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An Assessment of Qualitative Performance of Machine
Learning Architectures: Modular Feedback Networks

Mo Chen, Temujin Gautama, and Danilo P. Mandic

Abstract—A framework for the assessment of qualitative performance of
machine learning architectures is proposed. For generality, the analysis is
provided for the modular nonlinear pipelined recurrent neural network
(PRNN) architecture. This is supported by a sensitivity analysis, which is
achieved based upon the prediction performance with respect to changes in
the nature of the processed signal and by utilizing the recently introduced
delay vector variance (DVV) method for phase space signal characteriza-
tion. Comprehensive simulations combining the quantitative and qualita-
tive analysis on both linear and nonlinear signals suggest that better quan-
titative prediction performance may need to be traded in order to preserve
the nature of the processed signal, especially where the signal nature is of
primary importance (biomedical applications).

Index Terms—Delay vector variance, nonlinearity, pipelined recurrent
neural networks (PRNNs), qualitative performance, sensitivity.

I. INTRODUCTION

Most real-world signals contain both linear and nonlinear, as well as
deterministic and stochastic components. It is, therefore, essential to
characterize the signal nature before the actual processing approach is
applied. In addition, a change in the linear, nonlinear, deterministic, or
stochastic nature of a signal can convey important information! about
the underlying signal generation mechanism. In such applications, it is
important not only to obtain a good quantitative performance for the
signal under study, but also that the signal nature is retained.

To establish a general framework for the quantitative performance
analysis of machine learning algorithms and architectures, for gener-
ality, we will focus on a modular network, with feedback and nonlinear
processing elements. One such architecture is the pipelined recurrent
neural network (PRNN), which consists of a number of small-scale re-
current neural networks (RNNs), and maintains a relatively low com-
putational complexity considering the entire number of neurons in its
architecture [2]. In a previous study, we have analytically described the
core features of the PRNN for the prediction application [3]; based on
those quantitative results, we will use the PRNN as a convenient com-
putational model for the analysis of the qualitative performance.

This way, we will combine our recent results on signal modality
characterization [4], [5] and machine learning [6] to provide insights
into the changes of the nature of the processed signals during online
learning.
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ITn the electrocardiogram (ECG) and heart rate variability (HRV) analysis,
where the change in the signal nature from the linear stochastic to nonlinear
deterministic, provides an indication of health hazard [1].

II. BACKGROUND

A. Nature of a Signal and Surrogate Data

By the signal “nature,” we adhere to a number of signal properties
described in [4]: linear, nonlinear, deterministic, and stochastic signal
behavior. A linear signal is generated by a linear time-invariant system,
driven by white Gaussian noise, measured by a static, monotonic, and
possibly nonlinear observation function; otherwise, the signal is con-
sidered to be nonlinear. A signal is considered deterministic if it can be
precisely described by a set of equations; otherwise, it is considered as
stochastic.

Surrogate time series, or “surrogate” for short, is a nonparametric
randomized linear version of the original data which preserves the
linear properties of the original data. In our experiments, we choose
iterative amplitude adjust Fourier transform (iIAAFT) method to
generate surrogates, as it preserves the amplitude distribution of the
original data and yields reliable results [7].

B. Quality Assessment Tool—Delay Vector Variance Method

Several methods for detecting nonlinear nature of a signal have been
proposed over the past few years [8], [9]. For our purpose, it is desir-
able to have a method which is straightforward to visualize, and which
facilitates the analysis of predictability, which is a core notion in on-
line learning. One such method is our recently proposed delay vector
variance (DVV) method [4], based upon examining the predictability
of a signal in the phase space, and examining simultaneously the de-
terminism and nonlinearity within a signal. This method can be sum-
marized as follows. For an optimal? embedding dimension 12, we have
the following.

+ Generate delay vectors (DVs): x(k) = [25—ym, ..., zx—1]" and

the corresponding target xy.

e The mean ptq and standard deviation o4 are computed over
all pairwise Euclidean distances between delay vectors (DVs),
() — x()| (0 # j).

o The sets Q(rq) are generated such that Qi(rq) =
{x(4)| [|x(k) — x(4)|| < ra}, i.e., sets which consist of all DVs
that lie closer to x(%) than a certain distance r4, taken from
the interval [max{0, ug — n4o4}; ta + n404], where ng is a
parameter controlling the span over which to perform the DVV
analysis.

* For every set (2;(rq), the variance of the corresponding targets
o7 (rq) is computed. The average over all sets §2;(r,), normal-
ized by the variance of the time series o> yields the “target vari-
ance” 0% (rq) = (1/K) 15:1 o7 (ra) /o, where K is the total
number of the sets 2 (74).

To illustrate the meaning of “signal nature,” consider a linear bench-

mark signal [AR(4)] [6]

(k) =1.792(k - 1) —1.852(k - 2)+ 1.272(k — 3
(k ) ( )
—041z(k—4)+n(k) (1)
2We adopt Cao’s method [10] for choosing the optimal embedding dimension

in all of our simulations, which yields four for the linear benchmark signal (1)
and two for the nonlinear benchmark signal (2).

1045-9227/$25.00 © 2007 IEEE
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DVV plot for Narendra Model 3
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Fig. 1. Nonlinear and deterministic nature of signals. Diagrams (a) and (b) are DVV plots for the AR(4) signal and Narendra model 3, where the light line with
crosses denotes the DVV plot for the average of 25 iAAFT-based surrogates while the dark solid line denotes that for the original signal. Diagrams (c) and (d)
denote the DVV scatter diagrams for those two signals, where error bars denote the standard deviation of the target variances of surrogates.

and a nonlinear benchmark signal (a Narendra model 3 realization),
given by [6]

2(k—1)

W= 50D

+ 27 (k) @

where z{k} denotes the AR(4) signal (1) and {n (%)} is white Gaussian
noise n(k) € N(0,1).

In the following step, the linear or nonlinear nature of the time series
is examined by performing DVV analyses on both the original and 25
of surrogate time series. The DVV plot (target variance, o**(r4)) is a
function of the standardized distance (rq — pu4)/04. At the extreme
right, the DVV plots smoothly converge to unity, since for maximum
spans, all DVs belong to the same set, and the variance of the targets is
equal to the variance of the time series, illustrated in Fig. 1(a) and (d).
The minimal target variance, e.g., the lowest point of the curve, is a
measure for the amount of noise which is present in the time series.
DVYV scatter diagram is constructed in the way where the horizontal
axis corresponds to the DVV plot of the original time series, and the
vertical to that of the surrogate time series. A linear signal will have

similar DV'V plot as its surrogate, resulting in the DVV scatter diagram
coinciding with the bisector line as illustrated in Fig. 1(c), whereas
a nonlinear signal will result in a deviation of DVV scatter diagram
from the bisector line as illustrated in Fig. 1(d). This provides a very
convenient tool for the qualitative analysis in machine learning since
the deviation from bisector line in the DVV scatter diagram can be used
to indicate the changes in the signal nature before and after processing.

III. PRNN ARCHITECTURE

The PRNN is a modular neural network that consists of M nested
recurrent neural networks (RNNs) [11] as its modules, with each
module consisting of N neurons. All the modules operate using the
same weight matrix W, as shown in Fig. 2. Besides its modularity, it
is not immediately obvious that the PRNN performs nesting [12] of its
constituting modules, and at the same time data-reusing [13].

In our analysis, the PRNN is utilized to perform one-step-forward
prediction on two benchmark signals. In the experiments, the real-time
recurrent learning (RTRL) algorithm [2] was used to train RNNs within
the PRNN, and the activation function of a neuron was chosen to be the
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Fig. 2. PRNN.

logistic function ®(v) = 1/(14¢~7"), where 4 = 1 and the number?
of neurons N = 2. The synaptic weights of the PRNN were generated
from an uniform distribution and rescaled between 0 and 0.01, whereas
the bias was set to unity. The forgetting factor (), number of external
inputs (p), learning rate (1) as well as the number of modules (3{)
were chosen depending on the individual case and will be addressed
later.

To evaluate the prediction performance of PRNN in the sensitivity
analysis, or, the quantitative performance, we adopt the standard pre-
diction gain [3], e.g., R, = 10log,,(c2/a2)[dB], which is a loga-
rithmic ratio between the signal variance o2 and prediction error vari-
ance o2.

To assess the qualitative performance, that is, a possible
change in the signal nature introduced by the PRNN, besides
comparing the similarity of the DVV scatter diagram of the
one-step-forward prediction with that of the original signal, we
introduce a metric to measure the degree of such similarity,

g, € = \/((U;figinal(rd) - U;fodic:ion("'d))2>valid rqs» Where
Uﬁigiml(rd) denotes the target variance at span rq for the original
signal whereas J;fcdiction(rd) denotes that for the prediction. For
robustness, all the results were obtained by averaging 100 indepen-
dent trials. Thus, if the PRNN yields high-prediction gain (R,), the
quantitative performance is judged to be “good.” As for the qualitative
performance, the smaller £, namely, the more similar the DVV scatter
diagram for the filtered signal after being processed by the PRNN to
that for the original signal is, the better the qualitative performance
becomes.

IV. ANALYSIS OF THE PERFORMANCE OF THE PRNN

A. Quantitative Performance and Sensitivity Analysis

There are four parameters* which we need to choose within the
PRNN. For convenience, we will vary M and n and fix A and p at a

3Since there is limited improvement in the prediction gain (R, ) with the in-
crease of N and the computational complexity was exponentially increased,
therefore, we chose to set IV to two.

4We can also consider 3 in the activation function of RNN modules as another
parameter. However, it can be shown that there exists a strict relationship be-
tween 3 and learning rate 7 [6]. Therefore, we will restrict ourselves to varying
7 only, as this helps reduce computational complexity and will not bring bias
into our sensitivity analysis.

z11

,1I
~ il I

time. Experiments were repeated four times, each time with a different
value of A and p for two benchmark signals.

Fig. 3 illustrates the overall performance of PRNN on a linear bench-
mark signal (1) in terms of prediction gain (R, ). Fig. 3(a) and (c) rep-
resents the case where p was set to two whereas Fig. 3(b) and (d) rep-
resents p set to eight. Fig. 3(a) and (b) illustrates the cases where A was
set to 0.5, and Fig. 3(c) and (d) illustrates the cases when A set to 0.99.
The learning rate (1) was varied from 0.001 to 5.0 at different step
size whereas the number of modules (M) varied from 2 to 20. From
Fig. 3, the PRNN shows tendency to reach its optimal prediction perfor-
mance and then to start perform poorly on predicting the AR(4) signal
with the increase of 77. When the forgetting factor A was increased, the
PRNN obtained its best performance with a decreasing n. The expla-
nation for this phenomenon lies in the weight update equation for the
PRNN [14]. From this equation, the whole update for W is inevitably
affected by the increase of A or 7, which leads to the fast converging of
the weights. However, when such an increase exceeds certain threshold
value, the weights diverge and the learning algorithm will start to be-
come unstable [illustrated in Fig. 3(d)] when > 2.

Besides, when X increases, the total number of modules (3) be-
gins to play a more prominent role in the prediction performance of the
PRNN. The reason for is that with the increase of A, the value of the
coefficient X' ' (i = 1,..., M ) in weight update equation becomes
significant, which will also accelerate the weight convergence. How-
ever, as both A and M increase, it is not recommended to increase 7 at
the same time.

Furthermore, for the same setting of A, when p grows, the PRNN
obtained its best performance at a rather small learning rate, which can
be understood in the following context: As p grows, adjacent modules
within PRNN will share more and more the same information and the
PRNN will obtain more and more information about the signal. There-
fore, the weights converge quicker and the PRNN itself obtains its best
performance faster. However, large p also brings a problem of so-called
“over-fitting,” which leads to one side effect—although the weights
converge faster, the redundant weights in modeling AR(4) signal make
the PRNN unstable and its performance is inconsistent.

Table I illustrates the maximum prediction gain and the parameter
settings. From Table I, when p was fixed, with the increase of forget-
ting factor (), the PRNN achieved its best performance on predicting

SAt time instant &, the incremental update for the Ith weight of neuron n is
[2]: Aw, (k) = =27 Zq‘il Ni—le; (k)(Oei(k) /0w, 1 (k)).
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Fig. 3. Prediction performance of PRNN on a linear benchmark AR(4) signal.
TABLE I

PARAMETER SETTINGS OF THE PRNN AT THE MAXIMAL PREDICTION GAIN FOR AR(4) AND NARENDRA MODEL 3 SIGNAL

AR(4) Narendra Model 3
P A M n Rpe® (dB) M 7 Rpe® (dB)
2 0.50 14 5.0 5.83297 20 3.6 1.31530
2 099 19 1.0 6.08877 20 0.4 1.34499
8 0.50 14 3.4 5.71395 20 2.0 1.45836
8 0.99 20 0.4  5.20809 20 0.2 1.00176

the AR(4) signal (RR;"**) with a larger number of modules at smaller
7. When A was fixed, with the increase of p, PRNN achieved its best
performance at smaller 5. These findings are consistent with the pre-
vious analysis and discussion.

We next conducted a similar set of experiments on a nonlinear bench-
mark signal (2). From Table I, when p was fixed, with the increase of
A, the PRNN achieved its best performance at smaller 7. When A was
fixed, with the increase of p, PRNN achieved its best performance at
smaller 7. At all the settings, PRNN always had its highest R,, for a
larger number of modules.

B. Assessment of the Qualitative Performance of the PRNN

Next, in order to ascertain whether high quantitative performance
yields good qualitative performance, we examined the possible change

in the nature of a signal processed by the PRNN. The experimental
setting was the same as the one used previously.

The left two diagrams in Fig. 4 illustrate the DV'V scatter diagram for
the PRNN consisting of five modules, evaluated on the prediction on
the Narendra model 3 signal for different forgetting factors (). From
Fig. 4, R, decreased with the increase in A whereas the qualitative per-
formance improved as indicated by the decrease in € (the DVV scatter
diagrams of the original and predicted signal being closer). This can
be explained in the following context: with fewer modules, the PRNN
cannot capture the full dynamics of the Narendra model 3, but as the
forgetting factor A increases, the remote modules start to contribute
more significantly to the weight update. Thus, the PRNN will learn
more about the dynamics of the signal being predicted, which con-
tributes to the improvement in preserving the signal nature. As for the



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

Narendra Model 3 Prediction (A = 0.50)

11~ Origigal Signal -~
0.8
o) I
£ .
3 Predictiqn
» 04f T = '/ ‘
O 1009

Rp 0.65028 dB”'

0
0 04
Orlglnal

(a)
Narendra Model 3 Predlctlon (A= 0 50)

0.8

-

Orlglnal S:gnal

III :

0.8 /
[} . -
o : .
5 , Predictiqn
P 04 ' il

| e<0.0855

Rp 0.69572 dB’ |

0
0 0.4

06
Original

©)

0.8

187

Narendra Model 3 Predlctlon A= 0 99)

" Orlglgl&&gnal --/'-
DT
0.8r F T
: L EO
[0
[e) . :
g : Prediction
1 oe= O 0752
Rp 0. 481 13 dB
0O 0,4 0.8
Orlglnal
(b)
Narendra Model 3 Predlctlon (7» 0 99)
1+ Original Slgnal 2
081
o I
] s TP
5 : o Predlctlo_n
N oak ,/ :
| e=o. 0633 |
Rp = 1.4544 dB
00 0.4 06 0.8
Original
(d)

Fig. 4. Qualitative and quantitative comparison of the PRNN with five modules for the one-step-ahead prediction of the nonlinear benchmark signal (Narendra

model 3) with different A and M. (a) M = 5and A = 0.5.(b) M =5

and A =0.99.(c) M = 10and A = 0.5

.(d) M =10 and A = 0.99.

TABLE II
PREDICTION GAIN (R,,) OF INDIVIDUAL MODULES FOR THE PRNN WITH FIVE MODULES ON PREDICTING THE NARENDRA MODEL 3 SIGNAL,
A VARIES FROM 0.5 TO 0.99. THE 1ST MODULE IS THE OUTPUT OF THE PRNN

ond 3rd

by 1st

4th 5th

(Module)

0.5
0.99

0.6503 dB 2946 dB 4.749 dB 4.266 dB 3.227 dB
0.4811 dB 2.688 dB 4.462 dB 5.561 dB 5.085 dB

decrease in the prediction gain, this is mainly due to the fact that since
using five modules is not enough to capture the nonlinear nature of the
signal, emphasizing the contribution of remote modules in fact reduces
the portion of the contribution of the first module, which is the main
drive for the weight update. That is why for the Narendra model 3,
the PRNN with five modules shows an increasingly better nature-pre-
serving capability while it has worse prediction gain with the increase
in A, as illustrated by a decrease in . This also demonstrates that a high
quantitative performance is not necessarily followed by a high quali-
tative performance. As the number of modules M increased from five
to ten, the PRNN obtained much more information about the signal in
hand, which not only caused the prediction gain to increase, but also
the nature of the processed signal was better preserved, as illustrated in
Fig. 4(c) and (d), where the DVV scatter diagrams become very close.

In the next experiment, we investigated the prediction performance
of individual modules. Table II illustrates the prediction performance
for individual modules of a PRNN with five modules on predicting
Narendra model 3 signal. Observe that when A = 0.5, the third module
yields the highest I7,,; when A = 0.99, it was the fourth module. In
our previous findings [13], the most remote module, in this case, the
fifth module, will exhibit most pronounced “data-reusing” effect, and
is supposed to have the highest I?,,. In fact, it is the competition of the
“forgetting” and “data-reusing” effect that determines the prediction
performance of the individual module.

We will now finally analyze the qualitative performance for PRNN
on prediction of the linear benchmark signal (1). From Fig. 5, the PRNN
was able to preserve the nature of the processed signal, as illustrated by
the fact that all the DVV scatter diagrams coincided with the bisector
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Fig. 5. Qualitative and quantitative comparison of the PRNN for the prediction of the linear benchmark AR(4) signal. A varies from 0.5 to 0.99.

line, which indicates the preservation of the linear nature of the original
signal. However, the noise level increases with the increase in the forget-
ting factor, illustrated by the leftmost point (minimal target variance,
o*?) in the DVV plots starting further right. This is again a demon-
stration that a large forgetting factor makes the weights jitter, which, in
turn, introduces stochastic noise into the predicted signal.

V. CONCLUSION

In this letter, we have provided new insight into the performance of
online machine learning architectures. For generality, this is achieved
for the PRNN, and the analysis is conducted based upon examining
one-step-forward prediction on both linear and nonlinear benchmark
signals and for a range of parameter settings. The qualitative perfor-
mance assessment is achieved by examining whether there is a change
in the nature of the processed signal, based upon the recently proposed
“delay vector variance” (DVV) method for signal modality character-
ization. The qualitative performance analysis of simpler architectures
follows naturally, by using only one module, or by canceling feedback,
or by using linear neurons. It has been shown that there is a need for
a tradeoff between the qualitative and quantitative performance index
especially when the nature of a signal conveys some important infor-
mation, for instance, health hazards in medical engineering.

REFERENCES

[1] C.S.Poon and C. K. Merrill, “Decrease of cardiac chaos in congestive

heart failure,” Nature, vol. 389, pp. 492-495, 1997.

S. Haykin and L. Li, “Nonlinear adaptive prediction of nonstationary

signals,” IEEE Trans. Signal Process., vol. 43, no. 2, pp. 526-535, Feb.

1995.

D. P. Mandic and J. A. Chambers, “On the choice of parameters of the

cost function in nested modular RNNSs,” IEEE Trans. Neural Netw., vol.

11, no. 2, pp. 315-322, Mar. 2000.

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “The delay vector

variance method for detecting determinism and nonlinearity in time

series,” Physica D, vol. 190, no. 3—4, pp. 167-176, 2004.

T. Gautama, D. P. Mandic, and M. M. Van Hulle, “Indications

of nonlinear structures in brain electrical activity,” Phys. Rev. E,

Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 67, pp.

046204-1-046204-5, 2003.

D. P. Mandic and J. A. Chambers, Recurrent Neural Networks for Pre-

diction: Learning Algorithms, Architectures and Stability. New York:

Wiley, 2001.

[7] T. Schreiber and A. Schmitz, “Improved surrogate data for nonlinearity
tests,” Phys. Rev. Lett., pp. 635-638, 1996.

[8] M. C. Casdagli and A. S. Weigend, “Exploring the continuum between
deterministic and stochastic modeling,” in Time Series Prediction:
Forecasting the Future and Understanding the Past, A. S. Weigend
and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1994,
pp. 347-367.

[9] D. Kaplan, “Exceptional events as evidence for determinism,” Physica
D, vol. 73, no. 1, pp. 3848, 1994.

(2]

(31

[4

[inar)

(6]



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 1, JANUARY 2008

[10] L. Cao, “Practical method for determining the minimum embedding
dimension of a scalar time series,” Physica D, vol. 110, pp. 43-50,
1997.

[11] A. Savran, “Multifeedback-layer neural network,” IEEE Trans. Neural
Netw., vol. 18, no. 2, pp. 373-384, Mar. 2007.

[12] Z. Hou, M. Gupta, P. Nikiforuk, M. Tan, and L. Cheng, “A recurrent
neural network for hierarchical control of interconnected dynamic sys-
tems,” IEEE Trans. Neural Netw., vol. 18,n0. 2, pp.466-481, Mar. 2007.

[13] M. Chen, T. Gautama, M. M. Van Hulle, and D. P. Mandic, “On non-
linear modular neural filters,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), 2005, vol. 5, pp. 317-320.

[14] D. P. Mandic, J. Baltersee, and J. A. Chambers, “Non-linear adap-
tive prediction of speech with a pipelined recurrent neural network and
advanced learning algorithms,” in Signal Analysis and Prediction, A.
Prochazka, J. Uhlir, P. W. Rayner, and N. G. Kingsbury, Eds. Boston,
MA: Birkhauser, 1998, vol. 5.

Recursive Support Vector Machines for
Dimensionality Reduction

Qing Tao, Dejun Chu, and Jue Wang

Abstract—The usual dimensionality reduction technique in supervised
learning is mainly based on linear discriminant analysis (LDA), but it suf-
fers from singularity or undersampled problems. On the other hand, a reg-
ular support vector machine (SVM) separates the data only in terms of
one single direction of maximum margin, and the classification accuracy
may be not good enough. In this letter, a recursive SVM (RSVM) is pre-
sented, in which several orthogonal directions that best separate the data
with the maximum margin are obtained. Theoretical analysis shows that a
completely orthogonal basis can be derived in feature subspace spanned by
the training samples and the margin is decreasing along the recursive com-
ponents in linearly separable cases. As a result, a new dimensionality reduc-
tion technique based on multilevel maximum margin components and then
a classifier with high accuracy are achieved. Experiments in synthetic and
several real data sets show that RSVM using multilevel maximum margin
features can do efficient dimensionality reduction and outperform regular
SVM in binary classification problems.

Index Terms—Classification, dimensionality reduction, feature extrac-
tion, projection, recursive support vector machines (RSVMs), support
vector machines (SVMs).

I. INTRODUCTION

Dimensionality reduction is an important preprocessing step in many
applications of data mining, machine learning, and pattern recognition,
due to the so-called curse of dimensionality [1], [2]. Now, principal
component analysis (PCA, [3]) and linear discriminant analysis (LDA,
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[4]) are regarded as the most fundamental and powerful tools of dimen-
sionality reduction for extracting effective features from high-dimen-
sional vectors of input data. From the point of view of mathematics,
PCA is an orthogonal transformation of the coordinate system in which
we describe our data. The new coordinate values by which we repre-
sent the data are called principal components. Usually, a small number
of principal components is sufficient to account for most of the struc-
ture in the data. From the viewpoint of pattern recognition, LDA aims
to find the optimal discriminant vectors (and then, an orthogonal trans-
formation) by maximizing the ratio of the between-class distance to
the within-class distance, thus achieving the maximum class discrim-
ination. LDA is the benchmark for the linear discrimination between
two classes in multidimensional space. One of the most obvious differ-
ences between PCA and LDA is that the former does not employ the
labels of all samples while the latter does.

Around 1997, several comparative studies between LDA and PCA
on the face recognition problems were reported independently by
numerous authors [5], [6], in which LDA outperformed PCA sig-
nificantly. So far, LDA has proven to be a more efficient approach
for extracting features for many pattern classification problems as
compared to PCA. However, there exists a serious limitation for
using LDA to solve high-dimensional recognition with finite samples.
Usually, LDA requires the so-called total scatter matrix to be nonsin-
gular. In many applications, especially in face recognition, all scatter
matrices in question can be singular since the data points are from
a very high-dimensional space and, in general, the sample size does
not exceed this dimensionality. This is known as the singularity or
undersampled problem [8] and inevitably gives rise to a problem of
unstable numerical computation. In recent years, many approaches
have been proposed to deal with such high-dimensional undersampled
problems, including null space LDA and orthogonal LDA, and their
detailed computational and theoretical analysis can be seen in [9].
Recently, a recursive LDA for calculating the discriminant features
was suggested in [10]. This new algorithm incorporates the same
fundamental idea behind LDA of seeking the projection that best
separates the data corresponding to different classes, while in contrast
to regular LDA, the features are obtained recursively and the number
of features that may be derived is independent of the number of the
classes to be recognized. Extensive experiments of comparing the
recursive LDA algorithm with the traditional approaches have been
carried out on face recognition problems, in which the resulting im-
provement of the performances by the new feature extraction scheme
is significant. Obviously, how to employ the recursive idea to get a
dimensionality reduction approach without undersampled problems is
very interesting.

In the last few years, there have been very significant developments
in the understanding of support vector machines (SVMs) and statistical
learning theory [11]-[13]. In appearance, the geometric interpretation
of a linear SVM, known as the maximum margin algorithm, is very
clear. In theory, increasing margin has been shown to improve the gen-
eralization performance. In [14], an SVM-like framework was estab-
lished for LDA and it was proved that the general framework of LDA
is based on the simplest and most intuitive LDA with zero within-class
variance. Further, it can be found that LDA and SVM are closely re-
lated. Commonly, they all try to seek the projection that best separates
the data in terms of a specific objective function. Along the former
direction, the within-class variance is minimized while between-class
variance is maximized. Along the latter, the between-class distance is
maximized with the large margin while within-class distance is not con-
sidered. Since the usual dimensionality reduction technique in super-
vised learning is mainly based on using a small number of orthogonal
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