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Abstract— A new framework for the estimation of the instan-
taneous frequency in a three-phase power system is proposed.
It is first illustrated that the complex-valued signal, obtained
by the αβ transformation of three-phase power signals under
unbalanced voltage sag conditions, is second order noncircular,
for which standard complex adaptive estimators are suboptimal.
To cater for second order noncircularity, an adaptive widely
linear estimator based on the augmented complex least mean
square (ACLMS) algorithm is proposed, and the analysis shows
that this allows for optimal linear adaptive estimation for the
generality of system conditions (both balanced and unbalanced).
The enhanced robustness over the standard CLMS is illustrated
by simulations on both synthetic and real-world voltage sags.

I. INTRODUCTION

In a power system, unexpected frequency variations from

the nominal value can trigger abnormal system conditions

and disturbances, and fast and accurate frequency estimation

has recently attracted much attention [1], [2]. Standard single

phase based techniques are limited, especially when the se-

lected phase suffers a dip in voltage or transients. It is also

difficult to select the most representative single-phase signal

to adequately descript the system frequency, since six different

single-phase voltages exist in a three-phase system, when line-

to-line voltages are also considered [3]. Therefore, an optimal

solution would be to design a framework which simultaneously

considers all the three-phase voltages; this provides unified

estimation with enhanced robustness whenever any of the

phases suffers sags, transients or harmonics. To this end,

Clarke’s αβ transformation constructs a complex-valued signal

from the information provided by all the three-phase voltages

[4]. This transformation equips classical single phase methods

with enhanced robustness, and a number of solutions have

been developed in the complex domain C that have proved

more reliable than the corresponding methods operating in the

real domain R. These include the use of phase locked loops

(PLL) [5], least squares techniques [6], Kalman filtering [7],

and demodulation based methods [8]. Among them, adaptive

algorithms based on the minimisation of the mean square error

are most widely used, owing to their simplicity, computational

efficiency, and robust performance for frequency estimation in

the presence of noise and harmonic distortions.

In real-world distributed power systems, one main problem

are unbalanced voltage sags triggered by an increase in load

current that may last from a period of one cycle to a few
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hundred cycles of the AC source [9]. Such a short-term

increase in load currents may occur due to motor starting,

transformer inrush, short circuits, or fast reclosing of circuit

breakers. Despite their short duration, such unbalanced events

may cause difficulties in phase angle calculation when using

standard adaptive estimators. This problem has been discussed

in [10], where the complex-valued signal obtained from an

unbalanced three-phase voltage source was represented as an

orthogonal sum of positive and negative sequences. Since

the standard complex linear adaptive filter can only cater for

the positive sequences, the negative sequences introduce a

systemic estimation error oscillating at twice the system fre-

quency [11]; attempts to estimate frequency under unbalanced

conditions can be found in [12], [13].

Based on recent advances in augmented complex-valued

second order statistics, we illustrate that under unbalanced

conditions, the complex-valued signal obtained from the αβ
transformation is second order noncircular (improper), for

which the probability density function is not rotation invari-

ant. The so-called augmented complex statistics show that

for the modelling of noncircular signals, the standard linear

estimation, based on the covariance matrix of a complex-

valued random vector x, that is Cxx = E[xxH ], is not adequate

and the pseudocovariance matrix Pxx = E[xxT ] should also

be taken into account to describe the complete second order

behaviour [14], [15]. In practice, this is achieved by virtue of

the widely linear modelling [14], [16], where both x and its

complex conjugate x∗ are combined into the augmented input

xa = [xT , xH ]T . To deal with online frequency estimation

on noncircular signals, we here propose to use the recently

introduced widely linear modelling based adaptive filtering

algorithm, called the Augmented Complex Least Mean Square

(ACLMS) [17]. Its superiority over standard CLMS [6] is

illustrated by analysis and simulations over several typical

synthetic and real world unbalanced voltage sag conditions.

II. PRELIMINARIES

A. Widely Linear Modelling

Consider a real-valued conditional mean squared error

(MSE) estimator

ŷ = E[y|x] (1)

which estimates the signal y in terms of another observation

x. For zero mean, jointly normal y and x, the optimal solution

is the linear model given by

ŷ = xTh (2)
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where h = [h1, . . . , hL]
T is a vector of fixed filter coefficients,

x = [x1, ..., xL]
T the regressor vector, and (·)T the vector

transpose operator.

In the complex domain, it is typically assumed that we can

use the same form of estimator, leading to the standard com-

plex linear minimum mean square error (MMSE) estimator

ŷ = ŷr + jŷi = xTh (3)

where j =
√
−1 and subscripts r and i denote respectively the

real and imaginary parts of a complex variable. Since both the

real and imaginary parts of complex variables are real, we have

ŷr = E[yr|xr, xi], ŷi = E[yi|xr, xi] (4)

and a more general form of (3) becomes

ŷ = E[yr|xr, xi] + jE[yi|xr, xi] (5)

Substitute xr = (x+ x∗)/2 and xi = (x− x∗)/2j to arrive at

ŷ = E[yr|x, x∗] + jE[yi|x, x∗] = E[y|x, x∗] (6)

leading to the widely linear estimator for complex valued data

ŷ = hTx+ gTx∗ = xTh+ xHg (7)

where h and g are complex-valued coefficient vectors. Such a

widely linear estimator is optimal for the generality of complex

signals (both proper and improper), and it simplifies into the

strictly linear model (g = 0) for proper data.

B. Augmented complex statistics

In practice, the widely linear estimate in (7) is based on a

regressor vector produced by concatenating the input vector x

with its conjugate x∗, to give an augmented 2L×1 input vector

xa = [xT , xH ]T , together with the corresponding augmented

coefficient vector wa = [hT , gT ]T . The corresponding 2L×2L

augmented covariance matrix then becomes [15]

Ca
xx = E

[
x

x∗

]
[
xHxT

]
=

[
Cxx Pxx

P∗
xx C∗

xx

]

(8)

and contains the full second order statistical information. From

(8), it is clear that the covariance matrix, Cxx = E[xxH ], alone

does not have sufficient degrees of freedom to describe full

second order statistics, and in order to make use of all the

available second order information we also need to consider

the pseudo-covariance matrix, Pxx = E[xxT ]. Processes with

the vanishing pseudo-covariance, Pxx = 0, are termed second

order circular (or proper). In general, the notion of circularity

extends beyond second order statistics, to describe the class

of signals with rotation-invariant distributions, P[·] for which

P[z] = P[zejθ] for θ ∈ [0, 2π) [18]. In real world, most

complex signals are second order noncircular or improper, and

their probability density functions are not rotation invariant.

Fig. 1 shows the scatter plots of some complex-valued signals

[19]. Note that the distribution of a stable AR(4) signal driven

by the circular doubly white Gaussian noise is circularly

symmetric, and becomes noncircular for improper driving
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Fig. 1. Circularity via “real-imaginary” scatter plots in the complex plane.
(a) A stable autoregressive AR(4) process driven by doubly white circular
Gaussian noise. (b) The same AR(4) process driven by noncircular doubly
white Gaussian noise. (c) Noncircular Ikeda map. (d) Real-world wind signal.

noise, as shown in Fig. 1(b). The noncircularity can also be

seen in the chaotic Ikeda map and real-world wind data1.

The advantage of widely linear estimation over strictly

linear estimation can be quantified by the difference between

the mean square errors of a strictly linear estimator, e2L, and

that of a widely linear estimator, e2WL [14], given by

δe2 = e2L − e2WL

= [p − P∗
xxC∗−1

xx c∗]H [Cxx − PxxC∗−1
xx P∗

xx]
−1

· [p − P∗
xxC∗−1

xx c∗] (9)

where c = E[y∗x] and p = E[yx]. Due to the positive defi-

niteness of the matrix [Cxx−PxxC∗−1
xx P∗

xx], δe
2 is nonnegative.

III. FREQUENCY ESTIMATION BASED ON WIDELY LINEAR

ADAPTIVE FILTERING

The three-phase voltages of a power system in a noise-free

environment can be represented in a discrete time form as

va(k) = Va(k)cos(ωk�T + φ)

vb(k) = Vb(k)cos(ωk�T + φ− 2π

3
)

vc(k) = Vc(k)cos(ωk�T + φ+
2π

3
) (10)

where Va(k), Vb(k), Vc(k) are the peak values of each phase

voltage component at time instant k, �T the sampling interval,

φ the phase of fundamental component, and ω = 2πf the

angular frequency of the voltage signal, with f being the

system frequency. The time-dependent three-phase voltage is

transformed by the orthogonal αβ0 transformation matrix [4]

into a zero-sequence v0 and the direct and quadrature-axis

components, vα and vβ , as

⎡

⎣

v0(k)
vα(k)
vβ(k)

⎤

⎦=

√

2

3

⎡

⎢
⎣

√
2
2

√
2
2

√
2
2

1 − 1
2 − 1

2

0
√
3
2 −

√
3
2

⎤

⎥
⎦

⎡

⎣

va(k)
vb(k)
vc(k)

⎤

⎦ (11)

1The wind signal was made complex through combining the wind speed v
and direction ψ to form a complex signal v = vejψ .
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The factor
√

2/3 is used to ensure that the system power is

invariant under this transformation. When Va(k), Vb(k), Vc(k)
are identical, v0(k) = 0, vα(k) = Acos(ωkΔT + φ) and

vβ(k) = Acos(ωkΔT + φ + π
2 ), with a constant amplitude

A, while vα(k) and vβ(k) are the orthogonal coordinates of a

point whose position is time variant at a rate proportional to

the system frequency.

In practice, only the vα and vβ parts are used in the

modelling, known as the αβ transformation [8]. The resulting

complex voltage signal v(k) serves as the desired signal in

adaptive frequency estimation and is given by

v(k) = vα(k) + jvβ(k) (12)

and can be estimated iteratively using

v(k + 1) = A(k + 1)ej(ω(k+1)ΔT+φ)

= AejωΔTej(ωkΔT+φ) = v(k)ejωΔT (13)

It is important to notice that in normal operating conditions,

samples of v(k) are located on a circle in the complex plane

with a constant radius A, depicted by ‘+’ in Fig. 2. For

a constant sampling frequency, the amplitude distribution of

v(k) is rotation invariant, since v and vejθ have the same

distribution for any real θ. Since v(k) is circular, frequency

estimation can be performed adequately by a standard linear

adaptive filter, such as the CLMS. However, when the three-

phase power system deviates from its normal condition, for

instance, when the three phase voltages suffer different levels

of dips or transients, Va(k), Vb(k), Vc(k) are not identical, and

samples of v(k) are not allocated on a circle, as illustrated by

the ellipse denoted by ‘·’ in Fig. 2. In this case, the distribution

of v(k) is rotation dependent (noncircular) and the signal is

adequately modelled (see the Appendix A for the derivation)

only by using the widely linear model in (7), that is

v(k) = A(k)ej(ωkΔT+φ) +B(k)e−j(ωkΔT+φ) (14)

In other words, when Va(k), Vb(k), Vc(k) are not identical,

A(k) is no longer a constant, and B(k) �= 0, thus introducing

a rotation dependent distribution. Hence, in unbalanced con-

ditions, v(k) exhibits a certain degree of noncircularity, and

the model in (13) is no longer adequate. The coefficients of

the widely linear signal model in (14) can be adapted using

the Augmented CLMS (ACLMS), given by [17]

v̂(k + 1) = v(k)h(k)
︸ ︷︷ ︸

standard update

+ v∗(k)g(k)
︸ ︷︷ ︸

conjugate update

e(k) = v(k + 1)− v̂(k + 1)

h(k + 1) = h(k) + μe(k)v∗(k)

g(k + 1) = g(k) + μe(k)v(k) (15)

where h(k) and g(k) are respectively the filter weight coef-

ficients corresponding to the standard and conjugate parts at

time instant k, v̂(k + 1) is the estimate of v(k + 1), e(k) the

estimation error, and μ the step-size, a small positive constant.

The stability conditions of such a closed-loop adaptive system
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Fig. 2. Circularity via a “real-imaginary” scatter plot in the complex plane.
The circle denoted by ‘+’ represents a circular complex-valued signal v(k)
obtained from a balanced situation where Va(k), Vb(k), Vc(k) are identical
at 1-p.u. and time invariant. The ellipse denoted by ‘·’ represents a noncircular
complex-valued v(k) obtained in an unbalanced condition with Va(k) = 1-
p.u, Vb(k) = 0.9-p.u. and Vb(k) = 0.7-p.u..

based on ACLMS can be found in [20]; the upper bound for

the step-size of ACLMS is roughly half that of CLMS.

From (14) and (15), the estimate v̂(k + 1) becomes

v̂(k + 1) = A(k)h(k)ej(ωkΔT+φ) +B(k)h(k)e−j(ωkΔT+φ)

+ A∗(k)g(k)e−j(ωkΔT+φ) +B∗(k)g(k)ej(ωkΔT+φ)

=
(
A(k)h(k) +B∗(k)g(k)

)
ej(ωkΔT+φ)

+
(
A∗(k)g(k) +B(k)h(k)

)
e−j(ωkΔT+φ) (16)

while from (14), v(k + 1) can be re-written as

v(k + 1) = A(k + 1)ejωΔTej(ωkΔT+φ)

+ B(k + 1)e−jωΔTe−j(ωkΔT+φ) (17)

Comparing the ‘standard’, strictly linear parts within (16) and

(17), the term ejωΔT containing the frequency information can

be estimated from

ejω̂ΔT =
A(k)h(k) +B∗(k)g(k)

A(k + 1)
(18)

while comparing the conjugate parts within (16) and (17), the

evolution of the term e−jωΔT can be expressed as

e−jω̂ΔT =
A∗(k)g(k) +B(k)h(k)

B(k + 1)
(19)

thus giving,

ejω̂ΔT =
A(k)g∗(k) +B∗(k)h∗(k)

B∗(k + 1)
(20)

The assumption held implicitly in frequency estimation by

adaptive filtering algorithms is that, at two consecutive time

instants, A(k + 1) ≈ A(k), and also B(k + 1) ≈ B(k). This

way, (18) and (20) can be respectively simplified into

ejω̂ΔT = h(k) +
B∗(k)

A(k)
g(k) (21)

ejω̂ΔT = h∗(k) +
A(k)

B∗(k)
g∗(k) (22)
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Appendix A shows that the coefficient A(k) is real-valued

whereas B(k) is complex-valued, and thus
B∗(k)
A(k) =

(
B(k)
A(k)

)∗
.

Since (21) should be equal to (22), using a(k) =
(
B(k)
A(k)

)∗
,

we can find the expression for a(k) by solving the following

quadratic equation with complex-valued coefficients

g(k)a2(k) +
(
h(k)− h∗(k)

)
a(k)− g∗(k) = 0 (23)

The discriminant of this quadratic equation is given by

� =

√
(
h(k)− h∗(k)

)2
+ 4|g(k)|2

= 2
√

−�2(h(k)) + |g(k)|2 (24)

where the operator �(·) represents the imaginary part of a

complex-valued quantity. Since a(k) is complex-valued, the

discriminant is negative, and the two roots become

a1(k) =
−j�

(
h(k)

)
+ j

√

�2(h(k))− |g(k)|2
g(k)

a2(k) =
−j�

(
h(k)

)
− j

√

�2(h(k))− |g(k)|2
g(k)

(25)

Observe that the phasor ejω̂ΔT is estimated either by using

h(k) + a1(k)g(k) or h(k) + a2(k)g(k). Since the system

frequency is far smaller than the sampling frequency, the imag-

inary part of ejω̂ΔT can be assumed positive, thus excluding

the second solution based on a2(k). The system frequency

estimate f̂(k) is therefore calculated in the form

f̂(k) =
1

2πΔT
sin−1

(
�(h(k) + a1(k)g(k))

)
(26)

The above equation is a generic widely linear extension of

the standard linear frequency estimation method, and can be

implemented by any type of widely linear adaptive filter. When

the system is balanced, g(k) = 0, and (26) simplifies into the

standard linear solution.
IV. SIMULATIONS

The strictly linear CLMS [6] and the widely linear ACLMS

algorithm were used to estimate the fundamental frequency

from both synthetic and real-world voltage signals. The de-

gree of noncircularity in different unbalanced conditions was

calculated using the circularity index [16]:

η =
τ2v
σ2
v

(27)

where σ2
v = E[v(k)v∗(k)] is the variance of v, and τ2v =

E[v(k)vT (k)] = E[|v2(k)|] is the absolute value of the

pseudo-variance of v. This way, η ∈ [0, 1], the value of 0

indicating that v(k) is second order circular (proper), other-

wise indicating a second order noncircular (improper) v(k).

A. Synthetic Voltage Sags

The voltage sags most commonly experienced by a three-

phase system may be classified into types A, C, and D [21].

• Type A voltage sag is shown in the left hand part of

Fig. 3(a), whereby all the three voltages undergo balanced

Type A Type C Type D

(a) Unbalanced voltage sags (dotted line denotes normal operation).
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(b) Circularity via a “real-imaginary” plot of sag types A, C and D.
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(c) Time series of three-phase voltages for different sag types.

Fig. 3. Waveforms and phase relationships for different voltage sag types.

sags at the same magnitude level, and the phase angles

between all three phases remain 120◦ apart.

• Type C and D sags are shown respectively in the middle

and right hand part of Fig. 3(a), whereby two phase volt-

ages drop in magnitude at the same rate and also exhibit

change in phase angle from their norminal position; type

C and type D sags may happen in a star-connected and

a delta-connected supply system respectively.

Type A sag is also known as symmetrical sag, while the

other two are unsymmetrical. A three-phase short circuit or

a large motor starting produce symmetrical sags, whereas

line-to-ground, phase-to-phase, or two phase-to-ground faults

such as lightning, accidents, and energizing of transformers

produce unsymmetrical sags. Since type A sag does not alter

the circularity of the power system, as shown in Fig. 3(b),
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(a) The three-phase power system undergoing three consecutive voltage sags of
different natures.
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(b) System frequency undergoing the decay and rise at a rate of 5 Hz/sec.

Fig. 4. Frequency estimation using CLMS and ACLMS, for μ = 0.01.

the standard linear adaptive estimator is adequate, and in this

work, we mainly focus on the latter two unsymmetrical voltage

sags of type C and type D exhibiting noncircular amplitude

distributions as shown in Fig. 3(b).

The performance of frequency estimation of CLMS and

ACLMS under both type C and D sag conditions is shown

in Fig. 4(a). Initially, the simulated power system was in its

normal operation at 50 Hz with a balanced distortion-free

three-phase voltages with unity magnitude. Both algorithms

were initialised at 50.5Hz and converged to 50Hz in a very

similar way. Then at t = 0.05 s, a type C sag occurred, with

a 20% voltage drop and 10◦ phase angle offset on phases vb
and vc, leading to an unbalanced three-phase power system

with a degree of noncircularity η = 0.3410 (Fig. 3(b)). There

was an inevitable biased oscillation error in CLMS based

estimation due to the undermodelling of the system, whereas

the advantage of the widely linear ACLMS based estimator

in accurately estimating the frequency can be observed after

convergence. At t = 0.25 s, a type D sag took place exhibiting

a 20% voltage drop at phase va and 10% voltage drop at
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(a) Time series of the real−world unbalanced three−phase voltages.
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Fig. 5. Frequency estimation for a real-world voltage sag.

both phases vb and vc together with a 5◦ phase angle offset,

whereby the degree of noncircularity η was 0.1778. Again

ACLMS gave an unbiased performance, whereas the CLMS

was not adequate. After t = 0.4 s, the unbalanced three-phase

voltages were polluted with higher order harmonics; a 10%

of the third harmonic and 5% of the fifth harmonic of the

fundamental frequency were added into the unbalanced three-

phase power system suffering from the same type D sag to

give η = 0.1782. The estimated frequency was subject to

an oscillatory steady state error; from t = 0.4 s, the ACLMS

achieved better performance with a smaller oscillation error at

the steady state as compared with CLMS.

In the next case study, the performances of the proposed

widely linear ACLMS and the strictly linear CLMS were

compared for the case of frequency variation. In Fig. 4(b),

the 50 Hz fundamental frequency of the type D unbalanced

three-phase voltage arose and decayed at a rate of 5 Hz/sec;

the estimated frequency obtained by the ACLMS algorithm

followed the true system frequency very closely after an ini-

tialisation period of around 0.05 sec, whereas CLMS produced

a biased estimation with large variance.

B. Estimation of Real World Voltage Sags

The real-world three phase voltage with sags was recorded

at a 110/20/10kV transformer station. The REL 531 numerical

line distance protection terminal, produced by ABB Ltd, was

installed in the station and was used to monitor changes

in the three ‘phase-ground’ voltages. The device was set to

record whenever the phase voltage value dropped below 90%

of its norminal value for longer than 20 ms. The measured

three ‘phase-ground’ voltages with system frequency 50 Hz

were sampled at 1 kHz, and were normalised with respect to

their normal peak voltage value, as shown in Fig. 5(a). At

around t = 0.05 sec, a problem in phase vb occurred (shortcut

with earth), causing a 30% voltage sag, while the voltages in

phases va and vc simultaneously experienced respectively 60%

and 37% voltage swells, to give a degree of noncircularity

of η = 0.1074. The frequency tracking capabilities of the
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proposed ACLMS and standard CLMS methods are shown

in Fig. 5(b). Both methods provided accurate responses under

normal operating conditions, however, as expected, the CLMS

failed to deal with the unbalanced situation, whereas the

fluctuations of the estimated frequency produced by ACLMS

were much lower than those of the CLMS method.

V. CONCLUSION

We have introduced widely linear estimation of the instan-

taneous frequency in three-phase power system. The proposed

technique, based on the Augmented Complex Least Mean

Square (ACLMS) algorithm has been shown to be suitable

for both balanced and unbalanced three-phase voltages, and to

be robust under different voltage sag conditions. It has been

shown that type A sag exhibits rotation invariant (circular)

amplitude distribution while type C and type D sags are second

order noncicular (improper), for which the standard linear

adaptive CLMS based estimator is suboptimal. In addition,

the proposed ACLMS based widely linear modelling has

also exhibited good tracking ability during dynamic changes

in power system, and reduced sensitivity to higher order

harmonics as compared to strictly linear estimation.

APPENDIX A

From the standard three-phase system in (10) and (11), the

components vα(k) and vβ(k) of the complex voltage v(k) =
vα(k)+ jvβ(k), obtained using the αβ transformation, can be

derived as

vα(k) =

√

2

3

(
va(k)−

vb(k)

2
− vc(k)

2

)

=
(
√
6Va(k)

3
+

√
6(Vb(k) + Vc(k))

12

)
cos(ωk�T + φ)

−
√
2
(
Vb(k)− Vc(k)

)

4
sin(ωk�T + φ) (28)

vβ(k) =

√

2

3

(
√
3vb(k)

2
−

√
3vc(k)

2

)

= −
√
2
(
Vb(k)− Vc(k)

)

4
cos(ωk�T + φ)

+

√
6
(
Vb(k) + Vc(k)

)

4
sin(ωk�T + φ) (29)

Given that

cos(ωk�T + φ) =
ej(ωk�T+φ) + e−j(ωk�T+φ)

2

sin(ωk�T + φ) =
ej(ωk�T+φ) − e−j(ωk�T+φ)

2j
(30)

the complex-valued v(k) can be written in the form of a

standard part (left hand term) and a conjugate part (right hand

term) as v(k) = vα(k) + jvβ(k), that is

v(k) = A(k)ej(ωk�T+φ) +B(k)e−j(ωk�T+φ) (31)

where

A(k) =

√
6(Va(k) + Vb(k) + Vc(k))

6

B(k) =

√
6(2Va(k)− Vb(k)− Vc(k))

12
−

√
2(Vb(k)− Vc(k))

4
j

Augmented complex statistics [16], [18] shows that v(k)
is second order circular with rotation invariant probability

density function in the complex plane if B(k) vanishes

and A(k) is a constant, which can only be achieved when

Va(k), Vb(k), Vc(k) are identical at each time instant, when

(31) simplifies into (13). In unbalanced conditions, A(k)
is real-valued, but B(k) �= 0 and can be complex-valued,

resulting in a second order noncircular (improper) v(k).
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