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Abstract

In this material, we provide additional insight into seveaapects of the multivariate empirical mode decom-
position (MEMD) algorithm [1]. This includes the generatiof low-discrepancy pointset on generalized n-spheres,
alignment of common scales within multivariate IMFs, and ffossible stoppage criteria for MEMD. The material
is supported by simulations on synthetic hexavariate $sgaad real world EEG data.

|. SAMPLING BASED ON LOW DISCREPANCY POINTSETS

We adopt “low discrepancy” quasi-Monte Carlo Hammerslegdoasequences for generating multi-
dimensional pointsets on an n-sphere; these sequencegtaxen to show considerable improvement,
in terms of error bounds, over standard Monte Carlo meth&{lsif has also been shown that the set
of direction vectors generated by the Hammersley sequeradsyimproved generalised discrepancy
estimates as compared to other sampling methods, and hemeceniformly distributed on a sphere [3].
The original hammersley sequence generates the pointse¢ irange ofl0, 1) and hence, therefore, has
to be modified to produce the directional vectors on n-spHeoe a particular case of a 2-sphere (three
dimensional sphere), this is achieved by first performinmear scaling of the sequence to the cylindrical
domain(¢,t) € [0,2m) x [—1,1].

To generate sample points distribution on sphere, theforamation from (¢, ¢) to the unit sphere is
then achieved via the following radial projection:

(¢,1) — (V1 —t2cos(p), V1 — 2sin(¢), )" (1)

To generate the uniform samples on a general n-sphere, wediorm a linear mapping ton — 1)
angular coordinates, and then generate the direction neebtised on these coordinates.

For illustration, Figure 1(b) and Figure 2 show, respetyivthe pointsets on the surface of a three
dimensional sphere (2-sphere) and a four dimensional bppere (3-sphere), generated by the low
discrepancy Hammersley sequence using the transformsatiscussed above. Observe that, as desired,
the points generated by the low discrepancy method are nmofermly distributed as compared to the
standard uniform angular approach (Figure 1(a)). In Figyraleally, the pointset should be plotted on
a 3-sphere, however, for visualisation purposes, we cay wse three 2-spheres. A comparison of the
pointset generated by the proposed Hammersley sequermen(sh Figure 2) with that produced based
on the uniform angular sampling method (shown in Figure &faj Figure 3, and used in [4]) clearly
illustrates the superiority of the proposed method.
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Fig. 1. Direction vectors for taking projections of trivate signals on a 2-sphere generated by using (a) sphericedicate system; (b)
a low-discrepancy Hammersley sequence. Observe the ritorraity of the projections in Figure 1(a).

[I. THE STOPPAGECRITERIA FOR MULTIVARIATE EMD

The standard stoppage criteria in EMD requires IMFs to bé&desd in such a way that the number of
extrema and the zero crossings differ at most by oneSfoonsecutive iterations of the sifting algorithm.
The optimal empirical value of has been observed to be in the range ef 3 [5].

Similarly, in [6], an improved stopping criterion is presea, which introduces an evaluation function
based on the envelope amplitude, definede@§ = €,,4.(t) — enmin(t), SO that the sifting process is
continued till the value of the evaluation function, whichdefined asf(t) = %L where m(t) is the
local mean signal, is greater or equal to some predefinedhblds. This criterion ensures globally small
fluctuations in the mean signal while taking into accountralldarge excursions in the signal.

In the multivariate EMD algorithm, we can apply both the abaviteria to all projections of the input
signal and stop the sifting process once the stopping dondg met for all projections. Another possible
method may be to stop the sifting process once the stoppitegiaris met for any one of the projected
signals. However, it has been observed that it may not yiblkigally meaningful IMFs, especially in
cases where large number of projections are consideredntpute the local mean.

For the stoppage criteria given in [6], we performed a testheck the dependence of the execution
time of the multivariate EMD algorithm on the number of piijens used to compute the local mean. The
results are plotted in Figure 4, where it can see be seenhbet ts a linear dependence of the number
of projections on the execution time. The test was performeda synthetic signal with 12 channels
(components).

[1I. M ODE ALIGNMENT USING MULTIVARIATE IMFs

We shall now demonstrate the ability of the proposed extensi EMD to align ‘common scales’
embedded within the multivariate data. To illustrate thedmalignment property of multivariate EMD,
a hexavariate signal, with coordinates (U, V, W, X, Y, Z), i;mthetically designed such that a single
frequency sine wave is made common to all its componentsiealdahe remaining three tones are made
common inUV X, UVWY andUW X Z components; white Gaussian noise is then added to first three
components only. The hexavariate signal is first processedmo separate applications of the trivariate
EMD algorithm (given in [4], but performed using the quasi M@ Carlo sampling in [1])and the results
are shown in Figure 5. It can be seen that the tones separmtdtievtrivariate EMD are not properly
aligned in the resulting IMFs. In Figure 6, we show the IMFs$anted by processing the same hexavariate
synthetic signal via a single application of the hexavariBMD. It is evident that the tones are now
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(c) Sampling a hypersphere (3-sphere) using low discrepancy
sequence (WYZ axes shown)

Fig. 2. Direction vectors for taking projections of a quaten signal (with N=4 components) on a unit 3-sphere geedray using a low
discrepancy Hammersley sequence. For visualisation pagpdhe pointset is plotted on three unit 2-spheres, defemakectively by the
WXY, WYZ, and XY Z axes. Observe the enhanced uniformity of the sampling agpamed to the method based on uniform angular
sampling, shown in Figure 1(a)

properly aligned within the multivaraite IMFs. This modégaiment property is an important requirement
for data/sensor fusion applications in the time-frequethagnain.

V. DENOISING OF REAL WORLDEEG SIGNALS

We now illustrate the power of the proposed method on realdvelectroencephalography (EEG)
signals, with an aim to separate the brain electrical dgtivom other artefacts such as electrooculography
(EOG) and electromyography (EMG). Solution to these pnmislés an important step for the accurate
analysis of the information processing mechanism of thenkaad is an active area of research [7] [8] [9].
The data used in these simulations are collected by comgeEEG electrodes to the head channéld,
Fp2,C3,C4, F3, F4,T7, andT8, as described in [10]. Such setting normally prompts subjecmove
their eyes often resulting an ocular interference in reedrBEG signal.

The resulting eight channels are then processed via mudtteaEMD. Owing to the mode alignment
property of the proposed algorithm, the decomposed EEG idagdgnchronized in multivariate IMFs in
such a way that the high frequency neurophysiological $sgage separated in lower index IMFs, while
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(c) Sampling a hypersphere (3-sphere) using uniform angular
sampling method (WYZ axes shown)

Fig. 3. Direction vectors for taking projections of a quaten signal (with N=4 components) on a unit four dimensiasathere (3-sphere)
generated by using a uniform angular sampling method. Faralization purposes, the pointset is plotted on threeapfieres (2-spheres),
defined respectively by XY, XY Z, andWY Z axes.

low frequency electrophysiological signals (EMG and EO® eontained in high index IMFs. Due to
the synchronization property of the proposed method, a Isirtipeshold on IMF index can be used to
separate non-EEG related interference from underlyinm laetivity. The EOG and the clean EEG signal
estimated in this way are shown in the middle and right haddneo of Figure 7, with original EEG
signals shown in the left column. It is important to note teath separation is difficult to achieve by
applying univariate EMD on all channels separately as it negylt in spectrally uncorrelated components.
For instance, in [10], a complex clustering technique idusethe frequency domain (Hilbert transform
space) in order to identify spatially correlated modes fronivariate EMD decompositions, however,
despite to a certain extent, high frequency components tdrgiesent in the estimated EOG signal.
There were no such problems noticed with our proposed sclame effectively aligns the common
modes present across multiple channels.
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Fig. 5. Decomposition of a two synthetic trivariate signalith coordinatesU, V, W) and (X, Y, Z), exhibiting multiple frequency modes,
via two separate applications of trivariate EMD. Noticetttie mode alignment cannot be achieved between compon&hig Geparate
trivariate inputs as the two signals have been processextatefy.
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Fig. 7. lllustration of artefact separation from 8 EEG chelanF'pl, Fp2, C3, C4, F3, F4, C7, C8) and 2 reference EOG channels
(hEOG andvEOQG) using the multivariate EMD algorithm. The estimated masadtivity (artefact) is shown in the middle column, whereas
the denoised EEG signal is presented in the right column.



