(n)e∗(n). (21)

Finally, the weight update for the SQAFA for the training of
quaternion- valued nonlinear adaptive filters can be expressed as

w(n+ 1) = w(n)+ µ
(
2e(n)Φ ′

(
xH(n)w∗(n)

)
x∗(n)

−Φ ′
(
wT (n)x(n)

)
x∗(n)e∗(n)

)
(22)

where µ is a real-valued learning rate. Observe the difference
between the weight update in (16) and weight update in (22). Due
to the rigorous use of quaternion algebra in (22), we also have
the conjugate terms, which help to capture complete second order
statistics.

3.3. Derivation of adaptive amplitude split quaternion adaptive
filtering algorithm (AASQAFA)

Architectures with fixed nonlinearities are not suitable for real-
world signals with large dynamical range. To cope with the large
dynamics of a signal, we can introduce an adaptive slope of the
activation function. However, the adaptive slope of the activation
function is interchangeable with the time varying step size of the
learning algorithm, rendering it less effective (Mandic & Chambers,
1999). In order to circumvent this problem, we can use a train-
able amplitude of the activation function (Trentin, 2001). The same
concept was applied to nonlinear FIR adaptive filter in R (Hanna &
Mandic, 2002) and then extended to the recurrent neural network
for processing in C (Goh & Mandic, 2003). These algorithms have
significantly superior performance compared with their counter-
parts with fixed nonlinearities. We shall now introduce a train-
able amplitude activation function into the SQAFA, termed the
Adaptive Amplitude Split Quaternion Adaptive Filtering Algorithm
(AASQAFA).
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An adaptive amplitude of nonlinearity can be introduced as
(Trentin, 2001)

Φ
(
wT (n)x(n)

)
= λ(n)Φ

(
wT (n)x(n)

)
(23)

where λ(n) denotes the time varying amplitude and Φ(·) the real
nonlinearity with unit amplitude applied component-wise. In the
context of ‘‘split quaternion’’ filtering, this can be formulated as

Φ
(
wT (n)x(n)

)
= λa(n)Φ̄a

(
wT (n)x(n)

)
+ λb(n)Φ̄b

(
wT (n)x(n)

)
ı

+ λc(n)Φ̄c
(
wT (n)x(n)

)
ȷ+ λd(n)Φ̄d

(
wT (n)x(n)

)
κ (24)

where λa(n) is the amplitude of the nonlinearity for the real part
of the quaternion, λb(n) for the ı part, λc(n) for the ȷ part and λd(n)
for the κ part.
The update of the adaptive amplitude is derived based on

λ(n+ 1) = λ(n)− ρ∇λE(n) (25)

where ρ is a real-valued learning rate.
The error gradient ∇λE(n) is given as

∇λE(n) =
∂E(n)
∂λ(n)

=
∂
[
e(n)e∗(n)

]
∂λ(n)

= e(n)
∂e∗(n)
∂λ(n)

+
∂e(n)
∂λ(n)

e∗(n). (26)

From (24), since each dimension is treated separately, it is
convenient to define the corresponding component-wise errors as

ea(n) = da(n)− λa(n)Φ̄a
(
wT (n)x(n)

)
eb(n) = db(n)− λb(n)Φ̄b

(
wT (n)x(n)

)
ec(n) = dc(n)− λc(n)Φ̄c

(
wT (n)x(n)

)
ed(n) = dd(n)− λd(n)Φ̄d

(
wT (n)x(n)

)
. (27)

As the adaptive amplitude is applied component-wise, the error
gradient ∇λE(n) for each dimension can be optimized separately.
For instance, the error gradient with respect to λa,∇λaE(n) is given
as

∇λaE(n) = ea(n)
∂e∗a(n)
∂λa(n)

+
∂ea(n)
∂λa(n)

e∗a(n)

= −2ea(n)Φ̄a
(
wT (n)x(n)

)
. (28)

The updates for the amplitudes of all the four nonlinearities are,
therefore, given by

λa(n+ 1) = λa(n)+ ρea(n)Φ̄a
(
wT (n)x(n)

)
(29)

λb(n+ 1) = λb(n)+ ρeb(n)Φ̄b
(
wT (n)x(n)

)
(30)

λc(n+ 1) = λc(n)+ ρec(n)Φ̄c
(
wT (n)x(n)

)
(31)

λd(n+ 1) = λd(n)+ ρed(n)Φ̄d
(
wT (n)x(n)

)
. (32)

4. Convergence analysis of SQAFA and AASQAFA

This section provides a rigorous account of the convergence of
the proposed algorithms. This is achieved based upon the relation-
ship between the a priori, and a posteriori error, and by deriving
the stepsize bound which ensures convergence. Following the ap-
proach from Soria-Olivas, Maravilla, Guerrero-Martinez,Martinez-
Sober, and Espi-Lopez (1998) and Mandic and Chambers (2001),
consider the first order Taylor series expansion

‖ē(n)‖22 = ‖ẽ(n)‖
2
2 +∆wH(n)

∂‖ẽ(n)‖22
∂w(n)

(33)
where ē(n), ẽ(n), ∆wH(n) and ∂‖ẽ(n)‖22
∂w(n) are, respectively, the a pos-

teriori error, the a priori error, the Hermitian of the weight update
and the error gradient.1 The a posteriori output error ē and the a
priori output error ẽ are defined as

ē(n) = d(n)− Φ
(
wT (n+ 1)x(n)

)
(34)

ẽ(n) = d(n)− Φ
(
wT (n)x(n)

)
(35)

In order for the filter to converge, the a priori and the a posteri-
ori errors need to satisfy

‖ē(n)‖22 < ‖ẽ(n)‖
2
2. (36)

In the following analysis, we shall make two standard assump-
tions; (i) the learning rateµ is small; (ii) at convergence the princi-
ple of orthogonality applies, that is, ẽ(n) is statistically independent
of x(n) (Haykin, 2002).

4.1. Convergence of SQAFA

The term∆wH(n) in (33) is obtained by applying the Hermitian
transpose operator to (22) giving

∆wH = µ
[
2xT (n)Φ ′∗

(
xH(n)w∗(n)

)
ẽ∗(n)

− ẽ(n)xT (n)Φ ′∗
(
wT (n)x(n)

)]
(37)

The term ∂‖ẽ(n)‖22
∂w(n) is the error gradient of SQAFA in (21) and is

given by

∂‖ẽ(n)‖22
∂w(n)

= −
[
4ẽ(n)Φ ′

(
xH(n)w∗(n)

)
x∗(n)

− 2Φ ′
(
wT (n)x(n)

)
x∗(n)ẽ∗(n)

]
(38)

Substituting (37) and (38) into the Taylor series expansion (33)
gives

‖ē(n)‖22 = ‖ẽ(n)‖
2
2 − µ

([
2xT (n)Φ ′∗

(
xH(n)w∗(n)

)
ẽ∗(n)

− ẽ(n)xT (n)Φ ′∗
(
wT (n)x(n)

)][
4ẽ(n)Φ ′

(
xH(n)w∗(n)

)
x∗(n)

− 2Φ ′
(
wT (n)x(n)

)
x∗(n)ẽ∗(n)

])
. (39)

Enforcing the orthogonality condition to (39) and factorizing
the term ‖ẽ(n)‖22 yields

‖ē(n)‖22 = ‖ẽ(n)‖
2
2

[
1− 10µxT (n)x∗(n)‖Φ ′

(
wT (n)x(n)

)
‖
2
2

]
. (40)

In order to satisfy the convergence condition (36), from (40) we
have

0 < 10µxT (n)x∗(n)‖Φ ′
(
wT (n

)
x(n))‖22 < 1. (41)

Solving for µ finally gives the range of s the stepsize which
ensures stability of SQAFA

0 < µ <
1

10xT (n)x∗(n)‖Φ ′
(
wT (n)x(n)

)
‖
2
2

. (42)

1 Observe that the higher order derivatives in the Taylor series expansion vanish.
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4.2. Convergence of AASQAFA

In the case of AASQAFA, each parameter λ controls the ampli-
tude of the nonlinearity in their respective dimension, hence, the
convergence analysis is conducted separately for each dimension.
In order for AASQAFA to converge, λa(n), λb(n), λc(n) and λd(n)
must each converge. We shall illustrate the analysis based on the
convergence for λa(n).
The a priori error in the real part ẽa(n), and the a posteriori error

in the real part ēa(n), are given by

ẽa(n) = da(n)− λa(n)Φ̄a
(
wT (n)x(n)

)
(43)

ēa(n) = da(n)− λa(n)Φ̄a
(
wT (n+ 1)x(n)

)
. (44)

Since λa corresponds to the real part of a quaternion quantity,
we shall consider only the real part of the Taylor series expansion.
From (33), we have

‖ēa(n)‖22 = ‖ẽa(n)‖
2
2 +∆aw

H(n)
∂‖ẽa(n)‖22
∂w(n)

(45)

where the term ∆awH(n) refers to the Hermitian of the weight
update in the real part.

The term ∂‖ẽa(n)‖22
∂w(n) is equivalent to ∇wEa(n) and is given by

∇wEa = ẽa(n)
∂ ẽ∗a(n)
∂w(n)

+
∂ ẽa(n)
∂w(n)

ẽ∗a(n) = 2ẽa(n)
∂ ẽa(n)
∂w(n)

. (46)

From Appendix, the real part of the productwT (n)x(n) is given
as(
wT (n)x(n)

)
a = wTa (n)xa(n)−wTb (n)xb(n)

−wTc (n)xc(n)−wTd(n)xd(n). (47)

Using (47), the real part of the nonlinear function Φ̄a(·) can be
expanded into

Φ̄a
(
wT (n)x(n)

)
= Φ̄

(
wTa (n)xa(n)−wTb (n)xb(n)

−wTc (n)xc(n)−wTd(n)xd(n)
)
. (48)

Substitute the expression for the real part of the nonlinear
function (48) into the a priori error (43) and then differentiatewith
respect tow(n) to give

∂ ẽa(n)
∂w(n)

= −λa(n)Φ̄ ′a
(
wT (n)x(n)

)
×
(
xa(n)− xb(n)ı− xc(n)ȷ− xd(n)κ

)
= −λa(n)Φ̄ ′a

(
wT (n)x(n)

)
x∗(n). (49)

Replacing (49) into the error gradient ∇wEa(n) in (46) gives

∇wEa(n) = −2ẽa(n)λa(n)Φ̄ ′a
(
wT (n)x(n)

)
x∗(n). (50)

The term∆awH(n) is obtained from (50) and is given by

∆awH(n) = µ
(
λa(n)Φ̄ ′a

(
wT (n)x(n)

)
xT (n)ẽa(n)

)
. (51)

Replace the error gradient ∇wEa(n) from (50) and ∆awH(n)
from (51) into the real part of the Taylor series expansion (45) to
yield

‖ēa(n)‖22 = ‖ẽa(n)‖
2
2

−

[
2µλ2a(n)x

T (n)x∗(n)Φ̄ ′2a
(
wT (n)x(n)

)
‖ẽa(n)‖22

]
. (52)
Now, in order to satisfy the convergence condition (36),wehave

0 < 1− 2µλ2a(n)x
T (n)x∗(n)Φ̄ ′2a

(
wT (n)x(n)

)
< 1. (53)

Solving for λa(n) gives the stability bounds on the adaptive
amplitude parameter, in the form

0 < λ2a(n) <
1

2µxT (n)x∗(n)Φ̄ ′2a
(
wT (n)x(n)

) (54)

which also reveals the relationship between the value of the am-
plitude of the quaternion nonlinearity and the stepsize parameter.
Similarly, using the same procedures, the bounds on λb(n),

λc(n) and λd(n) can be found as

0 < λ2b(n) <
1

2µxT (n)x∗(n)Φ̄ ′2b
(
wT (n)x(n)

) (55)

0 < λ2c (n) <
1

2µxT (n)x∗(n)Φ̄ ′2c
(
wT (n)x(n)

) (56)

0 < λ2d(n) <
1

2µxT (n)x∗(n)Φ̄ ′2d
(
wT (n)x(n)

) . (57)

5. Simulations

Simulations were performed in an M-step prediction setting
and provide a comprehensive comparison between the nonlin-
ear FIR filters trained with SQAFA, AASQAFA, QMLP-FIR, Complex
Nonlinear Gradient Descent (CNGD) (Mandic & Goh, 2009), Non-
linear Gradient Descent (NGD) (Mandic & Goh, 2009) and the
training algorithm for the Quaternion- valued Multilayer Percep-
tron (QMLP) (Arena et al., 1998). The SQAFA, AASQAFA, QMLP-FIR,
CNGD and NGD were implemented with a filter length L whereas
the QMLP had one hidden layer comprising L inputs, three hid-
den neurons and one output neuron. The nonlinear function was
the tanh function applied component-wise. The original QMLP ap-
plied the unipolar logistic function as the nonlinearity, whereas the
QMLP algorithm implemented in our simulations applied the bipo-
lar tanh function, which was better suited to the dynamic range of
the data. Interchanging the nonlinearitywould not lead to a signifi-
cant deviation in performance (Duch & Jankowski, 1999). In the ex-
periments, the amplitudes of input signals in each dimensionwere
scaled to within the range [−0.8, 0.8]. The step size of the adap-
tive amplitude was chosen to be ρ = 0.4 with an initial amplitude
λ(0) = 1 for all experiments. A total of 20 independent simulation
trials were conducted and averaged.
The standard prediction gain Rp was used as a quantitative

measure of performance defined as (Haykin & Li, 1995)

Rp = 10 log10
σ 2x

σ 2e
(58)

where σ 2x and σ
2
e denote the estimated variance of the input and

error, respectively. The variances were estimated according to

σ 2x = E{x
2
a + x

2
b + x

2
c + x

2
d} (59)

σ 2e = E{e
2
a + e

2
b + e

2
c + e

2
d} (60)

where E{·} denotes the statistical expectation operator, x2a, x
2
b,

x2c , x
2
d are the corresponding squared components of the input sig-

nal, and similarly the squared error components, e2a, e
2
b, e

2
c , e

2
d . All

these values were measured at the steady-state.
Two quaternion-valued processes were considered: the syn-

thetic benchmark 4D Saito’s Chaotic Signal (Mitsubori & Saito,
1994) and the real-world 3D wind field (pure quaternion).
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(a) 4D Saito signal. (b) Wind signal.

Fig. 2. Left: The 4D Saito signal. Right: The 3D wind signal.
5.1. Four-dimensional Saito’s chaotic circuit

The Saito’s chaotic circuit is governed by four state variables and
five parameters, and is given by (Mitsubori & Saito, 1994)
∂x1
∂τ
∂y1
∂τ

 = [ −1 1
−α1 −α1β1

] x1 − ηρ1h(z)
y1 − η

ρ1

β1
h(z)

 (61)


∂x2
∂τ
∂y2
∂τ

 = [ −1 1
−α2 −α2β2

][ x2 − ηρ2h(z)
y2 − η

ρ2

β2
h(z)

]
(62)

where τ is the time constant of the chaotic circuit and h(z) is the
normalized hysteresis value which is given as (Mitsubori & Saito,
1994)

h(z) =
{
1, z ≥ −1
−1, z ≤ 1. (63)

The variables z, ρ1 and ρ2 are given as

z = x1 + x2 (64)

ρ1 =
β1

1− β1
(65)

ρ2 =
β2

1− β2
. (66)

Saito’s chaotic signal used is initialized with the following stan-
dard parameters: η = 1.3, α1 = 7.5, α2 = 15, β1 = 0.16 and
β2 = 0.097. Fig. 2(a) shows the 4D Saito’s signal dimension-wise.
Fig. 3 illustrates the performance of the algorithms considered as
a function of the prediction horizon M (with µ = 10−2), and as a
function of stepsize µ (with the prediction horizon,M = 1). From
Fig. 3, it can be seen that AASQAFA and SQAFA have similar perfor-
mance and they both outperform QMLP.

5.2. Wind forecasting

In the next simulation, a 3D wind field was used as an input.2
The wind data were initially sampled at 50 Hz, but resampled
at 5 Hz for simulation purposes. Fig. 2(b) shows the 3D wind
data dimension-wise. Fig. 4 depicts the performance of SQAFA,
AASQAFA and QMLP as a function of the prediction horizon M
and stepsize µ. The prediction gain for SQAFA was better than
that of QMLP in both case studies (varying learning rate and
prediction horizon), thus indicating the benefits of fully exploiting
the quaternion algebra. The performance of AASQAFAwas superior
to that of SQAFA, due to its adaptive amplitude which follows the
dynamics of the wind signal more closely.
Fig. 5 shows the comparison between SQAFA, the learning algo-

rithm for QMLP applied to the FIR filter (QFIR), CNGD, and NGD
as a function of prediction horizon M and stepsize µ. The per-
formance gain for SQAFA was considerably higher than that for
QFIR, followed by those of the NGD algorithm and CNGD algo-
rithm. When using the same FIR architecture, the SQAFA outper-
formed the QFIR, thus highlighting the advantage of exploiting the
non-commutativity aspect of quaternion algebra. Moreover, both
quaternion based algorithms proved superior to their complex and
real counterparts.

6. Discussion

The performance of the SQAFAwas generally better than that of
QMLP, as it takes into account more complete information about

2 Thewind data are obtained from Prof. K. Aihara and his team at the Institute for
Industrial Science, University of Tokyo, in an urban environment.
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Fig. 3. Performance of SQAFA, AASQAFA and QMLP on the prediction of 4D Saito’s chaotic signal.
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Fig. 4. Performance of SQAFA, AASQAFA and QMLP on the prediction of 3D wind signal.
the statistics of the multidimensional signal. The AASQAFA, on
the other hand, outperformed SQAFA due to its ability to better
track the dynamics of the signal. The QMLP was less affected
by the length of the prediction horizon and the filter length as
compared with the SQAFA and AASQAFA. The deterioration of the
QMLP prediction gain with the increase of prediction horizon is
almost negligible due to the structural richness of the multilayer
neural network compared to the single layer FIR architecture of
SQAFA andAASQAFA. Both theH domain algorithms outperformed
the algorithms in the C and R indicating quaternion based signal
processing being a better choice for the processing of three-
dimensional and hypercomplex processes.
Another aspect that needs to be addressed is the computational

complexity of the algorithms, which is summarized in Table 1.
The computational complexities for AASQAFA and SQAFA are
both O(68L) and QMLP is O(108L). On the other hand, the
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Fig. 5. Performance of SQAFA, QFIR, CNGD and NGD on the prediction of 3D wind signal.
Table 1
Computational complexities of the algorithms.

Algorithms Additions Multiplications

1× QMLP 96 L+ 168 108 L+ 216
1× SQAFA 60 L+ 18 68 L+ 24
1× AASQAFA 60 L+ 22 68 L+ 36
1× QMLP-FIR 32 L+ 18 36 L+ 24
2× CNGD 16 L+ 4 24 L+ 8
4× NGD 8 L+ 4 12 L+ 4

computational complexity of QMLP is more than twice that of
SQAFA and AASQAFA when L = 1. Since the computational
complexities for the SQAFA andAASQAFA are similar, AASQAFA is a
preferable choice due to its superior performance. Computational
complexities of the QFIR is O(36L), for the CNGD it is O(24L),
and for NGD it is O(12L). The computational complexity of SQAFA
and AASQAFA are less than two times that of QFIR, nearly three
times that of CNGD and almost seven times that of NGD. Hence,
there is a trade off between a higher computational complexity and
increment in performance.
The QMLPswere proven to be universal approximators in Arena

et al. (1998). Specifically, it was shown that a universal approxima-
tor for quaternion functions must be in the form of (Arena et al.,
1998)

g(x) =
N∑
i=1

CiΦ
(
wT (n)x(n)+ θ(n)

)
(67)

where g(x) is a quaternion-valued function to be approximated, Ci
is quaternion-valued variable, Φ(·) is a split quaternion sigmoidal
function,w(n) is the quaternionweight vectors, x(n) is the quater-
nion input vectors and θ(n) is the quaternion-valued bias term.
Eq. (67) conformswith the earlier findings of Cybenko (1989), who
stated that any continuous function can be approximated by the
superposition ofN sigmoidal functions. In the context of the SQAFA
and AASQAFA, N = 1, and, therefore, if SQAFA and AASQAFA are
0
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Fig. 6. Prediction gain of AASQAFA for the varying initial amplitude λ(0) and step
size ρ.

extended to a neural network architecture, their approximation ca-
pabilities become those of a universal approximator.
Fig. 6 illustrates the dependence of the prediction gain of

AASQAFA on the initial amplitude λ(0) and step size ρ. It is shown
that AASQAFA is robust to the initial state λ(0) and the learning
rate ρ for the realistic range of 0 < λ(0) < 3 and 0.1 ≤ ρ ≤ 1.5.
In summary, the advantages SQAFA and AASQAFA are

• Taking into account the non-commutativity of the quaternion
product leads tomore efficient use of the available statistics and
improved performance;
• AASQAFA caters for the changes in dynamical range of the
signals, resulting in a performance enhancement;
• AASQAFA is robust to the choice of initial amplitude λ(0) and
learning rate ρ.

7. Conclusion

A class of stochastic gradient algorithms (SQAFA and AASQAFA)
for the training of quaternion-valued nonlinear adaptive FIR filters
has been proposed. The learning algorithm for the training of QMLP
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proved inadequate when modelling the hypercomplex processes
considered (four-dimensional Saito’s chaotic signal and three-
dimensional wind signal) due to the strong coupling between
each dimension. Furthermore, multiple univariate NGD and a
pair of complex NGD (CNGD) were also considered, but yielded
poorer performance when compared with both the QMLP and the
SQAFA algorithms. The ‘‘split quaternion’’ nonlinear function was
next employed, as there are no analytic extensions of elementary
transcendental functions from C to H, due to the violation of the
Cauchy–Riemann–Fueter condition.
The derivations of the SQAFA and AASQAFA have taken into ac-

count the non-commutativity of the quaternion product, and have
been simplified bymaking use of the odd-symmetry of elementary
transcendental functions applied component-wise. A rigorous sta-
bility analysis has provided the range of the stepsizes for SQAFA
and AASQAFA, and has established the relationship between the
adaptive amplitude and the stepsize of the AASQAFA. The proposed
algorithms (SQAFA and AASQAFA) have been shown to exhibit ex-
cellent performance on the prediction of quaternion-valued real-
world vector fields. TheAASQAFAachievedbetter performancedue
to its enhanced ability to track the time varying dynamics of the in-
put signals.

Appendix. Derivation of ∇wy(n)

To calculate ∇wy(n) and ∇wy∗(n), terms wT (n)x(n) and
xH(n)w∗(n) are first expanded as (due to space limitation, the time
index ‘‘n’’ has been dropped) :

wT (n)x(n) =


wTaxa −wTbxb −wTc xc −wTdxd
wTaxb +wTbxa +wTc xd −wTdxc
wTaxc +wTc xa +wTdxb −wTbxd
wTaxd +wTdxa +wTbxc −wTc xb

 (A.1)

xH(n)w∗(n) =


wTaxa −wTbxb −wTc xc −wTdxd
−wTaxb −wTbxa −wTc xd +wTdxc
−wTaxc −wTc xa −wTdxb +wTbxd
−wTaxd −wTdxa −wTbxc +wTc xb

 (A.2)

and the gradients ∇wy(n) and ∇wy∗(n) are defined as:

∇wy(n) = ∇way(n)+∇wby(n)ı+∇wc y(n)ȷ+∇wdy(n)κ (A.3)
∇wy∗(n) = ∇way

∗(n)+∇wby
∗(n)ı+∇wc y

∗(n)ȷ+∇wdy
∗(n)κ.

(A.4)

Using the odd-symmetry property of the elementary transcen-
dental functions as we have:

Φ ′∗
(
wT (n)x(n)

)
= Φ ′a

(
wT (n)x(n)

)
− Φ ′b

(
wT (n)x(n)

)
ı

−Φ ′c
(
wT (n)x(n)

)
ȷ− Φ ′d

(
wT (n)x(n)

)
κ

= Φ ′
(
xH(n)w(n)

)
. (A.5)

Based on the expansions (A.1) and (A.2), the derivatives of (A.3)
can be computed as:

∇way(n) = Φ
′
(
wT (n)x(n)

)
(xa + xbı+ xc ȷ+ xdκ)

∇wby(n)ı = Φ ′
(
wT (n)x(n)

)
(−xb + xaı− xdȷ+ xcκ)ı

= Φ ′
(
wT (n)x(n)

)
(−xa − xbı+ xc ȷ+ xdκ)

∇wc y(n)ȷ = Φ ′
(
wT (n)x(n)

)
(−xc + xdı+ xaȷ− xbκ)ȷ

= Φ ′
(
wT (n)x(n)

)
(−xa + xbı− xc ȷ+ xdκ)

∇wdy(n)κ = Φ ′
(
wT (n)x(n)

)
(−xd − xc ı+ xbȷ+ xaκ)κ

= Φ ′
(
wT (n)x(n)

)
(−xa + xbı+ xc ȷ− xdκ) . (A.6)
Similar to the above and using the odd-symmetry property
(A.5), the derivatives in (A.4) are obtained as
∇way

∗(n) = Φ ′∗
(
wT (n)x(n)

)
(xa − xbı− xc ȷ− xdκ)

∇wby
∗(n)ı = Φ ′∗

(
wT (n)x(n)

)
(−xb − xaı+ xdȷ− xcκ)ı

= Φ ′∗
(
wT (n)x(n)

)
(xa − xbı− xc ȷ− xdκ)

∇wc y
∗(n)ȷ = Φ ′∗

(
wT (n)x(n)

)
(−xc − xdı− xaȷ+ xbκ)ȷ

= Φ ′∗
(
wT (n)x(n)

)
(xa − xbı− xc ȷ− xdκ)

∇wdy
∗(n)κ = Φ ′∗

(
wT (n)x(n)

)
(−xd + xc ı− xbȷ− xaκ)κ

= Φ ′∗
(
wT (n)x(n)

)
(xa − xbı− xc ȷ− xdκ) (A.7)

Substituting (A.6) into (A.3) yields:

∇wy(n) = Φ ′
(
wT (n)x(n)

)(
−2x∗(n)

)
(A.8)

and substituting (A.7) into (A.4) gives:

∇wy∗(n) = Φ ′∗
(
wT (n)x(n)

)(
4x∗(n)

)
(A.9)

which is employed in the derivation of the SQAFA and AASQAFA.
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