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A Novel Method for Determining the
Nature of Time Series

Temujin Gautama, Danilo P. Mandic*, Member, IEEE, and Marc M. Van Hulle, Senior Member, IEEE

Abstract—The delay vector variance (DVV) method, which an-
alyzes the nature of a time series with respect to the prevalence
of deterministic or stochastic components, is introduced. Due to
the standardization within the DVV method, it is possible both
to statistically test for the presence of nonlinearities in a time se-
ries, and to visually inspect the results in a DVV scatter diagram.
This approach is convenient for interpretation as it conveys in-
formation about the linear or nonlinear nature, as well as about
the prevalence of deterministic or stochastic components in the
time series, thus unifying the existing approaches which deal ei-
ther with only deterministic versus stochastic, or the linear versus
nonlinear aspect. The results on biomedical time series, namely
heart rate variability (HRV) and functional Magnetic Resonance
Imaging (fMRI) time series, illustrate the applicability of the pro-
posed DVV-method.

Index Terms—fMRI, HRV, nonlinearity analysis, surrogate
data.

I. INTRODUCTION

NALYZING the nature of biomedical time series has

received considerable attention in recent years, as the
presence of nonlinearity and/or determinism in a physiological
signal can often be used as an indicator of the health status of a
patient (see, e.g., [1]-[4]). In general, performing a nonlinearity
analysis in a modeling or signal processing context can lead to
a significant improvement of the quality of the results, since
it facilitates the selection of appropriate processing methods,
suggested by the data itself, e.g., using linear or nonlinear
filters. Indeed, since the training of nonlinear models and filters
is more complex and less convenient than that of their linear
counterparts, these models should be avoided when the signals
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are actually linear in nature. A comprehensive account of the
importance of this class of analysis in engineering, medicine
and earth sciences, and an introduction to basic methods is
given in [5].

The existing methods for the analysis of the nonlinear nature
of a time series are twofold: in one case, different models (e.g.,
linear and nonlinear ones) are fit to the time series and their ac-
curacies are evaluated [1], [4], [6], whereas in the other case,
certain nonlinearity measures computed for the signal under
study are compared to those obtained for linearized versions of
the data, so-called surrogates (for an overview, see [7]). Another
aspect of a time series, which is based on the Wold decomposi-
tion theorem [8], highlights the prevalence of the deterministic
or stochastic component of a time series, a property which can
also be examined using the method introduced in [6].

The presence of (non-) linear deterministic or stochastic
behavior in a biomedical signal conveys important information.
A change in the nature of a monitored signal might indicate a
change in the health condition. This paper, therefore, considers
the problem of determining the nature of a biomedical signal:
how we can judge about the nature of a time series, given
that it is recorded under an unknown measurement condition
and possibly through a nonlinear observation function. The
work presented here differs from much previous work in that
it takes into consideration both the linear or nonlinear, and the
deterministic or stochastic aspects of a time series. We propose
a unifying method for sequentially analyzing the deterministic
or stochastic nature [delay vector variance (DVV) method], and
the linear or nonlinear nature (DVV scatter diagram). The first
analysis characterizes a time series in a standardized manner,
whereas the latter additionally employs the concept of surrogate
data. The proposed DVV method is applied to two types of
biomedical signals, namely to HRV and fMRI time series, and
the results are in line with those obtained using other methods
from the literature. They confirm current hypotheses on the
presence of nonlinearities in biomedical time series, while the
proposed method further provides an account of another aspect
of the time series, namely the deterministic or stochastic nature.

II. TIME SERIES USED
A. Benchmark Time Series

The proposed method is first verified on four benchmark time
series of 1000 samples, three of which are synthetically gener-
ated and the remaining one is a real-world time series. The first
synthetic time series is a realization of the Hénon Map, given by

T =1-— axz71 +byr_1

Yk = Tk—1
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where ¢ = 1.4 and b = 0.3. Next, a realization of the Mackey-
Glass equation is considered, namely

dv 02z , 01
Ak~ 1+a0_ Tk

where 7 = 17, which is solved numerically using the fourth-
order Runge-Kutta method with an integration step of 0.01 and
a sampling rate of 6. Unlike the previous two nonlinear bench-
mark signals, the third consists of colored noise generated from
a stable AR(4)-model (a linear stochastic model)

T =1.792, 1 — 185z o+ 1.2Tx, 3 — 0412, 4 + vk

where v}, is a white noise source with a standard normal distri-
bution. Finally, the real-world benchmark time series consists of
intensity measures from a Far-Infrared-Laser in a chaotic state,
which has been used in the Santa Fe competition [9].

B. Biomedical Time Series

Six Heart Rate Variability (HRV) time series have been de-
rived from long-term electrocardiogram recordings (14-22 h
each), with manually reviewed beat annotations, taken from the
MIT-BIH Long-Term database.! The time series are labeled
A1-A6 for, respectively, record numbers 14046, 14149, 14157,
14172, 14 184, and 15 814. The signals consist of recordings of
male patients suffering from different heart diseases. For effi-
ciency, the time series have been limited in size to 8192 sam-
ples. It is generally accepted that the heart condition influences
the nonlinear nature of the HRV signal [1]-[4].

The functional Magnetic Resonance Imaging (fMRI) time se-
ries have been taken from two experimental macaque motion
studies [10]. We consider four time series, taken from the left
and right middle temporal area (MT/VS5), recorded using two
different contrast agents: one set (time series labeled B1 and B2,
1920 samples) is recorded using the traditional blood oxygen
level dependent (BOLD) contrast agent, and the other (time se-
ries B3 and B4, 1200 samples) using an exogenous contrast
agent, namely monocrystalline iron oxide nanoparticle (MION),
which has been recently introduced for application in fMRI. The
latter is expected to be dependent on fewer physiological vari-
ables which possibly interact in a nonlinear fashion, and should,
therefore, display less nonlinearity than the BOLD signals [11].

III. THE DELAY VECTOR VARIANCE METHOD

We propose a novel, unifying time series analysis method-
ology, which separately examines two aspects, namely the de-
gree to which it is deterministic or stochastic, and whether it is
linear or nonlinear. In this context, it is convenient to use the
method of time-delay embedding, i.e., to represent a time se-
ries as a set of delay vectors (DVs) of a given embedding di-
mension m, denoted by x(k) = [Zk—smr,- .., Tr—r], Where the
subscript indexes time and 7 is a time lag which is set to unity
throughout the simulations. Every DV x(k) is associated with a
corresponding farget, namely the next sample, xy.

Publicly
base/ltdb/.

available from  http://www.physionet.org/physiobank/data-

We next start with the description of the technique of surro-
gate data and proceed with the analysis of deterministic versus
stochastic and linear versus nonlinear nature of a signal.

Surrogate Data

A surrogate time series is a realization of a null hypothesis,
which in our case is that the original time series is linear. There
exist many methods for generating surrogates (for an overview,
see [7]). We have opted for the approach introduced in [12],
the iterative amplitude adjusted Fourier transform 1AAFT) ap-
proach, since it has been observed to yield superior results com-
pared to other methods (see, e.g., [7] and [13]). This type of
surrogate time series retains the signal distribution and ampli-
tude spectrum? of the original time series, and takes into account
a possibly nonlinear and static observation function due to the
measurement process. The method uses a fixed point iteration
algorithm for achieving this, for the details of which we refer
to [7] and [12]. For the simulations in this paper, 99 surrogates
have been generated for each of the time series under study.

A. Deterministic or Stochastic?

The Wold decomposition theorem [8] states that any discrete,
stationary signal can be decomposed into a deterministic? and a
stochastic (random) component, which are uncorrelated. There-
fore, rather than making a decision between deterministic and
stochastic, the predictability of a time series, which is closely
related to the prevalence of the deterministic component, is ex-
amined in this stage of the analysis. Furthermore, it will allow
for a standardized characterization of a time series which can be
used for nonlinearity testing in the next stage.

The proposed DVV analysis is based upon the “target vari-
ance,” 0*2, which is an inverse measure of the predictability
of a time series for a given embedding dimension, m. A set
Qi (m,r4) is generated by grouping those DVs that are within
a certain Euclidean distance, r4, to x(k), which is varied in a
manner standardized with respect to the distribution of pairwise
distances between DVs. For a given embedding dimension m,
the proposed “delay vector variance” method can be summa-
rized as follows.

* The mean, x4, and standard deviation, o4, are computed
over all pairwise distances between DVs.

* The spans, 4, are taken from the interval [f1g —nq0q; fta+
nqoql, e.g., uniformly spaced, where n, is a parameter
controlling the span over which to compute the DV V-plot.
The set Qi (m,r4) consists of all DVs that lie within a
distance to x(k) equal to the span 7.

* Forevery set Q. (m, r4), the variance of the corresponding
targets is computed. The average over all sets, divided by
the variance of the time series, yields the inverse measure
of predictability, namely the ‘target variance’, o*?(m, r4).
We only compute the variance if Q(m,r4) contains at
least N, = 30 DVs.

As a result of the standardization of the distance axis, the re-
sulting “DVV-plot,” i.e., the target variance o*2(m,r4) as a

2The amplitude spectrum can be used as an estimate of the autocorrelation
spectrum due to the Wiener-Khintchin theorem.

3A deterministic signal is one for which the generation process can be de-
scribed precisely by a set of linear or nonlinear equations.
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Fig. 1. Solid curves represent the DVV-plots for the Hénon Map (A),

Mackey-Glass (B), colored noise (C), and the laser time series (D). Average
DVV-plots computed over 99 surrogates are shown as dashed curves.

function of the span 74 for a given embedding dimension m,
is easy to interpret. This is illustrated in Fig. 1 for the four
benchmark signals (solid curves). Note that the units on the
horizontal axis denote standardized distances, rather than dis-
tances as such, since this allows for easier comparison between
DVV-plots. The presence of a deterministic component will
lead to small target variances for small spans (on the left-hand
side of the DVV-plots), and the minimal target variance in a
DV V-plot (for a given embedding dimension), o2 _(m), is re-
lated to the prevalence of the deterministic component over the
stochastic one. Indeed, a small target variance indicates that sim-
ilar DVs have similar targets. Therefore, given m previous sam-
ples, the time series is well predictable, indicating the presence
of a strong deterministic component. The DVV-plots obtained
for the Hénon Map, the Mackey-Glass and laser time series
[Fig. 1(A), (B) and (D), solid curves] clearly show such a strong
deterministic component, whereas this component is weaker for
the linearized (and randomized) versions (dashed curves), the
so-called surrogates (see below). The colored noise [Fig. 1(C)]
also has a deterministic component, albeit a weaker one, and
the predictability is the same for the original time series (solid
curve) and the linearized version (dashed curve). Furthermore,
a DVV-plot smoothly converges to unity at the extreme right,
since for maximal spans, a/l DVs belong to the same set, and
the variance of the targets is equal to the variance of the time
series. If this is not the case, the span parameter n 4 should be
increased. In all simulations performed in this paper, ng = 3
was sufficient.

The “optimal” embedding dimension can be determined by
running a number of DV V-analyses for different values of m,
and choosing that for which the minimal target variance (over
all spans 74), 02 (m) is minimal. The reasoning behind this

approach is that, using this embedding dimension, the best
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min 62

Fig.2. Minimal target variance o *2 as a function of embedding dimension m
for the benchmark time series (conventions as shown in legend).

predictability is obtained, and, correspondingly, this yields
the lowest minimal target variance. A similar approach has
been adopted in [14]. Examples are shown for the benchmark
signals in Fig. 2, yielding optimal embedding dimensions of 2,
9, 4, and 15, respectively for the Hénon Map, Mackey-Glass,
colored noise and laser time series. These values have been
used for generating the DVV-plots in Fig. 1 and are used in the
following nonlinearity analysis.

The minimal target variance, 02 , yields an inverse measure
for the predictability of the time series under study, which is
closely related to the prevalence of the deterministic component
over the stochastic one. It is important to note, however, that it
can only be used as a relative, and not as an absolute measure
of the prevalence of the deterministic component, since it is de-
pendent on the number of time samples, N, of the time series
under study, and the minimal subset size, N, in the DVV anal-
ysis. To illustrate this sensitivity, the Hénon Map and the colored
noise series were considered with an increasing number of time
samples, N, for each of which 100 different realizations were
generated. These have been analyzed using the DVV method,
and the mean minimal target variances (along with the standard
deviations) are shown in Fig. 3(A) (the results for the Hénon
Map as a solid curve and those for the colored noise series as a
dashed curve). There is a clear effect effect on the minimal target
variance for relatively short time series, which becomes less pro-
nounced for N > 1000. Similarly, to examine the effect of the
minimal subset size, N, required for computing the variance of
the targets in a subset, 100 realizations of N = 1000 samples of
the Hénon Map and the colored noise series were analyzed using
different values for N,. There is also a clear effect of perturba-
tions on this parameter, as can be seen in Fig. 3(B). The results
for the colored noise series (dashed curve) show a monotonic in-
crease of the minimal target variance, o2 , as a function of the
minimal set size, N,, which is to be expected, since larger set
sizes correspond to larger regions in phase space, and, accord-
ingly to a larger target variance. The results for the Hénon Map,
however, do not show a monotonic increase of the target vari-
ance, which is due to the clear phase portrait of the time series
[Fig. 3(C)], which is absent in the colored noise series. Indeed,
the variances of the targets of subsets in the region labeled “1”
in Fig. 3(C), will increase monotonically as the subset size in-
creases, but this is not the case for subsets in the region labeled
“2”: for very small regions, the subsets will contain DVs from
a single trajectory in phase space, yielding a small variance of
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Fig.3. (A) Parameter sensitivity of the minimal target variance, 0:%  with respect to the length of the time series, N and (B) with respect to the minimal set size,

N,, for the Hénon Map (solid curve) and the colored noise series (dashed curve). Error bars denote standard deviations and the dashed line in Fig. B shows the
default value used in the simulations. (C) Phase space representation of the Hénon Map for an embedding dimension of m = 2.

the targets, but when the subset size increases, the neighboring
trajectory will be included, due to which the corresponding vari-
ance of the targets will increase significantly. Moreover, since
the target variance is computed as the mean over the different
(valid) subsets, the effect of the minimal subset size, INV,,, on the
minimal target variance can be very irregular, as can be observed
in Fig. 3(B). Therefore, the minimal target variance should only
be used for as a comparative measure between time series of
the same lengths, using a fixed value for V,. The dashed line
at N, = 30 in Fig. 3(B) represents the default value used in all
simulations.

B. Linear or Nonlinear?

For the analysis of the nonlinear nature of a time series, the
methodology suggested in [15] is adopted. A “surrogate time
series” is generated as a realization of a certain null hypothesis
(in our case: linearity) and the DV V-plots are generated for both
the surrogate and the original time series. If the DVV-plots are
significantly different, the null hypothesis is rejected, and the
original time series is considered nonlinear in nature. To visu-
alize and qualify the results, we propose the “DVV scatter dia-
grams,” in which the target variances averaged over a number
of surrogate time series (dashed curves in Fig. 1) are plotted
against those of the original time series (solid curves in Fig. 1)
for corresponding standardized distances. Examples are shown
in Fig. 4 for the benchmark time series. Note that this is possible
due to the standardization of the distance axes in the DV V-plots
of the original and surrogate time series: a point in the scatter
diagram is obtained for identical standardized distances. Fur-
thermore, the target variances for a standardized distance are
only plotted if there are valid target variances for both the orig-
inal time series and all of the surrogates, due to which the min-
imal target variance in the original DVV-plot can be different
from that observed in the DVV scatter diagrams [compare, e.g.,
Fig. 1(A) to Fig. 4(A)]. If the DVV scatter diagram coincides
with the bisector line, the time series is linear. Conversely, if
the original time series is nonlinear, the curve deviates from the
bisector line. Thus, the deviation from the bisector line is an
indication of a deviation from the null hypothesis of linearity,
and can be quantified by the root-mean-square error (RMSE)
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Fig. 4. DVV scatter diagrams for the benchmark time series: Hénon Map
(A), Mackey-Glass (B), colored noise, (C) and laser time series (D). The error
bars correspond to the upper and lower quartiles of the target variances for the
surrogates.

between the o*2s of the original time series and the o*2s aver-
aged over the DVV-plots of the surrogate time series (note that
while computing this average, as well as with computing the
RMSE, only the valid measurements are taken into account). In
this way, a single test statistic is obtained, which is further used
for testing the validity of the null hypothesis. Since the analyt-
ical form of the probability distributions of the RMSE is not
known, a nonparametric rank-based test is used, as suggested in
[16]. For every original time series, we generate 99 surrogates
and compute the test statistics for both the original and surro-
gate time series. These values are sorted in increasing order, and
aright-tailed (left-tailed) test is rejected at the level of & = 0.10
if rank 7 of the original time series exceeds 90 (is smaller or
equal to 10), and a two-tailed test is rejected if rank r is greater
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than 95, or smaller or equal to 5. For the proposed approach, a
high RMSE indicates nonlinearity, implying right-tailed testing.

IV. SIMULATIONS

The results obtained using the proposed DVV method
are compared to those obtained using other well-established
nonlinearity detection methods. The first method we consider is
a model-based one, described in [1]. It compares the prediction
performances of a linear AR-model and a nonlinear model
(second-order Volterra), for both of which the optimal orders
(embedding dimension and number of cross-terms in the
Volterra series) are chosen using Akaike’s information criterion
[17]. The prediction gain is defined as

Tin
7[dB] = 10 logy, 2

nl

where o7, and o2, are the in-sample variances of the linear and
nonlinear residuals. For a positive gain, one can conclude that
the time series is nonlinear, whereas a null gain indicates that
either the time series is linear, or that its nonlinear nature cannot
be modeled using a second-order Volterra.

The other two nonlinearity detection methods are the
third-order autocovariance (C3) and the asymmetry due to time
reversal (REV), both of which have been used in the framework
of surrogate data testing in [18]. The first (C3) is a higher-order
extension of the traditional autocovariance and is given by

C3(1) = (TpTp—rTr—2r)

where 7 is a time lag. The REV method measures the asymmetry
due to time reversal, which has been shown to be useful for
detecting nonlinearity in a time series [19]. It can be measured
using the following metric [18]

REV(7) = ((zx — 7—r)*)

where again, 7 is a time lag. As is the case for the DVV method,
the test statistics are computed for the original and 99 surro-
gate time series, after the nonparametric rank-based (two-tailed)
testing is applied. In the analyses of the benchmark time series,
the time lags are chosen by considering a range of values and
manually selecting the smallest time lag for which the signal is
correctly judged to be (non-) linear (at a significance level of
a = 0.10). Note that this procedure cannot be used in practice,
since prior knowledge regarding the linear or nonlinear nature
of the signal under study is required. Furthermore, it favors the
results obtained by C3 and REYV, as the parameters for these tests
are optimized and specifically tuned to yield the correct results.
For the biomedical time series under study, the time lag was de-
termined as that for which the time-delayed mutual information
(TDMI) exhibits a clear minimum [20], [21]. The latter can be
approximated by [21]

pipj

)=~y 0
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TABLE 1
RESULTS FROM THE NONLINEARITY TESTS: PREDICTION GAIN (),
RANKS OBTAINED USING THE THIRD-ORDER AUTOCOVARIANCE (C3), THE
ASYMMETRY DUE TO TIME REVERSAL (REV) AND THE PROPOSED METHOD
(DVV AND THE CORRESPONDING RMSE). THE OPTIMAL EMBEDDING
DIMENSIONS OBTAINED USING THE MINIMAL TARGET VARIANCES ARE
SHOWN IN THE COLUMN LABELED “Mopt,” AND THE TIME LAGS USED FOR
THE C3 AND REV ANALYSES IN THE COLUMNS LABELED “T¢3” AND “Trgv,”
RESPECTIVELY. SIGNIFICANT DETECTIONS OF SIGNAL NONLINEARITY (AT THE
LEVEL OF «« = 0.10) FOR C3, REV AND DVV ARE INDICATED BY BOXES. IN
THE FIRST COLUMN, MACKEY-GLASS AND THE COLORED NOISE ARE
LABELED AS “M-G” AND “AR,” AND THE OTHER TIME SERIES ARE
LABELED AS DESCRIBED IN SECTION IV-A

v[dB] €3 1c; REV gy mom DVV RMSE
Hénon | 0.54 1 1 2 9.86 1072
MG | 636 2 2 9 5131072
AR | 002 48 1 76 1 4 25 320107
laser | 198 [1] 1 [i] 7 15 7741073
Al | 003 10 10 19 3.16 1072
A2 | 002 2 1 2 7 9111074
A3 | 016 4 4 8 5.99 102
A4 | 036 24 5 5 2 6.90 102
A5 [ 002 49 4 [1] 4 12 4.36 1072
A6 | 015 4 4 1 7.28107°
Bl | 007 32 3 30021 6.48 107
B2 [-002 6 3 48 3 16 4.84103
B3 | -0.08 3 315 83 457107
B4 | 000 3. 24 3 11l [100] 757107

where p; is the probability to find a signal value in the sth in-
terval, and p; ; () is the joint probability of finding a signal value
in the +th interval, and a value at time 7 later in the jth interval.
The probabilities are estimated using a binning approach (200
bins).

A. Benchmark Time Series

The optimal embedding dimensions are obtained by deter-
mining the value of m for which the minimal target variance is
lowest, as shown in Fig. 2, yielding 2, 9, 4, and 15, respectively
for the Hénon Map, Mackey-Glass, colored noise and laser time
series. The DVV-plots computed for the optimal embedding
dimensions are shown in Fig. 1(A)—(D) for the original (solid
curves) time series, together with the DVV-plots averaged over
all surrogates (dashed curves). Clearly, the colored noise is more
stochastic in nature than the other three time series, since its
minimal target variance (the minimum value in the DV V-plot)
is fairly large (072 = 0.26). Furthermore, the amount of de-
terminism in the colored noise can be attributed to the linear
correlations present in the time series, since the DVV-plots for
the surrogates show the same degree of predictability [Fig. 1(C),
dashed curve].

The quantitative results from the nonlinearity tests are
summarized in Table 1. The time lags for C3 and REV, which
have been determined by optimizing the detection performance,
as described earlier, are shown in columns four and six. All
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methods correctly judge the natures of the nonlinear, as well as
the linear time series. The corresponding DV'V scatter diagrams
are shown in Fig. 4 (the error bars denote the upper and lower
quartiles, of which only one in three is shown). Qualitatively,
it is clear that the deviation from the bisector line, and thus,
from the null hypothesis of linearity, is strongest for the Hénon
Map, which can also be concluded from the RMSE value in
Table I, contrary to the results for the prediction gain, where
the Mackey-Glass time series yields the highest gain.

We have further performed a noise analysis to examine the
robustness of the various methods. As suggested in [18], the
power of the test, 3, is estimated for different levels of in-band
noise by determining the ratio of correct rejections of the null
hypothesis of linearity. The nonlinearity tests were performed at
a significance level of & = 0.10 using Ny = 19 surrogates. The
in-band noise, v, consists of phase-randomized versions of the
time series under study, and is added to the time series using:

/1
T = H—CLQ(.Tk-i-CLl/k)

where a is a factor controlling the noise level. The results
are shown in Fig. 5(A)—(C), respectively for the Hénon Map,
Mackey-Glass and laser time series. The parameter values
shown in Table I have been used throughout these analyses. The
power, 3, is more robust to noise for C3 and REV than for the
DVYV method in the case of the Hénon Map. In a comparative
study [18], it has also been demonstrated that C3 and REV
perform very well for a number of time series, among which
the Hénon Map. However, it was also found that these measures
can fail completely in other cases. Indeed, when in-band noise
is added to the Mackey-Glass time series, the power of both
C3 and REV drops dramatically, whereas the power of the
proposed DVV method remains intact for noise levels of about
a = 0.8. In the case of the Laser time series, the robustness
of the DVV method is comparable to that of C3, but REV
performs poorly in the presence of noise.

B. Biomedical Time Series

The minimal target variances for four of the HRV time series
(A1-A4) are shown in Fig. 6(A). It is clear that the minimal
target variance is higher for A2 than for the other HRV time
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noise level
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Estimated power for C3 (dashed), REV (dotted) and DVV (solid) as a function of the noise level for (A) the Hénon Map, (B) Mackey-Glass, and (C) laser
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Fig. 6. Minimal target variance o *2 as a function of embedding dimension rn
for the HRV time series (A) and for the fMRI time series (B).

series (also higher than for AS and A6, results of which are not
shown), which is an indication of a more stochastic nature. The
optimal embedding dimensions and the time lags for C3 and
REYV, determined using the TDMI, are included in Table L.

The results from the nonlinearity detection analyses show that
the surrogate-based methods (C3, REV, and DVV) find indi-
cations of nonlinearity in most of the time series. The predic-
tion gain is small (y < 0.03) for Al, A2, and A5, indicating
that these time series are linear. Using C3 and REV, time series
A4 and AS, and, respectively, A2 are judged linear. The RMSE
values from the DVV methods show that A2 yields the smallest
deviation from the linearity hypothesis. The DVV scatter dia-
grams are shown in Fig. 7 for A1-A4. Again, it is clear that A2
exhibits more linear behavior: there is only a small deviation
from the bisector line (RMSE = 9.11 107%).

The optimal embedding dimensions for the four fMRI time
series are obtained from Fig. 6(B), and are included in Table 1.
The large minimal target variances are, at least in part, due to
the small signal-to-noise ratio (SNR) of fMRI signals.

Table I shows the results from the nonlinearity detection
analyses (and the time lags obtained using the TDMI). The
prediction gain yields only a small indication of nonlinearity
for B1, and is close to zero for the other fMRI signals. Fur-
thermore, contrary to what is expected from the recording
set-up, C3 rejects the null hypothesis of linearity for the MION
signals (B3 and B4), and not for the BOLD ones (B1 and B2),
and REV finds evidence for nonlinearity in B2 and B4. The
proposed DVV method detects nonlinearity in B1, B2, and B4,
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and, additionally, the method reveals that the deviations from
the bisector line (RMSE) are smaller for the MION signals (B3

and B4) than for the BOLD ones (B1 and B2), which complies
with the recording conditions. This can also be observed in the
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DVYV scatter diagrams shown in Fig. 8: the diagrams for B3
and B4 almost coincide with the bisector line, whereas those
for B1 and B2 do not.

V. CONCLUSION

We have introduced a novel methodology for characterizing
the nature of a time series on the basis of its fundamental prop-
erty, namely its predictability. The DVV method yields a stan-
dardized representation of the time series under study, allowing
for a clear interpretation of its deterministic and/or stochastic
nature in terms of its predictability. To gain further insight into
the linear or nonlinear nature of the time series, the proposed
DVYV method has been combined with the surrogate data method
[16]. Realizations of the null hypothesis that the original time
series is linear are generated using the iAAFT method [12].
DVV-plots are computed for both the original and the surrogate
time series, and, owing to the standardization within the method,
the results can be conveniently visualized in a “DVV scatter dia-
gram.” Indications of nonlinearity can then be observed as devi-
ations from the bisector line, and can be quantified as the RMSE
between the DVV-plots for the original and the surrogate time
series. A nonparametric rank-based approach is used for testing
the validity of the null hypothesis of linearity [16]. Furthermore,
apart from a statistical test, the RMSE allows for a quantitative
comparison of the indications of nonlinearity between signals.
Note that in this setting, nonlinearity is defined as a deviation
from the null hypothesis that the time series under study is gen-
erated by a linear stochastic model driven by white Gaussian
noise, possibly followed by a static nonlinear observation func-
tion, and that a rejection of this null hypothesis does not yield
information regarding what aspect of the null hypothesis is vio-
lated.

The proposed method was first verified on four benchmark
time series, three of which were synthetically generated,
whereas the fourth one was a real-world example of a known
nature. The results were compared to three other methods,
namely the prediction gain when nonlinearities are incorporated
within the prediction model [1], the third-order autocovariance
(C3) and the asymmetry due to time reversal (REV), the latter
two of which also adopt the surrogate data strategy [18]. The
performance of the DVV method was comparable to that
of the two surrogate-based methods, and correctly detected
nonlinearities in three of the four benchmark time series, as did
the prediction gain. One should note, however, that the choice
of the time lag, 7, for the C3 and REV methods were chosen
to optimize a correct detection of the linear or nonlinear nature
of the time series under study. The embedding dimensions
used in the DVV analyses were not optimized for a correct
detection, but for an optimal standardized representation of
the time series. Furthermore, the quantitative measures of
nonlinearity were different between the DVV-method (the
RMSE) and the prediction gain. This could be due to the limited
implementation of the nonlinear prediction model, namely a
second-order Volterra model. In a next step, the robustness of
the surrogate-based methods with respect to additive, in-band
noise was examined. It was found that the DVV method was

more robust to noise, albeit the performance varied with the
time series used for the analysis. Overall, the proposed DVV
method seems to correctly detect the presence of nonlinearity
in a wider variety of signals than C3 and REV.

The methods were then applied to two types of biomedical
time series. The first set consisted of heart rate variability (HRV)
time series obtained for patients suffering from different heart
diseases. It has been suggested on several occasions that the
presence of nonlinearities in HRV signals convey information
regarding the health status of a patient [1]-[4], and, thus, that
different heart diseases have a different effect on the nature of
HRV signals. All surrogate-based methods found evidence for
nonlinearities in most HRV time series, whereas the prediction
gain only found indications of nonlinearity in three out of six,
again, possibly due to the limitation of the second-order Volterra
model. Additionally, the proposed DVV method indicated that
time series A2, for which no significant rejection of linearity
hypothesis was found using REV, deviated the least from the
hypothesis of linearity, and was more stochastic in nature than
the other HRV time series.

Finally, the difference in nonlinearity is examined between
two types of time series recorded using functional Magnetic
Resonance Imaging (fMRI). For the first set, the traditional
blood oxygen level dependent (BOLD) technique was used,
whereas for the second set, an exogenous contrast agent,
Monocrystalline Iron Oxide Nanoparticle (MION) was em-
ployed. The BOLD signals are dependent on cerebral blood
flow, volume and metabolic rate of oxygen, which interact
possibly in a nonlinear fashion, whereas the MION signals are
only governed by cerebral blood volume [11], [22]. Therefore,
assuming that these physiological variables are (possibly
nonlinearly) coupled, the time series recorded using the BOLD
technique should show more indications of nonlinearity than
those recorded using MION. The results from the predic-
tion gain, C3 and REV did not support this hypothesis. The
proposed DVV method, however, detected nonlinearity in
three out of four time series (two BOLD and one MION),
and showed a stronger deviation from linearity for the BOLD
signals. Furthermore, the DVV-plots detected a fairly strong
stochastic component in all time series, which is, at least
partially, attributable to the typically low SNR of fMRI signals.

The proposed DVV method has been shown to perform well
on benchmark signals, and even to outperform some of the well-
established techniques for the detection of signal nonlinearity.
The results on two types of biomedical time series are in line
with current hypotheses regarding the nonlinearities present,
clearly showing the usefulness of the proposed method. Due
to the standardization within the algorithm, and the straightfor-
wardly interpretable results, it can be readily applied to other
biomedical time series where the presence of nonlinearities can
be used as an indication of the health status of a patient.
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