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Abstract

In this material, we provide additional insight into several aspects of the multivariate empirical mode decom-
position (MEMD) algorithm [1]. This includes the generation of low-discrepancy pointset on generalized n-spheres,
alignment of common scales within multivariate IMFs, and the possible stoppage criteria for MEMD. The material
is supported by simulations on synthetic hexavariate signals and real world EEG data.

I. SAMPLING BASED ON LOW DISCREPANCY POINTSETS

We adopt “low discrepancy” quasi-Monte Carlo Hammersley based sequences for generating multi-
dimensional pointsets on an n-sphere; these sequences haveproven to show considerable improvement,
in terms of error bounds, over standard Monte Carlo methods [2]. It has also been shown that the set
of direction vectors generated by the Hammersley sequence yields improved generalised discrepancy
estimates as compared to other sampling methods, and hence,are uniformly distributed on a sphere [3].
The original hammersley sequence generates the pointset inthe range of[0, 1) and hence, therefore, has
to be modified to produce the directional vectors on n-sphere. For a particular case of a 2-sphere (three
dimensional sphere), this is achieved by first performing a linear scaling of the sequence to the cylindrical
domain(φ, t) ∈ [0, 2π) × [−1, 1].

To generate sample points distribution on sphere, the transformation from(φ, t) to the unit sphere is
then achieved via the following radial projection:

(φ, t) 7→ (
√

1 − t2 cos(φ),
√

1 − t2 sin(φ), t)T (1)

To generate the uniform samples on a general n-sphere, we first perform a linear mapping to(n − 1)
angular coordinates, and then generate the direction vectors based on these coordinates.

For illustration, Figure 1(b) and Figure 2 show, respectively, the pointsets on the surface of a three
dimensional sphere (2-sphere) and a four dimensional hypersphere (3-sphere), generated by the low
discrepancy Hammersley sequence using the transformations discussed above. Observe that, as desired,
the points generated by the low discrepancy method are more uniformly distributed as compared to the
standard uniform angular approach (Figure 1(a)). In Figure2, ideally, the pointset should be plotted on
a 3-sphere, however, for visualisation purposes, we can only use three 2-spheres. A comparison of the
pointset generated by the proposed Hammersley sequence (shown in Figure 2) with that produced based
on the uniform angular sampling method (shown in Figure 1(a)and Figure 3, and used in [4]) clearly
illustrates the superiority of the proposed method.
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Fig. 1. Direction vectors for taking projections of trivariate signals on a 2-sphere generated by using (a) spherical coordinate system; (b)
a low-discrepancy Hammersley sequence. Observe the non-uniformity of the projections in Figure 1(a).

II. THE STOPPAGECRITERIA FOR MULTIVARIATE EMD

The standard stoppage criteria in EMD requires IMFs to be designed in such a way that the number of
extrema and the zero crossings differ at most by one forS consecutive iterations of the sifting algorithm.
The optimal empirical value ofS has been observed to be in the range of2 − 3 [5].

Similarly, in [6], an improved stopping criterion is presented, which introduces an evaluation function
based on the envelope amplitude, defined asa(t) = emax(t) − emin(t), so that the sifting process is
continued till the value of the evaluation function, which is defined asf(t) = |m(t)

a(t)
|, where m(t) is the

local mean signal, is greater or equal to some predefined thresholds. This criterion ensures globally small
fluctuations in the mean signal while taking into account overall large excursions in the signal.

In the multivariate EMD algorithm, we can apply both the above criteria to all projections of the input
signal and stop the sifting process once the stopping condition is met for all projections. Another possible
method may be to stop the sifting process once the stopping criteria is met for any one of the projected
signals. However, it has been observed that it may not yield physically meaningful IMFs, especially in
cases where large number of projections are considered to compute the local mean.

For the stoppage criteria given in [6], we performed a test tocheck the dependence of the execution
time of the multivariate EMD algorithm on the number of projections used to compute the local mean. The
results are plotted in Figure 4, where it can see be seen that there is a linear dependence of the number
of projections on the execution time. The test was performedon a synthetic signal with 12 channels
(components).

III. M ODE ALIGNMENT USING MULTIVARIATE IMFS

We shall now demonstrate the ability of the proposed extension of EMD to align ‘common scales’
embedded within the multivariate data. To illustrate the mode alignment property of multivariate EMD,
a hexavariate signal, with coordinates (U, V, W, X, Y, Z), is synthetically designed such that a single
frequency sine wave is made common to all its components, whereas the remaining three tones are made
common inUV X, UV WY andUWXZ components; white Gaussian noise is then added to first three
components only. The hexavariate signal is first processed via two separate applications of the trivariate
EMD algorithm (given in [4], but performed using the quasi Monte Carlo sampling in [1])and the results
are shown in Figure 5. It can be seen that the tones separated via the trivariate EMD are not properly
aligned in the resulting IMFs. In Figure 6, we show the IMFs obtained by processing the same hexavariate
synthetic signal via a single application of the hexavariate EMD. It is evident that the tones are now
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(a) Sampling a hypersphere (3−sphere) using low discrepancy 
sequence (WXY axes shown)
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(b) Sampling a hypersphere (3−sphere) using low discrepancy 
sequence (XYZ axes shown)
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(c) Sampling a hypersphere (3−sphere) using low discrepancy 
sequence (WYZ axes shown)
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Fig. 2. Direction vectors for taking projections of a quaternion signal (with N=4 components) on a unit 3-sphere generated by using a low
discrepancy Hammersley sequence. For visualisation purposes, the pointset is plotted on three unit 2-spheres, definedrespectively by the
WXY , WY Z, andXY Z axes. Observe the enhanced uniformity of the sampling as compared to the method based on uniform angular
sampling, shown in Figure 1(a)

properly aligned within the multivaraite IMFs. This mode alignment property is an important requirement
for data/sensor fusion applications in the time-frequencydomain.

IV. DENOISING OF REAL WORLDEEG SIGNALS

We now illustrate the power of the proposed method on real world electroencephalography (EEG)
signals, with an aim to separate the brain electrical activity from other artefacts such as electrooculography
(EOG) and electromyography (EMG). Solution to these problems is an important step for the accurate
analysis of the information processing mechanism of the brain and is an active area of research [7] [8] [9].
The data used in these simulations are collected by connecting EEG electrodes to the head channelsFp1,
Fp2, C3, C4, F3, F4, T7, andT8, as described in [10]. Such setting normally prompts subjects to move
their eyes often resulting an ocular interference in recorded EEG signal.

The resulting eight channels are then processed via multivariate EMD. Owing to the mode alignment
property of the proposed algorithm, the decomposed EEG datais synchronized in multivariate IMFs in
such a way that the high frequency neurophysiological signals are separated in lower index IMFs, while
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(a) Sampling a hypersphere (3−sphere) using uniform angular 
sampling method (WXY axes shown)
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(b) Sampling a hypersphere (3−sphere) using uniform angular 
sampling method (XYZ axes shown)
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(c) Sampling a hypersphere (3−sphere) using uniform angular
sampling method (WYZ axes shown)

Y

Z

Fig. 3. Direction vectors for taking projections of a quaternion signal (with N=4 components) on a unit four dimensionalsphere (3-sphere)
generated by using a uniform angular sampling method. For visualization purposes, the pointset is plotted on three unitspheres (2-spheres),
defined respectively byWXY , XY Z, andWY Z axes.

low frequency electrophysiological signals (EMG and EOG) are contained in high index IMFs. Due to
the synchronization property of the proposed method, a simple threshold on IMF index can be used to
separate non-EEG related interference from underlying brain activity. The EOG and the clean EEG signal
estimated in this way are shown in the middle and right hand column of Figure 7, with original EEG
signals shown in the left column. It is important to note thatsuch separation is difficult to achieve by
applying univariate EMD on all channels separately as it mayresult in spectrally uncorrelated components.
For instance, in [10], a complex clustering technique is used in the frequency domain (Hilbert transform
space) in order to identify spatially correlated modes fromunivariate EMD decompositions, however,
despite to a certain extent, high frequency components are still present in the estimated EOG signal.
There were no such problems noticed with our proposed schemeas it effectively aligns the common
modes present across multiple channels.
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Fig. 4. Dependence of the number of projections on the execution time within the multivariate EMD algorithm.
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Fig. 5. Decomposition of a two synthetic trivariate signals, with coordinates(U, V, W ) and(X, Y, Z), exhibiting multiple frequency modes,
via two separate applications of trivariate EMD. Notice that the mode alignment cannot be achieved between components of two separate
trivariate inputs as the two signals have been processed separately.



7

250 500
−10

0

10

U

250 500
−5

0

5

V

250 500
−10

0

10

W

250 500
−5

0

5

X

250 500
−5

0

5

Y

250 500
−5

0

5

Z

250 500
−5

0

5

U
1

−
U

3

250 500
−5

0

5

V
1

−
V

3

250 500
−5

0

5

W
1

−
W

3

250 500
−5

0

5

X
1

−
X

3

250 500
−5

0

5

Y
1

−
Y

3

250 500
−5

0

5

Z
1

−
Z

3

250 500
−5

0

5

U
4

250 500
−5

0

5

V
4

250 500
−5

0

5

W
4

250 500
−5

0

5

X
4

250 500
−5

0

5

Y
4

250 500
−5

0

5

Z
4

250 500
−5

0

5

U
5

250 500
−5

0

5

V
5

250 500
−5

0

5

W
5

250 500
−5

0

5

X
5

250 500
−5

0

5

Y
5

250 500
−5

0

5

Z
5

250 500
−5

0

5

U
6

250 500
−5

0

5

V
6

250 500
−5

0

5

W
6

250 500
−5

0

5

X
6

250 500
−5

0

5

Y
6

250 500
−5

0

5
Z

6

250 500
−5

0

5

Time index

U
7

250 500
−5

0

5

Time index

V
7

250 500
−5

0

5

Time index

W
7

250 500
−5

0

5

Time index

X
7

250 500
−5

0

5

Time index

Y
7

250 500
−5

0

5

Time index

Z
7

IMFs

Original
signal

Fig. 6. Decomposition of a synthetic hexavariate signal(U, V, W, X, Y, Z, ) exhibiting multiple frequency modes, via the proposed
multivariate EMD. Each IMF now carries a single frequency mode, illustrating the alignment of common scales within different components
of a hexavaraite signal.
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Fig. 7. Illustration of artefact separation from 8 EEG channels (Fp1, Fp2, C3, C4, F3, F4, C7, C8) and 2 reference EOG channels
(hEOG andvEOG) using the multivariate EMD algorithm. The estimated muscle activity (artefact) is shown in the middle column, whereas
the denoised EEG signal is presented in the right column.


