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ABSTRACT

A new framework for the assessment of the qualitative per-
formance of Kalman filter is proposed. This is achieved by
the recently proposed ‘Delay Vector Variance’ (DVV) method
for the signal modality characterisation, which is based upon
the local predictability in the phase space. It is shown that
Kalman filter not only outperforms common linear and non-
linear filters in terms of quantitative performance but also
achieves a better qualitative performance. A set of compre-
hensive simulations on representative data sets supports the
analysis.

1. INTRODUCTION

Much research has been dedicated towards devising ‘optimal’
adaptive filtering architectures and algorithms, according to a
certain pre-defined optimization criterion [1][2], most typi-
cally based on the mean square error (MSE). Kalman filter is
such an optimal estimator within the framework of second-
order statistics, and has been well established in state-space
based estimation. This is achieved based on the knowledge of
the system inputs and outputs, and based on a model of the
relation between them [3]. To assess its performance, various
performance measures have been proposed, usually based on
some sort of signal to error power ratio [4].

This way, it is possible to introduce so-called quantitative per-
formance indexes which reflect the ‘goodness‘ of estimation

(ratio between the powers of the signal, noise and error), how-
ever these criteria cannot provide insight into so-called quali-
tative performance of adaptive filters; to this end, open litera-
ture provides various approaches including those based on the
preservation of the nature of a signal, perceptual quality esti-
mation, and probability density function (PDF) matching. In
fact, little has been known about the characterising the nature1

of the signal before and after it is processed by an adaptive fil-
ter. The importance of such characterisation is two-fold. On
one hand, it is desirable to verify the presence of underlying
linear or nonlinear nature of the signal, before actual adap-
tive filters are employed. As a matter of fact, in the absence
of nonlinearity, it is not preferable to use nonlinear adaptive
filters despite of their ability to process linear signals [5], be-
cause they are known to be more computationally complex,
slower converging and more sensitive to parameter perturba-
tion than their linear counterparts [1][4].

On the other hand, since the1990s, research on ‘signal modal-
ity characterisation’ has been established and has just started
finding its applications in signal processing. For instance,
in the analysis of biomedical signals (heart rate variability
(HRV), electro-encephalogram (EEG)), we need to assess the
presence/absence of the nonlinear behavior within the sig-
nals, since this may convey essential information about the
signal generation system. In addition, in biomedical and en-

1In this paper, we refer “nature” to four fundamental properties of a sig-
nal, that is linear, nonlinear, deterministic and stochastic signal behaviour,
which will be addressed later in the following section.



vironmental applications, the nature of a signal conveys im-
portant information about the underlying signal generation
mechanism:- 1). In electrocardiogram (ECG) and heart rate
variability (HRV) signals, where the change in the nature pro-
vides an indication of health hazard [6]; 2). Similar phenom-
ena have been reported in the analysis of air pollutants [7]
and brain electrical activity [8]. Hence, in these cases, it is
essential that during processing of such signals we not only
optimise for the ‘best’ performance in terms of a certain quan-
titative performance criterion, but also that the filter preserves
the basic signal modality (nature of the signal). If the nature
of the signal has significantly changed after being processed
(e.g. prediction within compression algorithms and denois-
ing), the application of such filters will be greatly limited.

To that end, we provide an qualitative assessment of qualita-
tive performance of Kalman filter, supported by quantitative
performance measures (prediction) together with some illus-
trative examples highlighting the need to take into account the
nature of processed signals. This is supported by comprehen-
sive simulations on linear and nonlinear benchmark signals.

2. “DELAY VECTOR VARIANCE” (DVV) METHOD
AND NOVEL DVV SCATTER DIAGRAM

Before we introduce the ‘Delay Vector Variance’ method, there
is a need to give definitions of some notions which will be fre-
quently referred to in the remainder of the paper.

2.1. Background

Following the approaches from the physics literature, we in-
troduce the following definitions [9]:-

1. Linear Signal (strict definition) – A linear signal is gen-
erated by a linear time-invariant system, driven by white
Gaussian noise;

2. Linear Signal (commonly adopted) – Definition 1) is
relaxed somewhat by allowing the distribution of the
signal to deviate from the Gaussian one, which can be
interpreted as a linear signal from 1), measured by a
static, monotonic, and possibly nonlinear observation
function;

3. Nonlinear Signal – A signal that cannot be generated in
the above way is considered nonlinear;

4. Deterministic (predictable) Signal – A signal is consid-
ered deterministic if it can be precisely described by a
set of equations;

5. Stochastic Signal – A signal that is not deterministic.

For simplicity, we shall refer to ‘nature’ as the first two signal
properties from the above.

2.2. “Delay Vector Variance” (DVV) method

Several methods for detecting nonlinear nature of a signal
have been proposed over the past few years, which include
the ‘Deterministic versus Stochastic’ (DVS) plots [10], the
Correlation Exponent, and ‘δ-ε’ method [11]. The recently
introduced DVV method [12] is able to simultaneously ex-
amines both the nonlinear/linear and deterministic/stochastic
nature of a signal, which can be summarised as follows: For
an given embedding dimension m:

• Generate delay vectors (DVs):
x(k) = [xk−m, . . . , xk−1]T and the corresponding tar-
get xk,

• The mean µd and standard deviation σd are computed
over all pairwise Euclidean distances between DVs, ‖x(i)−
x(j)‖ (i �= j),

• The sets Ωk(rd) are generated such that Ωk(rd) = {x(i)|
‖x(k)−x(i)‖ ≤ rd}, i.e., sets which consist of all DVs
that lie closer to x(k) than a certain distance rd, taken
from the interval [max{0, µd − ndσd}; µd + ndσd],
where nd is a parameter controlling the span over which
to perform the DVV analysis,

• For every set Ωk(rd), the variance of the correspond-
ing targets, σ2

k(rd), is computed. The average over all
sets Ωk(rd), normalised by the variance of the time se-
ries, σ2

x, yields the ‘target variance’, or DVV values,
σ∗2(rd):

σ∗2(rd) =

1
N

N∑
k=1

σ2
k(rd)

σ2
x

(1)

As rd increases, the target variance smoothly converges to
unity. This is because all DVs start to belong to the same uni-
versal set, and the variance of targets is equal to the variance
of the time series.

As a result of the standardisation of the distance axis, the
resulting ‘DVV plot’ (target variance, σ∗2(rd) as a function
of the standarised2, rd−µd

σd
distance), are easy to interpret, as

illustrated in Figure 1(a) and Figure 1(b). The minimal tar-
get variance, e.g., the lowest point of the curve, is a measure
for the amount of noise which is present in the time series.
The presence of a strong deterministic component will lead to
small target variances for small spans. At the extreme right,
the DVV plots smoothly converge to unity, since for maxi-
mum spans, all DVs belong to the same set, and the variance
of the targets is equal to the variance of the time series.

2Note that we use the term ‘standarised’ in the statistical sense, namely
as having zero mean and unit variance.



2.3. Signal nature Characterisation: DVV Scatter Dia-
gram

In the following step, the linear or nonlinear nature of the time
series is examined by performing DVV analyses on both the
original and a number3 of surrogate4 time series, using the op-
timal embedding dimension of the original time series. Due
to the standardisation of the distance axis, these plots can be
conveniently combined within a scatter diagram, where the
horizontal axis corresponds to the DVV plot of the original
time series, and the vertical to that of the surrogate time se-
ries. If the surrogate time series yield DVV plots similar to
that of the original time series, as illustrated by Figure 1(a),
the DVV scatter diagram coincides with the bisector line, and
the original time series is judged to be linear, as shown in
Figure 1(c) (for the linear signal (2)). If not, as illustrated by
Figure 1(b), the DVV scatter diagram will deviate from the
bisector line and the original time series is judged to be non-
linear, as depicted in Figure 1(d) (for the nonlinear signal (3)).

To illustrate the usage of DVV scatter diagram, consider a
linear signal (AR(4)), given by [4]

x(k) = 1.79 x(k − 1) − 1.85 x(k − 2) + 1.27 x(k − 3)
− 0.41 x(k − 4) + n(k) (2)

and a nonlinear signal (a Narendra Model Three realisation),
given by [14]

z(k) =
z(k − 1)

1 + z2(k − 1)
+ r3(k)

r(k) = 1.79 r(k − 1) − 1.85 r(k − 2) + 1.27 r(k − 3)
− 0.41 r(k − 4) + n(k) (3)

where {n(k)} is white Gaussian noise n(k) ∈ N (0, 1).

If the surrogate time series yield DVV plots similar to that
of the original time series, as illustrated by Figure 1(a), the
DVV scatter diagram coincides with the bisector line, and the
original time series is judged to be linear, as shown in Figure
1(c) (for the linear signal (2)). If not, as illustrated by Figure
1(b), the DVV scatter diagram will deviate from the bisector
line and the original time series is judged to be nonlinear, as
depicted in Figure 1(d) (for the nonlinear signal (3)).

2.4. Qualitative and Quantitative Performance Analysis

Notice that the prediction is the core of adaptive algorithms in
machine learning applications, both supervised and blind. To
assess the quantitative performance of learning algorithms, it

3In all of our simulations, we choose to generate 25 surrogate each time
as increasing the number of surrogate will not improve experiment results but
increase the computational complexity.

4Simply speaking, surrogate data, or “surrogate” for short, are artificially
generated randomised linear version of the original data. For more informa-
tion on surrogate data, please refer to [13][9].
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(a) DVV plot for a linear signal
(AR(4) signal). The line with crosses
denotes the DVV plot for the average
of 25 iAAFT-based surrogate while
the solid line denotes that for the orig-
inal signal.
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(b) DVV plot for a nonlinear signal
(Narendra Model 3). The line with
crosses denotes the DVV plot for the
average of 25 iAAFT-based surrogate
while the solid line denotes that for
the original signal.
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(c) DVV scatter diagram for a lin-
ear signal (AR(4) signal). Error bars
denote the standard deviation of the
target variances of surrogates.
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(d) DVV scatter diagram for a non-
linear signal (Narendra Model 3). Er-
ror bars denote the standard deviation
of the target variances of surrogates.

Fig. 1. Nonlinear and deterministic nature of signals.

is convenient to use the standard one-step forward prediction
gain Rp, defined as [15]

Rp = 10 log10

( σ̂2
s

σ̂2
e

)
[dB] (4)

which is a logarithmic ratio between the estimated signal vari-
ance σ̂2

s and estimated prediction error variance σ̂2
e .

On the other hand, to assess the qualitative performance, that
is, a possible change in the signal nature introduced by a fil-
ter, we compare DVV scatter diagrams of the outputs of the
learning algorithms with those of the original signal. The tar-
get variances Eq. (1) for the predicted signal and its surrogates
are obtained by performing the DVV test on the predicted sig-
nal. For robustness, these steps are repeated 100 times and
DVV scatter diagrams are obtained by plotting the averaged
target variance against that for its surrogates.

For the assessment of qualitative performance, if the consid-
ered filters yield high prediction gain (Rp), the quantitative
performance of the filters is judged to be ‘good’. As for the
qualitative performance as explained above, the more similar
the DVV scatter diagram for the filtered signal is to that for
the original signal, the better the qualitative performance of
the considered filter.



3. EXPERIMENTAL RESULTS

For rigour, the qualitative assessment of Kalman filter was
performed in comparison with that of a linear filter trained by
the standard least-mean-square (LMS) algorithm and a non-
linear feedforward perceptron trained by the nonlinear ver-
sion of LMS, e.g., nonlinear gradient descent (NGD) algo-
rithm [4].

Figure 2 illustrates the qualitative and quantitative perfor-
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Fig. 2. Quantitative and qualitative performance compari-
son of three different filters on the prediction of the linear
benchmark signal (2): the linear filter trained by LMS al-
gorithm (leftmost diagram), the nonlinear feedforward per-
ceptron trained by NGD algorithm (middle diagram) and the
Kalman filter (rightmost diagram).

mance comparison of three different adaptive filters on the
prediction of the linear benchmark signal (2). From the Fig-
ure, all the filters were able to preserve the linear nature of the
processed signal, as illustrated by the fact that all the DVV
scatter diagrams lie on the bisector line. However, in terms
of quantitative performance, Kalman filter outperformed the
other two adaptive filters with a noticeable increase in the pre-
diction gain.

Figure 3 illustrates a similar experiment performed on pre-
diction of the benchmark nonlinear signal (3). From Figure 3,
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Fig. 3. Quantitative and qualitative performance compari-
son of three different filters on the prediction of the nonlinear
benchmark signal (3). The dotted lines in the above diagrams
stand for DVV scatter diagram for the original signal, while
the solid lines for DVV scatter diagrams for one-step ahead
prediction.

Kalman filter not only had the best quantitative performance
in terms of prediction gain but also has the best qualitative
performance in terms of signal nature preservation, judged by

the fact that the DVV scatter diagram of the prediction (solid
line) was closest to that of the original signal (dotted line) out
of all the thee diagrams.

4. CONCLUSION

A novel framework for assessing the qualitative performance
of the Kalman filter has been proposed. This has been achieved
based upon the recently introduced ‘delay vector variance’
(DVV) method for characterising the nonlinearities present in
the original signal. It has been shown that the Kalman fil-
ter not only has a better quantitative performance in terms of
higher prediction gain, but also is able to better preserve the
nature of the processed signal, as compared to standard lin-
ear and nonlinear filters. Simulations on both the linear and
nonlinear benchmark signals support the findings.
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