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Abstract 
We provide an signal modality analysis on the heart rate variability (HRV) data, widely 

studied as an indication of the health status of the heart. The analysis is achieved by using the 
recently proposed ‘delay vector variance’ (DVV) method, which rests upon examining the 
local predictability of a signal in the phase space.  A comprehensive analysis of the feasibility 
of this approach is provided. The simulation results show that the DVV method can be opted 
for an alternative way to help doctors diagnose the patients with heart disease.  

1. Introduction 
Heart rate variability (HRV) has long been studied for analysing cardiovascular control from 

the electrocardiogram (ECG). Detection and analysis on HRV can provide a quantitative and non-
invasive method to obtain reliable and reproducible information on the autonomous modulation 
of heart rate (Malik and Camm, 1990). Many classic ‘linear’ frequency domain based method 
have been proposed over the last decade, for instance, those based on spectrum analysis or 
transfer function for the analysis of HRV data  (Signorini, Marchetti and Cerutti, 2001). However, 
it is natural to question whether such approaches, based solely on the second order statistics, 
convey enough information to provide fast and reliable detection of aberrant events in HRV. 
Therefore, methods capable of capturing the change of the dynamics within the processed HRV 
signals are preferable.  

With the emergence of the chaos theory and the method of surrogate data (Schreiber & 
Schmitz, 2000), nonlinear approaches have just begun their way into the analysis of HRV signals. 
However, they typically suffer from high computational complexity and lack of straightforward 
explanation. To this cause, we provide a novel framework for analysing the HRV data, based 
upon a recently introduced method for signal modality characterisation (Gautama, Mandic & Van 
Hulle, 2004). This analysis will allow for the detection of aberrant events from HRV data and 
will provide indication of the extent of such aberrance. 

2. Background and ‘Delay Vector Variance’ Method 
By signal nature, we refer to linear, nonlinear, stochastic and deterministic properties of a 

signal. A linear signal is generated by a linear time-invariant system, driven by white Gaussian 
noise, measured by a static, monotonic, and possibly nonlinear observation function. Signals that 
cannot be generated in such a way are considered nonlinear. A signal is considered deterministic 
if it can be precisely described by a set of equations; otherwise it is considered stochastic. 

In some modern machine learning and signal processing applications, especially biomedical 
and environmental ones, the information about the linear, nonlinear, deterministic or stochastic 
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nature of a signal conveys important information about the underlying signal generation 
mechanism. For the sake of simplicity, in this paper, we shall restrict ourselves to the first two 
properties, and the other two will be studied in the future.  

There is one more concept we will constantly refer to in the rest of the manuscript, that is 
surrogate time series, or ‘surrogate’ for short. It is non-parametric randomised linear version of 
the original data which preserves the linear properties of the original data. In the following 
experiments, we choose the ‘iterative amplitude adjusted Fourier transform’ (IAAFT) method to 
generate such surrogates, as it preserves the amplitude distribution of the original signal and 
yields reliable results (Schreiber & Schmitz, 2000). 

There already exist many methods for detecting nonlinearity within a signal. The classic ones 
include the ‘deterministic versus stochastic’ (DVS) plots (Casdagli & Weigend, 1991), the 
Correlation Exponent and ‘δ-ε’ method (Kaplan, 1994). However, the recently proposed phase-
space based ‘delay vector variance’ (DVV) method (Gautama, Mandic & Van Hulle, 2004), for 
signal characterisation is more suitable for signal processing application because it examines the 
nonlinear and deterministic signal behaviour at the same time. The algorithm is summarized 
below:  
 

 For a given embedding dimension m, generate delay vector (DV): x(k) = [ ]1,..., −− kmk xx T 

and corresponding target  kx
 The mean, dμ , and standard deviation, dσ , are computed over all pair wise Euclidean 

distances between DVs, ||x(i) – x(j)|| (i ≠ j) 
 The sets  are generated such that )( dk rΩ )( dk rΩ = {x(i) | ||x(k) – x(i)|| ≤ }, i.e., sets 

which consist of all DVs that lie closer to x(k) than a certain distance , taken from the 

interval [max{0, 

dr

dr

dμ - ddn σ }], where  is a parameter controlling the span over which to 
perform DVV analysis 

dn

 For every set , the variance of the corresponding targets, , is computed. The 

average over all sets , normalized by the variance of the time series, ,  yields 
the ‘target variance’: 
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where N  denotes the total number of sets )( dk rΩ . 
As a result of the standardisation of the distance axis, the resulting ‘DVV plot’ (target variance 

) is a function of the standardised distance), are easy to interpret, as illustrated in Figure 
1(a) and Figure 1(b). The minimal target variance, e.g., the lowest point of the curve, is a measure 
for the amount of noise which is present in the time series. The presence of a strong deterministic 
component will lead to small target variances for small spans. At the extreme right, the DVV 
plots smoothly converge to unity, as illustrated in Figure 1(a) and 1(b). This is because for 
maximum spans, all DVs belong to the same set, and the variance of the targets is equal to that of 
the time series. In the following step, the linear or nonlinear nature of the time series is examined 
by performing DVV analyses on both the original and 25 of IAAFT surrogate time series. Due to 
the standardisation of the distance axis, these plots can be conveniently combined within a scatter 
diagram, where the horizontal axis corresponds to the DVV plot of the original time series, and 
the vertical to that of the surrogate time series. If the surrogate time series yield DVV plots 
similar to that of the original time series, as illustrated by Figure 1(a), the DVV scatter diagram 
coincides with the bisector line, and the original time series is judged to be linear, as shown in 
Figure 1(c). If not, as illustrated by Figure 1(b), the DVV scatter diagram will deviate from the 
bisector line and the original time series is judged to be nonlinear, as depicted in Figure 1(d).  
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FIGURE 1.  Nonlinear and deterministic nature of signals. (a): DVV plot for a linear benchmark signal. 

(b): DVV plot for a nonlinear benchmark signal. (c): DVV scatter diagram for the linear benchmark signal. 
(d): DVV scatter diagram for the nonlinear benchmark signal. In (a) and (b), the light line with crosses 
denotes the DVV plot for the average of 25 IAAFT-based surrogate while the dark solid line denotes that for 
the original signal. In (c) and (d), error bars denote the standard deviation of the target variances of 
surrogates. 

3.  Experiment Results 
In this section, we set out to perform the DVV analysis on the HRV data, (provided by Dr. 

Massimo Griselli from Royal Brompton Hospital). The data contains HRV recording for a 
healthy human and for an ill patient before and shortly after the heart operation.  
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FIGURE 2.  Differential-entropy based method (Left) and DVV scatter diagram for the HRV of 

the healthy human. 



To choose the optimal embedding parameters, e.g., the embedding dimension (m) and the time 
lag (τ), for the DVV method, we opted for the differential-entropy based method (Gautama, 
Mandic and Van Hulle, 2003), which yields m  = 3 and τ = 1, indicated as an open circle in the 
left diagram in Figure  2.  Based on this, we obtained the DVV scatter diagram for the HRV data 
for a healthy human, as illustrated in the right diagram in Figure 2. From the Figure, the DVV 
scatter diagram almost coincided with bisector line, indicating its linear nature. This is in 
consistent with previous established results (Poon and Merrill, 1997).  

Next we perform the similar analysis on the data obtained for the ill patient before and after 
heart operation. The differential entropy method yields m = 5 and τ = 1 for these two signals. 
From Figure 3, the left diagram denotes the DVV scatter diagram before the heart operation 
whereas the right one denotes that after operation. By comparing two diagrams in Figure 3, it can 
been seen that the operation was successful, judging from the fact that the DVV scatter diagram 
for the HRV data after the heart operation began to approach the bisector line. Since the HRV 
data in right diagram of Figure 3 was recorded shortly after the operation when the patient has not 
fully recovered yet, the DVV scatter diagram can be expected to be more biased towards the 
bisector line, e.g., more linear if future data is available.  
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FIGURE 3.  DVV scatter diagram for the HRV of the patient before heart operation (left) and 

after operation (right). 

3.  Conclusion 
We have utilised the ‘delay vector variance’ (DVV) method and have performed an analysis 

on the HRV data for both the healthy human being and the patient having heart disease.  It has 
been shown that the DVV method is able to provide an alternative way to help diagnose the status 
of patients with heart disease.  
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