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Accurate estimation of system frequency in real time is a
prerequisite for the future smart grid, where the generation,
loading and topology will all be dynamically updated. We
here introduce a unified framework for the estimation of in-
stantaneous frequency in both balanced and unbalanced con-
ditions in a three phase system, in order to consolidate the ex-
isting approaches and to provide next generation solutions ca-
pable of joint adaptive frequency estimation and system fault
identification. This is achieved by employing recent develop-
ments in the statistics of complex variables (augmented statis-
tics) and the associated widely linear models, allowing us to
benefit from a rigorous account of varying degrees of noncir-
cularity corresponding to different sources of frequency vari-
ations. The advantages of such an approach are illustrated
for both balanced and unbalanced conditions, including volt-
age sags, harmonics and supply-demand mismatch, all major
obstacles for accurate frequency estimation in smart grid.

WHY FREQUENCY ESTIMATION IN SMART GRID

Electricity networks are undergoing wholesale changes both
from the generation and the user (load) sides. Major chal-
lenges in this direction are envisaged to be the management
of largely increased load levels, due to e.g. charging a large
number of Plug In Electric Vehicles (PEV), and the duality
between loads and supplies, for instance, when PEVs are used
in the ’vehicle to grid’ mode to mitigate power shortage and
system imbalances. Generation, historically aggregated into
large power plants and far from the user, is gradually moving
towards being located at the distribution level and based on
renewable sources, that is, intrinsically intermittent [1]. This
will require enhanced flexibility of the grid and the ability to
accommodate islanding and micro-grids [2, 3].

The idea behind smart distributed grids and microgrids is
to balance as much as possible locally between production
and consumption. However, the deployment of intermittent
renewable sources will inevitably lead to frequent imbalance
between supply and demand, as examplified by the difficulties
in maintaining system balance due to wind power variability
[4]. Signal processing is certain to play a significant role in
dealing with the complexity and uncertainty associated with
smart grid, with stochastic models being a natural choice.

Unexpected frequency variations from the nominal value
can trigger abnormal power system conditions which can

propagate and aggregate - accurate and fast frequency track-
ing is a prerequisite to the system responding quickly to
such problems [5, 6]. Approaches to frequency estimation
from a single phase result in non-unique solutions, and ro-
bust frequency estimators should consider all the three phase
voltages [7]. For instance, the αβ transform produces a
complex-valued signal from the three phase voltages [8] -
system frequency is obtained from the phase of this signal.

Complex domain solutions for frequency tracking include
phase locked loops (PLL) [9], least squares [10] and demod-
ulation methods [11], and Kalman filtering [12]. Recently,
adaptive tracking algorithms based on the minimisation of
mean square error have become a standard, as they are natu-
rally suited to deal with noise, harmonics, and nonstationary
environments [10, 13]. However, unbalanced events make it
difficult to calculate phase angle [14, 15], as in this case the
complex-valued signal obtained from an unbalanced three-
phase voltage source is represented as an orthogonal sum
of positive (reflecting the energy transfer beween generators
and consumenrs) and negative (indicating imbalance between
three phase voltages) sequences. Standard complex linear
adaptive filters can only cater for the positive sequences,
whereas the negative sequences introduce a modelling error
that oscillates at twice the system frequency [16, 17].

This work addresses adaptive tracking of system fre-
quency in the three-phase system and proposes next genera-
tion solutions for fault identification and troubleshooting in
the following events that lead to frequency deviations:

• Imbalance in the generation (G) and load (L). In smart
grid, the system will frequently switch between the
main grid (MG) and microgrids (µG), with parts of the
system completely switching off the MG for prolonged
periods of time (islanding). The system frequency rises
for G > L and decreases for G < L.

• Single and dual phase faults. The system frequency is
derived from the relationship between the three phase
voltages (using Clarke’s transform [8]). Faults in one or
two phases and voltage sags (sudden drop in voltage for
a short period of time) will cause an incorrect frequency
estimate and alarm spread through the system, although
the actual system frequency was correct.

• Dual character of load-supply. Smart grid employs
dynamic loads and dual load-generator devices, such
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as Plug-in Electric Vehicles (PEV)s, which can give
the energy back to the grid in the case of emergency.
Frequent switching will cause problems with reactive
power, whose drifting causes oscillations of power lev-
els and harmonics in frequency.

• Harmonics. Some loads (power supplies, motors, heat-
ing elements) have nonlinear v − i characteristics and
introduce harmonics, which may be slowly floating and
not integer multiplies of system frequency. They may
cause resonance in the system leading to significant
increase in currents and overheating of transformers
[18]. Switching on the shunt capacitors for reactive
power compensation also causes strong transients and
harmonics that are damaging to some equipment.

• Transient stability issues. Faults and short circuits
could trigger instability, and actions such as shedding
loads (or generators) that are needed to mitigate the
problem require accurate frequency estimation.

Some of the above events could be dealt with if detected in
time, however, current systems do not have sufficient infor-
mation about the state at the distribution end to do so. This
applies particularly to problems related to the management of
single and dual phase faults, short duration voltage sags, and
reactive power - these cause harmonics, false alarms congest-
ing the system, and slow response to critical events.

To this end, we introduce a robust framework for adaptive
frequency estimation under unbalanced system conditions,
a typical case in microgrids, coupled microgrids and power
islands. We first analyse the complex-valued signal, obtained
by the αβ transformation of a three-phase power system,
and illustrate the suitability of complex valued filters in this
context by illuminating their magnitude-phase relationship
and tracking abilities. We then address the geometry of
learning to leverage between magnitude-only and phase-only
adaptive tracking, and demonstrate the trade-off between
bias and variance of such adaptive frequency estimators. It
is further illustrated that under unbalanced system condi-
tions the αβ-transformed complex voltage signal is second
order noncircular (improper), for which current, strictly lin-
ear, complex valued adaptive estimators are suboptimal. A
second-order optimal adaptive widely linear frequency esti-
mator is next introduced, and is shown to cater for both the
balanced and unbalanced system conditions and to produce
unbiased estimates with greatly reduced variance, asymp-
totically approaching the Cramer-Rao lower bound for high
signal to noise ratios. Experimental results include both
benchmark and real world case studies, addressing frequency
estimation in several typical unbalanced system conditions.

FROM THE HIERARCHICAL GRID TO SMART GRID

The operation of the power system at a constant frequency is
maintained by regulating the balance between generation and
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Fig. 1. Nodal estimation. Various loads (L) and small gen-
erators (G) operate locally and contribute to the variability of
power quality. A substation has 3-5 circuits - the sum of all
the circuit loads ΣL and all the generation ΣG equals that of
the substation. A G-L mismatch in one circuit is compensated
from the generation in another circuit or from the main grid.

load in real time. Fig. 1 shows a simplified diagram of the
transmission and distribution part of the grid, illustrating the
available loads (L), generators (G), and measurements (M)
at both the substation and consumer level. Phasor Measure-
ment Units (PMU) provide synchronised measurements of the
three phase voltages, currents, system frequency, and loads;
conventional units and PMUs are deployed at the substations
and forward synchronised data to the main station. This part
is well modelled, however, at present the transmission side
of the grid does not have sufficient information about the be-
haviour at the distribution level in order to incorporate it into
the operator model. The progress towards microgrids, cou-
pled microgrids, and islanding will introduce numerous prob-
lems related to power quality, whose rectification requires
more metering devices at the distribution and consumer level.
For instance, photovoltaic sources that produce 1∼2 kW are
often located at the customer’s site; they offset the connection
load, and can also feed the energy back into the grid [19].

MICROGRIDS AND ENERGY ISLANDS

Microgrids are small connected clusters within the main grid,
which operate in parallel to the grid or isolated (as an energy
island). They respond to fault events autonomously and based
on only local information, and facilitate the implementation
of key Smart Grid functions, such as load control, reliability
and self-healing, and a greater use of renewables. Microgrids
will disconnect when the power quality of the main grid is
below certain standards, switching to the islanding mode in
the case of faults (dynamic islanding), such as large voltage
sags and power outages. It is desired that the microgrid seam-



lessly changes its mode of operation between an island and a
grid resource; this requires local stability and constant moni-
toring of large circulating reactive currents between sources,
together with voltage vs. power droop control. In this way:

• In normal operation, the loads in microgrid receive
power from both the main grid and local generators.
When the grid power is lost, the microgrid dynamically
transforms into the islanding mode;

• If the microgrid was taking the energy from the grid,
local generation needs to increase the available power,
resulting in a temporary drop in microgrid frequency;

• If islanding occurred while µG was exporting power to
the MG, the microgrid frequency temporarily increases.

VOLTAGE SAGS
Voltage sags refer to a temporary drop in the one or two phase
voltages for several hundreds milliseconds [3]. Despite their
short duration they are harmful to a range of equipment, in-
cluding computers, adjustable speed devices and three-phase
loads. A voltage sag is defined by the IEEE Standard 1159-
1995 as a “decrease in root mean square (RMS) voltage at the
power frequency for durations from 0.5 cycles to 1 minute”.
Three-phase sags can be symmetric, for instance, when start-
ing a large motor in an industrial plant, or unbalanced as when
energising a large transformer. Sags that occur at the higher
voltage (transmission) side are spread to the lower voltage
systems (distribution side) through transformers, also sags
and faults that appear at one circuit of the distribution side
will affect other circuits at the same substation (see Fig. 1).
When one line voltage goes into a sag the other two go into
a swell (increase in voltage) in order to maintain the power
required by the load. Since the system frequency is estimated
from the three phase voltages, this poses a major problem.

COMPLEX FORM OF THE THREE-PHASE VOLTAGES

The voltages of a three phase power system in a noise-free
environment can be represented in the discrete time form as

va(k) = Va(k)cos(ωk△T + ϕ)

vb(k) = Vb(k)cos(ωk△T + ϕ− 2π

3
)

vc(k) = Vc(k)cos(ωk△T + ϕ+
2π

3
) (1)

where Va(k), Vb(k), Vc(k) are the peak values of each phase
voltage component at time instant k, △T sampling interval, ϕ
phase of the fundamental component, ω = 2πf angular fre-
quency of the voltage signal, and f system frequency. Direct
estimation of power quality parameters from the individual
phase voltages in (1) is not practical, and it is difficult to select
the most representative phase since six different phase volt-
ages exist in a three phase system when also line-to-line volt-
ages are considered. Solutions operating simultaneously on

all the three phases employ invertible transformations which
cast the original system to a physically meaningful transform
domain.

To this end, Clarke’s transform employs the orthogonal
αβ0 transformation matrix [8] to map the time-dependent
three-phase voltage into a zero-sequence v0 and the direct-
and quadrature-axis components, vα and vβ , as v0(k)

vα(k)
vβ(k)

=

√
2

3


√
2
2

√
2
2

√
2
2

1 − 1
2 −1

2

0
√
3
2 −

√
3
2


 va(k)

vb(k)
vc(k)

 (2)

For a balanced system, Va(k) = Vb(k) = Vc(k) and thus
v0(k) = 0, vα(k) = Acos(ωk∆T + ϕ), and vβ(k) =
Acos(ωk∆T + ϕ + π

2 ), where A = const, and vα(k) and
vβ(k) are the orthogonal coordinates of a point whose po-
sition is time variant at a rate proportional to the system
frequency. In practice, only vα and vβ are used and the
resulting complex voltage signal v(k) is given by [11]

v(k) = vα(k) + ȷvβ(k) (3)

There is no loss in information in using this representation,
and this voltage also serves as the desired signal in adaptive
frequency estimation and can be calculated iteratively from

v(k + 1) = Aeȷ(ω(k+1)∆T+ϕ) = v(k)eȷω∆T (4)

COMPLEX CIRCULARITY AND WIDELY LINEAR MODELS

We shall now introduce a general framework for both the
strictly linear and widely linear complex-valued frequency
estimation, based on the complex voltage in (4).

Complex circularity is a property of probability density
functions (pdf), indicating that the distributions of a complex
random variable x and its rotation eȷφx are equal for any rota-
tion angle φ. Real world complex-valued signals are typically
noncircular, and for their description we usually consider sec-
ond order circularity (properness) and second order noncir-
cularity (improperness), notions related to the powers in the
real and imaginary part (for an overview see [20]).
Widely linear modelling. Consider a real-valued conditional
mean squared error (MSE) estimator

ŷ = E[y|x] (5)

which estimates the signal y in terms of another vector valued
observation x. For zero mean, jointly normal y and x, the
optimal solution is the linear estimator given by

ŷ = xTh (6)

where h = [h1, . . . , hL]
T is a vector of fixed filter coeffi-

cients, x = [x1, ..., xL]
T the regressor vector, and (·)T the

vector transpose operator.



In the standard, strictly linear estimation in the complex
domain, it is assumed that we can use the same form

ŷ = ŷr + ȷŷi = xTh (7)

where ȷ =
√
−1 and subscripts r and i denote respectively the

real and imaginary parts of a complex variable. Since both
the real and imaginary parts of complex variables are real,
ŷ = E[yr|xr, xi] + ȷE[yi|xr, xi]. Substitute xr = (x + x∗)/2
and xi = (x − x∗)/2ȷ to arrive at

ŷ = E[yr|x, x∗] + ȷE[yi|x, x∗] = E[y|x, x∗] (8)

giving the widely linear estimator for complex valued data

ŷ = hTx+ gTx∗ = xTh+ xHg = xTwa (9)

where h and g are complex-valued coefficient vectors. In
practice, this estimator uses a regressor vector produced by
concatenating the input vector x with its conjugate x∗, to give
an augmented input vector xa = [xT , xH ]T , and similarly the
augmented coefficient vector wa = [hT , gT ]T .
Augmented complex statistics. The 2L×2L augmented co-
variance matrix, corresponding to the widely linear model in
(9), now becomes [21, 22, 20]

Ca
xx = E

[
x
x∗

] [
xHxT

]
=

[
Cxx Pxx
P∗

xx C∗
xx

]
(10)

and contains the full second order statistical information. Ob-
serve that the covariance matrix, Cxx = E[xxH ], alone does
not have sufficient degrees of freedom to explain complete
second order information, and to capture the second order
information we also need to consider the pseudocovariance
matrix, Pxx = E[xxT ]. Processes with the vanishing pseu-
docovariance, Pxx = 0, are termed second order circular (or
proper). Therefore, the widely linear estimator in (9) is op-
timal for the generality of complex signals (both proper and
improper), and simplifies into the strictly linear model in (7),
for which g = 0, for proper data.
Index of improperness. The degree of improperness can be
calculated using the circularity index, given by [23]

η =
|τx|2

σ2
x

(11)

where σ2
x = E[x(k)x∗(k)] is the variance of the signal x,

and τ2x = E[x(k)xT (k)] = E[|x2(k)|] the absolute value of
the pseudovariance of x. Note that η ∈ [0, 1], with η = 0 a
second order circular (proper) x(k), and a second order non-
circular (improper) x(k) for η > 0. Examples of circular and
noncircular doubly white noises, together with their kurtosis
values Kc, are given in Fig. 2, where the symbol ℜ(·) denotes
the real and ℑ(·) the imaginary part of a complex number. For
the assessment of noncircularity in real time we refer to [24].
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Fig. 2. Circularity plots for complex doubly white noises.
Clockwise from top left: circular Gaussian, noncircular Gaus-
sian (η = 0.81) (right), noncircular Laplacian (η = 0.81),
circular Laplacian noise. Symbol Kc denotes the kurtosis.

Widely linear autoregressive modelling. Based on (9), the
widely linear autoregressive model (WLAR) is given by

y(k) = h(k)x(k) + g(k)x∗(k) + n(k), n ∼ N (0, τ2x , σ
2
x)

Its coefficients are obtained from the widely linear Yule-
Walker equations, given by [24][

h∗

g∗

]
=

[
C P
P∗ C∗

]−1 [
c
p∗

]
(12)

The advantage of widely linear over strictly linear estimation
can be quantified by the difference between their correspond-
ing mean square errors, e2L and e2WL, given by

δe2 = e2L − e2WL ≥ 0 (13)

which is strictly positive for improper data and zero for proper
data [22, 20]. Thus, widely linear estimators have perfor-
mance advantage over their strictly linear counterparts for im-
proper data, their performances for proper data are identical.
Voltage sags and noncircularity. It is now possible to relate
complex circularity with the distribution of the αβ voltage
v(k) in (3), both in balanced and unbalanced system condi-
tions. Fig. 3 shows the amplitude distribution diagrams for a
balanced case and an unbalanced voltage sag event. When
the phase voltages exhibit dips or transients (a sag event),
Va(k), Vb(k), Vc(k) are not identical and samples of v(k) are
located on an ellipse (noncircular), whereas for a balanced
system the distribution of v(k) remains on a circle (circular).

From Fig. 3, observe that by accounting for second order
(non)circularity, it is possible in principle to identify the type
and parameters of a voltage sag within a quarter of frequency
cycle, providing a very fast indication of a system fault [25].
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Fig. 3. Circularity via the ‘real-imaginary’ (ℜ − ℑ) scatter
plot. The blue circle denoted by ‘+’ corresponds to a circular
v(k) in a balanced system (Va(k) = Vb(k) = Vc(k)) at 1−pu
(per unit). The green ellipse denoted by ‘·’ corresponds to a
noncircular v(k) stemming from an unbalanced system with
Va(k) = 1− pu, Vb(k) = 0.9− pu, and Vb(k) = 0.7− pu.

FREQUENCY ESTIMATION MODELS IN BALANCED AND
UNBALANCED THREE PHASE SYSTEMS

The current state-of-the-art is based on the αβ voltage in
(3) and the subsequent application of the stochastic gradient
based complex least mean square (CLMS) algorithm. Such
algorithms aim to minimise the instantaneous error power
J (k) = e(k)e∗(k) = |e(k)|2, using a gradient descent based
update of the filter coefficient vector w(k), in the form

w(k + 1) = w(k)− µ∇wJ (k)
CLMS
= µe(k)x∗(k) (14)

where µ is a small positive learning rate, e(k) the output error
of the filter, y(k) = xT (k)w(k) the filter output, and x(k)
the filter input vector (regressor vector).
The strictly linear CLMS model. For adaptive frequency
estimation based on the αβ voltage in (3) we only need a sin-
gle filter coefficient [10], thus all the estimators will have this
form. Upon solving (14) the CLMS based model becomes

v̂(k + 1) = w(k)v(k)

e(k) = v(k + 1)− v̂(k + 1)

w(k + 1) = w(k) + µe(k)v∗(k) (15)

where the filter weight w(k) estimates the phasor eȷω∆T in
(4), v̂(k + 1) is the estimate of v(k + 1), and the estimated
instantaneous system frequency is derived from

f̂(k) =
1

2π∆T
sin−1

(
ℑ(w(k))

)
(16)

based on the evolution of the coefficient w(k) of the strictly
linear adaptive estimator in (15).

This algorithm aims to minimise both the amplitude and
phase error, however, it is often advantageous to perform esti-
mation based on phase-only or magnitude-only information.

Geometry of learning in the complex domain. From (16),
the instantaneous system frequency estimate is obtained from
the phase in eȷω∆T, that is, in balanced conditions it is primar-
ily the phase rather than the magnitude that conveys useful in-
formation. However, in unbalanced conditions the magnitude
should also be taken into account.
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The Least Mean Magnitude Phase (LMMP) algorithm
[26], decomposes the cost function in J = e(k)e∗(k) into
the magnitude-only, Jm, and phase-only, Jp, parts as

J (d, y) = µ1Jm(d, y) + µ2Jp(d, y) = |e(k)|2 (17)

where for the standard CLMS µ1 = µ2 = µ, the teaching
signal d(k) = y(k) + e(k), and the costs

Jm =
(
|d| − |y|

)2
(18)

Jp = |∠d− ∠y|2 = 2|d||y|
(
1− cos(∠d− ∠y)

)
By weighting the terms in (18), the LMMP (shaded area)
leverages between magnitude-only and phase-only estima-
tion, and spans a whole range of algorithms, including the
standard CLMS, denoted by yclms, and the Least Mean Phase
(LMP) algorithm, ylmp [27, 13]. Figure 4 illuminates the
geometry of learning - the phase only estimate, ylmp, cor-
rects for the phase but cannot deal with magnitude changes,
whereas the magnitude only estimate, ycma, corrects only for
the magnitude and not for the phase changes.

The update of the complex LMP algorithm is given by

wlmp(k + 1) = wlmp(k) +
ȷµepe(k)v

∗(k)(
v(k)wlmp(k)

)∗ (19)

while the complex LMMP update is

wlmmp(k + 1) = wlmmp(k) + (20)
+µm

(
|v(k + 1)|sgn(v̂(k + 1))− v̂(k + 1)

)
v∗(k)

+µp

(
v(k + 1)− |v(k + 1)|sgn(v̂(k + 1))

)
v∗(k)



The ACLMS based frequency estimation. Fig. 3 shows that
in unbalanced conditions the voltage in (3) is noncircular and
is adequately modelled only by using the widely linear model
in (9), whose adaptive version is (see [25] and Appendix A)

v(k) = A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ) (21)

In other words, when the phase voltages Va(k), Vb(k), Vc(k)
are not identical, A(k) is no longer a constant, B(k) ̸= 0,
and the standard strictly linear model in (4) is not adequate.
The coefficients of the widely linear estimator can be adapted
using the Augmented CLMS (ACLMS), given by [28, 20]

v̂(k + 1) = v(k)h(k)︸ ︷︷ ︸
standard update

+ v∗(k)g(k)︸ ︷︷ ︸
conjugate update

h(k + 1) = h(k) + µe(k)v∗(k)

g(k + 1) = g(k) + µe(k)v(k) (22)

The stability of ACLMS has been investigated in [29]. From
(21) and (22), the estimate v̂(k + 1) becomes

v̂(k + 1) =
(
A(k)h(k) +B∗(k)g(k)

)
eȷ(ωk∆T+ϕ)

+
(
A∗(k)g(k) +B(k)h(k)

)
e−ȷ(ωk∆T+ϕ) (23)

Comparing the corresponding terms in (21) and (23), we have

eȷω̂∆T =
A(k)g∗(k) +B∗(k)h∗(k)

B∗(k + 1)
(24)

Using the assumption held implicitly in frequency estimation
that at two consecutive time instants, A(k + 1) ≈ A(k), and
also B(k+1) ≈ B(k), and after some algebraic manipulation
(for more detail and Matlab sources see [30]), we arrive at the
widely linear three phase system frequency estimate

f̂(k) =
1

2π∆T
sin−1

(
ℑ(h(k) + a1(k)g(k))

)
(25)

This is a widely linear extension of the standard, strictly lin-
ear, estimator in (16). When the system is balanced, v(k) is
circular, g(k) = 0, and we have the standard solution in (16).

UNBALANCED SYSTEM CONDITIONS: VOLTAGE SAGS

There are seven typical three-phase voltage sags that cause
system imbalance: four single-phase-to-ground sags and
three two-phase-to-ground sags. The phasor diagrams for the
former case, together with the associated circularity plots, are
shown in Fig. 5. Observe that apart from the symmetric Type
A voltage sag, all the other sags exhibit noncircular amplitude
distributions and the frequency drifts are thus expected to be
best modelled by widely linear models. The shape, orien-
tation and principal axes of circularity diagrams reveal the
type of sags, allowing us more degrees of freedom compared
to standard frequency estimation and enabling us to identify
a fault based on its circularity properties in as little as 1/4
of the cycle. For instance, Type C sag is noncircular and
aligned horizontally, whereas Type B sag is noncircular and
aligned vertically. Similar observations can be made for the
two-phase-to-ground faults, for more detail see [30].

Type B

Type C Type D

Type A

(a) Phasor diagram (dotted line denotes balanced operation)

−1 0 1
−1

0

1

(a) Type A
−1 0 1

−1

0

1

(b) Type B

−1 0 1

−1

0

1

(c) Type C
−1 0 1

−1

0

1

(d) Type D

(b) Circularity via a “real-imaginary” plot

Fig. 5. Unbalanced voltage sags due to single phase-to-
ground faults, for the characteristic voltage of V = 0.7.

WIDELY LINEAR FREQUENCY ESTIMATION

The following situations occur frequently in practical fre-
quency estimation and will be addressed in this section.

• Frequency estimation in the presence of voltage sags,
where the system frequency remains at 50Hz, but due
to system imbalance the frequency estimate is wrong;

• Frequency rise and decay, due to a mismatch between
production and consumption (microgids, islands);

• Harmonics caused by certain loads and imbalance of
active and reactive power (renewables, microgrids).

Simulations were performed for signals sampled at 5kHz, and
the step-size was µ = 0.01 in all simulations.
Balanced system operation. In the first set of simulations,
the power system was balanced and was operating at the sys-
tem frequency f = 50Hz, and all the considered algorithms
were initialised with f0 = 50.5Hz. Table 1 shows that the
strictly linear CLMS and LMP and the widely linear ACLMS
had similar performances in terms of the error percentage over
a range of SNR. The phase-only LMP outperformed CLMS,
as it was designed to deal effectively with the phase informa-
tion and the frequency is estimated from the phase in (16).



Table 1. Error % for the estimation in balanced systems
SNR [dB] 50 40 30 20 10

CLMS 0.047% 0.17% 0.53% 2.73% 14.73%
LMP 0.032% 0.11% 0.33% 1.05% 13.72%

ACLMS 0.048% 0.17% 0.53% 1.83% 13.21%

Frequency estimation: voltage sags. Fig. 6 compares per-
formances of the strictly linear CLMS, LMP and LMMP for
a system with Type C voltage sag (with characteristic com-
plex voltage V = 0.7) occuring at t = 0.05 s, having a 12%
voltage drop and 9.5◦ phase angle offset for phases vb and vc.
This led to an unbalanced system with a degree of noncircu-
larity η = 0.3501 (see Fig. 5). The LMMP algorithm showed
smallest variation whereas the phase error based LMP algo-
rithm was the only unbiased algorithm - none was optimal for
the noncircular unbalanced three-phase system.
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Fig. 6. Frequency estimation for Type C voltage sag.

Frequency estimation: harmonics and cascaded events.
Fig. 7 illustrates the behaviour of ACLMS, LMP, and CLMS
for a system undergoing a sequence of harmful events. At
t = 0.05 s, a Type C sag occurred, with around a 12% volt-
age drop and 9.5◦ phase angle offset in phases vb and vc,
leading to an unbalanced system with a degree of circular-
ity η = 0.3501 (see Fig. 5). There was an inevitable os-
cillation error at twice of the system frequency for both the
CLMS and LMP based estimation due to the undermodelling
(see Appendix B). The phase error based LMP algorithm did
not exhibit the bias encountered by CLMS, whereas the ad-
vantage of the widely linear ACLMS based estimator in accu-
rately estimating the frequency can be seen after convergence
(after about 100ms). Then at t = 0.25 s, a Type D sag took
place exhibiting a 30% voltage drop for phase va and 6.6%
voltage drop for both the phases vb and vc, together with a
8◦ phase angle offset, exhibiting the degree of noncircularity
of η = 0.3433. Again, the widely linear ACLMS gave an
unbiased performance, whereas the CLMS was not adequate.
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Fig. 7. Frequency estimation for a cascade of harmful events:
strictly linear CLMS and LMP vs. widely linear ACLMS.

Finally, after t = 0.4 s, a 10% of the third harmonic and 10% of
the fifth harmonic of the fundamental frequency were added
into the unbalanced system suffering from the same Type D
sag to give the circularity index of η = 0.3920. The ACLMS
achieved significantly better performance with a smaller os-
cillation error than the strictly linear CLMS and LMP.
Frequency estimation: supply-demand mismatch. Fig.
8 illustrates the superior performance of the widely linear
ACLMS over CLMS for a power system experiencing fre-
quency rise and decay due to the G-L mismatch. In the
simulations, the 50 Hz frequency estimate was offset by a
Type D unbalanced three-phase voltage sag, and the fre-
quency rose and decayed at a rate of 5 Hz/sec. The ACLMS
algorithm followed the true system frequency very closely af-
ter an initialisation period of around 0.05 sec, whereas CLMS
produced a biased estimate with large error variance.
Theoretical performance bounds (CRLB). Bias in fre-
quency estimation is particularly damaging, as it indicates
non-existing shifts in frequency (causing alarms), while high
estimator variance indicates that the algorithm used was
not adequate. Fig. 9 shows statistical bias and variance
analysis for all the algorithms considered, conducted in a
noisy environment by averaging 1000 independent trials. The
Cramer-Rao lower bound (CRLB) was calculated for both the
frequency as the only unknown parameter (approximate [25])
and for a general case (frequency, voltages); for more detail
see [30]. Compared with CLMS and LMMP, the phase error
based LMP achieved smaller bias; the strictly linear CLMS,
LMP, and LMMP were inadequate for unbalanced system
conditions (noncircular), their bias was not affected by the
noise level. The widely linear ACLMS-based estimator was
asymptotically unbiased for high SNR. Similar conclusions
can be drawn for the estimation variance - the widely linear
ACLMS was consistent, approaching the CRLBs to within 9
dB in the high SNR region (see Fig 9b).
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Fig. 8. Estimation for a mismatch between generation and
consumption (frequency rise and decay). The widely linear
ACLMS approached the correct value to within 5% in 50ms.

Frequency estimation: real world voltage sags. Real-world
three phase voltage sags were recorded at a 110/20/10kV
transformer station, using the ABB REL 531 numerical line
distance protection terminal monitoring ‘phase-to-ground’
voltages. The device was set to record whenever the phase
voltage value dropped below 90% of its nominal value for
longer than 20 ms, and was sampling at 1 kHz; the voltage
waveforms, normalised with respect to their nominal peak
values, are shown in Fig. 11(a) and (c). In the first case study,
a problem in phase vc occurred (short circuit with earth),
causing a 94% voltage drop, while the voltages in phases va
and vb kept their nominal values to give a degree of noncir-
cularity of η = 0.8081 (see Fig. 10). In the second case
study, at around t = 0.07 sec, phase vb experienced a shortcut
with earth, resulting in a 65.32% voltage sag and 79.25%
and 21.92% voltage swells in phases va and vc respectively,
to give a degree of noncircularity of η = 0.2151 (see Fig.
10). Fig. 11 shows that CLMS was not adequate for the
unbalanced situation, while ACLMS recovered quickly and
was able to accurately estimate the true system frequency at
50Hz, not indicating false alarms.

SUMMARY AND FUTURE OPPORTUNITIES

We have shown that widely linear estimators of instantaneous
system frequency are second-order optimal for both balanced
and unbalanced three-phase systems. Unlike the strictly lin-
ear Complex Least Mean Square (CLMS), Least Mean Phase
(LMP), and Least Mean Magnitude Phase (LMMP), the
widely linear augmented CLMS (ACLMS) has been shown
to yield unbiased minimum variance solutions, whereby the
performance gain over standard methods increases with the
degree of system imbalance (noncircularity of the phasor).
This perfectly suits smart grid applications, where severe fre-
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(a) Bias: the widely linear ACLMS is asymptotically unbiased, followed by LMP
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Fig. 9. Bias and variance of the widely linear ACLMS,
and the strictly linear CLMS, LMP and LMMP compared to
CRLB (curves averaged over 1000 independent trials).

quency variations are expected due to the on-off switching of
subgrids, dual roles of generators and loads (e.g. PEVs), and
false alarms due to voltage sags. Widely linear estimation in
this context provides new opportunities, whereby a rigorous
account of improperness (second order noncircularity) of the
complex αβ voltage makes it possible to implement fast,
accurate, robust, and statistically enhanced solutions for:

• Rapid frequency trackers at the distribution level,
which are envisaged to become part of many future
appliances - smart loads must be able to detect rapid
frequency changes and take appropriate action;

• Identification and classification of system faults from
voltage dips, based on their different degrees of noncir-
cularity and shapes of circularity diagrams (see Figs. 5
and 10). It is critical that the frequency estimator re-
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Fig. 11. Frequency estimation for real-world voltage sags.

mains accurate during the fault, in order not to send
false alarms, and to indicate whether the system expe-
rienced one-, two-, or three-phase fault;

• Rate of change frequency trackers, which are crucial for
the operation of microgrids and in events of islanding;

• Loss-of-mains detection in real time, as a drop in fre-
quency may indicate loss of a generator, and a rise in
frequency loss of a load. The way renewables react to

these situations depends on the type of voltage sag - the
widely linear methodology enables their identification
and tracking at the sub-cycle scale (less than 20 ms);

• Optimal operation of microgrids - in a cooperative dis-
tributed mode we not only must bring in new generators
and dynamically interconnect the grid, but also remove
low priority loads when power quality deteriorates;

• Low voltage ride through (LVRD) and transient stability
routines to cater for the bidirectional flow of active and
reactive power when renewables are profusely used;

• More degrees of freedom in scheduling routines, since
small scale renewables are a must-take resource, but are
intrinsically intermittent - causing system imbalance.
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APPENDIX A

For the three-phase system in (1) and (2), the complex-valued
v(k) = vα(k)+ȷvβ(k) comprises the standard part (left hand
term) and the conjugate part (right hand term), that is

v(k) = A(k)eȷ(ωk△T+ϕ) +B(k)e−ȷ(ωk△T+ϕ) (26)

where

A(k) =

√
6(Va(k) + Vb(k) + Vc(k))

6

B(k) =

√
6(2Va(k)− Vb(k)− Vc(k))

12
−

√
2(Vb(k)− Vc(k))

4
ȷ

Fig. 3 shows that v(k) is second order circular with a rotation
invariant probability density function in the complex plane if
B(k) = 0 and A(k) is a constant. This can be achieved only
when Va(k), Vb(k), Vc(k) are identical at each time instant,
when (26) simplifies into (4). In unbalanced conditions, A(k)
is real-valued, but B(k) ̸= 0 and can be complex-valued, re-
sulting in a second order noncircular (improper) v(k).

APPENDIX B

This Appendix gives theoretical justification for the subopti-
mality of standard, strictly linear, complex adaptive filters for
frequency estimation in unbalanced three-phase voltage sys-
tems. In any unbalanced condition, expression (21) stands,
and the estimator v̂(k + 1) obtained using strictly adaptive
algorithms, such as CLMS, LMMP, LMP, can be expressed
as

v̂(k + 1) =
(
A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)

)
w(k)



In the steady state, v̂(k + 1) ≈ v(k + 1), resulting in

w(k) =
A(k + 1)eȷ(ωk∆T+ϕ)ejω∆T

A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)

+
B(k + 1)e−ȷ(ωk∆T+ϕ)e−jω∆T

A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)
(27)

Under the standard assumptions that A(k + 1) ≈ A(k), and
B(k+1) ≈ B(k), we have (since sampling frequency >> f)

w(k) = e−jω∆T +
ejω∆T − e−jω∆T

1 + B(k)
A(k)e

−2ȷ(ωk∆T+ϕ)
(28)

where B(k)
A(k) is an unknown parameter and w(k) = w(k +

1
2f∆T ) is periodic. In (16), the function sin−1 is monotonic,
resulting in periodic oscillations of the estimated frequency
f̂(k). The cycle frequency due to undermodelling is 2f when
using standard, strictly linear, adaptive filters in unbalanced
power systems, whereas for balanced power systems B(k) =
0, and the standard linear estimate in (16) is adequate.
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