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Augmented MVDR Spectrum-Based Frequency
Estimation for Unbalanced Power Systems
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Abstract—A robust technique for online estimation of the
fundamental frequency of both balanced and unbalanced three-
phase power systems is proposed. This is achieved by extending
the recently introduced iterative frequency estimation method
based on minimum variance distortionless response (MVDR)
spectrum [1], in order to enhance its robustness in unbalanced
system conditions. The approach is made optimal for the second-
order noncircular nature of the unbalanced complex-valued
system voltage, by combining the iterative MVDR (I-MVDR)
frequency estimation and the complete available (augmented)
second-order statistics. Such an approach makes it possible to
eliminate the otherwise unavoidable estimation bias in unbal-
anced system conditions. It is also shown that the proposed
method approaches the theoretical Cramer–Rao lower bound
(CRLB), which we rigorously derive for the vector parameter
in power systems. Simulations over a range of unbalanced
conditions, including voltage sags, the presence of higher-order
harmonics, and for real-world unbalanced power systems, sup-
port the analysis.

Index Terms—Complex noncircularity, frequency estimation,
minimum variance distortionless response (MVDR) spectrum,
unbalanced power systems, pseudocovariance.

I. Introduction

FREQUENCY is an important power quality parameter
that is only allowed to vary within a small predefined

range, a consequence of the dynamic unbalance between the
generation and the load [2]. Its accurate estimation is essential,
as maintaining the nominal frequency value is a prerequisite
for both the stability of the grid and for normal operation of
electrical devices [3]. Frequency is also a key parameter in the
control of distributed grids, where it can be used to determine
the harmonic contents of currents drawn by nonlinear loads.

To deal with these issues, research into fast and accurate
frequency estimation has attracted much attention. Architec-
ture and algorithms for this purpose include zero crossing
techniques [4], phase-locked loops (PLL) [5], least-squares
based adaptive filters [6], recursive Newton-type estimation
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[7], extended complex Kalman filters (ECKF) [8], adaptive
notch filters [9] and demodulation methods [10]. Popular
solutions also include eigenvalue methods, such as multiple
signal classification (MUSIC) [11] and estimation via rota-
tional invariance (ESPRIT) techniques [12]; however, their
computational burden limits their use in practical applications.

According to the International Standard on the measurement
of power quality parameters, IEC 61000-4-30, the frequency
in multiphase 50/60 Hz ac power supply systems is measured
from a single reference channel [13]. To characterize power
system frequency from multiphase measurements, while en-
hancing robustness, it is convenient to exploit the complex-
valued system voltage, obtained from the Clarke’s αβ trans-
formation [10]; this way all available information among the
three-phase reference channels is used, at a cost of increasing
computational complexity [6], [8], [10].

Most frequency estimation algorithms in the complex do-
main C work well under normal balanced power system
conditions. There also exist algorithms that operate well in
noisy environments and in the presence of frequency deviation,
however, vast majority suffer from performance degradation
under unbalanced voltage conditions. These occur when dif-
ferent amplitudes within the three-phase voltage (voltage sag)
in one or two phases is taking place, resulting in the negative
sequence and an unavoidable estimation error, represented
by oscillations at double the system frequency. One solution
is to employ the symmetrical component transformation to
extract the positive sequence, so that the standard phase angle
extraction algorithms designed for frequency estimation in
balanced power systems can be directly applied [14], [15]. We
have recently proposed a scheme that exploits the noncircular
statistical nature of the complex-valued system voltage under
the unbalanced power systems to extend frequency estimation
algorithms into a more general form, which caters for the
system imbalance [16], [17]. It was shown that under unbal-
anced conditions, the Clarke’s transformed system voltage is
second-order noncircular (improper), for which the probability
density function is not rotation invariant [18]. For such a
noncircular voltage v, the powers in the real and imaginary part
are different; in this case, the covariance matrix C = E[vvH ]
does not contain all the necessary information, and the pseu-
docovariance matrix P = E[vvT ] should also be considered to
describe complete second-order statistical behavior [19]–[21].

Recently, an accurateand fast frequency estimation algo-
rithm has been proposed in [1], based on the minimum vari-
ance distortionless response (MVDR) spectrum that generates
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sharp peaks in the spectrum, where frequency components
are located [22], [23]. This algorithm employs a gradient
descent-based least mean square (LMS) adaptive scheme to
iteratively estimate the fundamental system frequency. By
maximizing the MVDR spectrum, a superior performance of
this scheme over the ECKF and the demodulation algorithms
was verified. However, despite its efficiency and an elegant
analysis framework, iterative MVDR (I-MVDR) frequency
estimation can operate only in balanced system conditions.

In this paper, we extend the frequency estimation method
based on the MVDR spectrum so as to make it possible to
operate with enhanced accuracy, robustness, and no bias, under
unbalanced system conditions. To deal with the noncircularity
of unbalanced voltages, the proposed augmented I-MVDR
(AI-MVDR) algorithm incorporates the pseudocovariance ma-
trix into its iterative frequency identification, thus offering
more degrees of freedom in estimation, and a unifying es-
timator for both balanced and unbalanced conditions. We first
prove that for unbalanced power systems the original I-MVDR
algorithm renders biased frequency estimates, owing to its use
of the strictly linear model that cannot cater for the noncircu-
larity of the complex system voltage. To solve this problem,
compensation terms are introduced based on the consideration
of both the covariance and pseudocovariance matrix, and are
incorporated into the iterative gradient optimization to give
unbiased and minimum variance performance. For rigor, the
performance of the proposed AI-MVDR algorithm is verified
against the theoretical Cramer–Rao lower bound (CRLB), and
our recently introduced adaptive unbiased frequency estimator,
called the augmented complex LMS (ACLMS), [16], [17], on
both synthetic and real world case studies.

II. Unbalanced Three-Phase Power Systems

The three-phase voltages of a power system in a noise-free
environment can be represented in a discrete time form as

va(k) = Vacos(�k�T + φ)

vb(k) = Vbcos(�k�T + φ − 2π

3
)

vc(k) = Vccos(�k�T + φ +
2π

3
) (1)

where Va, Vb, Vc are the peak values of each fundamental
voltage component at time instant k, �T = 1

fs
is the sampling

interval, where fs is the sampling frequency, φ is the initial
phase, and � = 2πfo is angular frequency of the voltage signal,
with fo being the system frequency. The three-phase voltage
is routinely transformed by the orthogonal αβ0 transforma-
tion matrix [10] into a zero-sequence v0 and the direct and
quadrature-axis components, vα and vβ, as⎡
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The factor
√

2/3 ensures that the system power is invari-
ant under this transformation. In balanced system condi-
tions, Va, Vb, Vc are identical, giving v0(k) = 0, vα(k) =
Acos(�k�T + φ) and vβ(k) = Asin(�k�T + φ). In practice,

normally, only the vα and vβ parts are used to form the
complex system voltage v(k), given by [10]

v(k) = vα(k) + jvβ(k) = Aej(�k�T+φ) = Aej(ωok+φ) (3)

where ωo = ��T is the normalised angular frequency, and
vα(k) and vβ(k) represent the orthogonal coordinates of a point
whose position is time variant at a rate proportional to the
system frequency. For a constant fs, the probability density
function of v(k) is rotation invariant, since both v and vejθ

have the same distribution for any real θ. This means that
v(k) is second order circular (proper) and with equal powers
in vα and vβ, thus the covariance matrix C can fully describe
the second order statistics [18] while the pseudocovariance
matrix P = E[vvT ] = 0 vanishes. However, when the three-
phase power system deviates from its nominal condition, such
as under different levels of dips or transients, Va, Vb, Vc are
not identical, and the complex voltage from (3) becomes [16]

v(k) = Aej(ωok+φ) + Be−j(ωok+φ) (4)

where

A =

√
6(Va + Vb + Vc)

6

B =

√
6(2Va − Vb − Vc)

12
− j

√
2(Vb − Vc)

4
. (5)

This expression is theoretically accurate for both the balanced
and unbalanced conditions, and should be used in time-varying
environments. For balanced system conditions, Va = Vb = Vc

and B = 0, whereas for unbalanced conditions, B �= 0,
causing the samples of v(k) generated from (4) to deviate
from the circle with constant radius, making the distribution of
v(k) rotation dependent (noncircular). This, in turn, produces
nonzero values of the pseudocovariance matrix, while the co-
variance matrix C does not have sufficient degrees of freedom
to describe full second-order statistics. Hence, current, strictly
linear frequency trackers in C, which are based solely on the
covariance matrix are suboptimal for unbalanced systems, and
the pseudocovariance matrix should also be considered to use
all the available statistics [20].

III. The Augmented Iterative MVDR Frequency

Estimation for Unbalanced Power Systems

A. Iterative MVDR (I-MVDR) Algorithm

The MVDR spectrum is designed to exhibit sharp peaks at
the location of desired frequency components, defined as

SMVDR(ω) =
1

sH (ω)C−1s(ω)
(6)

where C is the covariance matrix of the complex system
voltage v(k), while the vector of complex exponentials

s(ω) = [1, e−jω, . . . , e−j(K−1)ω]T (7)

is also termed the frequency scanning vector, and K is the
dimension of the square covariance matrix C. When the fun-
damental component ω of the frequency scanning vector is the
same as one of the frequency components that are contained
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in the input signal (and reflected in the covariance matrix),
the MVDR estimator in (6) returns the power associated with
the frequency component in hand. However, in the presence
of noise, when the power of each frequency component is
larger than the noise power, the denominator of (6) has several
local minima for every angular frequency ω. Physically, each
local minimum is associated with the angular frequency of one
of the frequency components present, and the local minimum
that has the smallest absolute value indicates the fundamental
angular frequency. When only the fundamental frequency
component is present and contaminated with additive white
noise, the dimension of the covariance matrix C is set to
K = 2; this is sufficient for frequency estimation when only
the fundamental frequency is considered [22], [23].

The I-MVDR in [1] is based on minimizing the cost function

J(k) = sH
(
ω(k)

)
C−1s

(
ω(k)

)
(8)

using a LMS stochastic gradient [24],

ω(k + 1) = ω(k) − μ∇ωJ(k) (9)

where ω(k) denotes the estimated angular frequency at time
instant k, and μ is the step-size which controls the tradeoff
between convergence speed and the estimation accuracy. For
convenience, denote the inverse of the covariance matrix by1

C−1 =

[
ic11 ic12

ic21 ic22

]
(10)

In this way, the cost function can be further simplified as

J(k) =
[
1 ejω(k)

] [
ic11 ic12

ic21 ic22

] [
1

e−jω(k)

]

= ic11 + ic12e
−jω(k) + ic21e

jω(k) + ic22 (11)

The covariance matrix is Hermitian, ic21 = ic∗
12, thus

∇ωJ(k) =
∂J(k)

∂ω(k)
= −jic12e

−jω(k) + jic∗
12e

jω(k)

= −j
(�(ic12) + j�(ic12)

)(
cos(ω(k)) − jsin(ω(k))

)
+ j

(�(ic12) − j�(ic12)
)(

cos(ω(k)) + jsin(ω(k))
)

= −2
(
sin(ω(k))�(ic12) − cos(ω(k))�(ic12)

)
(12)

where �(·) and �(·) denote the real and imaginary part
operators. The I-MVDR algorithm is then given by 2

ω(k+1) = ω(k)+μ
(
sin(ω(k))�(ic12)−cos(ω(k))�(ic12)

)
(13)

B. Suboptimality of I-MVDR for Unbalanced Systems

In the steady state, after the algorithm in (13) converges,
the gradient ∇ω(k)J(k) has values close to zero, so that

sin(ω(k))�(ic12) − cos(ω(k))�(ic12) ≈ 0 (14)

which can be rewritten as

tan(ω(k)) =
sin(ω(k))

cos(ω(k))
=

�(ic12)

�(ic12)
(15)

1The elements of the inverse covariance matrix are denoted by “i”, for
instance ic11 is the first element of the inverse covariance matrix.

2The factor 2 in (12) is absorbed into the step-size μ in (13).

and thus the estimated frequency

ω(k) = tan−1

( �(ic12)

�(ic12)

)
(16)

Consider again the 2 × 2 covariance matrix of v(k), given by

C =

[
E[v(k)v∗(k)] E[v(k)v∗(k − 1)]

E[v(k − 1)v∗(k)] E[v(k − 1)v∗(k − 1)]

]
(17)

For unbalanced systems, when v(k) is given in (4), and
E[v(k)v∗(k)] = E[(Aej(ωok+φ)+Be−j(ωok+φ))(Ae−j(ωok+φ)+B∗ej(ωok+φ))]

= E[|A|2+ABe−2j(ωok+φ)+AB∗e2j(ωok+φ) + |B|2]

= |A|2+|B|2 (18)

and similarly

E[v(k)v∗(k − 1)] = |A|2ejωo + |B|2e−jωo (19)

E[v(k − 1)v∗(k)] = |A|2e−jωo + |B|2ejωo (20)

E[v(k − 1)v∗(k − 1)] = |A|2 + |B|2 (21)

to give

C =

[ |A|2 + |B|2 |A|2ejωo + |B|2e−jωo

|A|2e−jωo + |B|2ejωo |A|2 + |B|2
]

(22)

The variance of the complex voltage σ2
v is c11 = σ2

v = |A|2 +
|B|2, while

C−1 =

[ |A|2 + |B|2 −(|A|2ejωo + |B|2e−jωo )
−(|A|2e−jωo + |B|2ejωo ) |A|2 + |B|2

]

(|A|2 + |B|2)2 − (|A|2ejωo + |B|2e−jωo )(|A|2e−jωo + |B|2ejωo )

=

[ |A|2 + |B|2 −(|A|2ejωo + |B|2e−jωo )
−(|A|2e−jωo + |B|2ejωo ) |A|2 + |B|2

]

2|A|2|B|2(1 − cos(2ωo))
(23)

, and therefore,

ic12 = − |A|2ejωo + |B|2e−jωo

2|A|2|B|2(1 − cos(2ωo))

= − (|A|2 + |B|2)cos(ωo) + j(|A|2 − |B|2)sin(ωo)

2|A|2|B|2(1 − cos(2ωo))
(24)

From (16), the steady-state I-MVDR frequency estimator is

ω(k) = tan−1

( �(ic12)

�(ic12)

)

= tan−1

( |A|2 − |B|2
|A|2 + |B|2 tan(ωo)

)

= tan−1

(
1 − r

1 + r
tan(ωo)

)
(25)

where r = |B|2
|A|2 is the system imbalance coefficient, a ratio

between the squared envelops of the positive and negative
sequences in (4). In unbalanced conditions, B �= 0, and
1−r
1+r

< 1, thus causing an unavoidable bias (under-estimation)
in the estimation of the true system frequency ωo, when using
the iterative frequency estimation scheme in (13).

C. The Proposed AI-MVDR Algorithm

To deal with the bias in the MVDR spectrum-based fre-
quency estimation, we can employ the widely linear model-
based MVDR method, introduced in [25], which is optimal
for both complex-valued circular and noncircular signals.
However, its computational complexity is relatively high due
to the matrix inverse of the augmented covariance matrix Ca =
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[C, P
... P∗, C∗], which is four times the size of the standard

covariance matrix. We here introduce a more computationally
efficient method to derive the unbiased frequency estimator,
by considering a modification of (25). Since physically, the
estimation bias arises from the term 1−r

1+r
, a natural solution

would be to use all the available statistical information to
calculate this ratio, and to incorporate its inverse into the
estimator in (13), so that an unbiased estimator becomes

ω(k + 1) = ω(k) + μ
(
sin(ω(k))�(ic12)(1 + r)

− cos(ω(k))�(ic12)(1 − r)
)

(26)

from which the system frequency can be calculated as

f (k) =
fs

2π
ω(k) (27)

However, this is not straightforward, as the covariance matrix
in (22) does not have sufficient degrees of freedom to explain
r, as it only provides a relationship between two unknown
parameters A and B, that is

|A|2 + |B|2 = c11 (28)

and not the actual values of |A| and |B|. To solve (28), we
employ another relationship between A and B, contained in
the pseudocovariance matrix, defined as [19], [20]

P =

[
E[v(k)v(k)] E[v(k − 1)v(k)]

E[v(k)v(k − 1)] E[v(k − 1)v(k − 1)]

]

=

[
2AB 2ABcos(ωo)

2ABcos(ωo) 2AB

]
(29)

From the first element in P, p11, we obtain B = p11

2A
, and

|B|2 =
|p11|2
4|A|2 (30)

Substituting (30) for (28), we have

4|A|4 − 4c11|A|2 + |p11|2 = 0 (31)

for which the two roots can be found as

|A|2 =
c11 ±

√
|c11|2 − |p11|2

2
(32)

while from (28), we have

|B|2 =
c11 ∓

√
|c11|2 − |p11|2

2
(33)

From (5), it is easy to prove that |A|2 is always larger than
|B|2, and we thus arrive at

|A|2 =
c11 +

√
|c11|2 − |p11|2

2

|B|2 =
c11 −

√
|c11|2 − |p11|2

2

r =
c11 −

√
|c11|2 − |p11|2

c11 +
√

|c11|2 − |p11|2
(34)

IV. Implementation Issues of the Proposed

AI-MVDR Algorithm

Some implementation issues of the proposed AI-MVDR al-
gorithm are next discussed, illustrating that it operates robustly
for real-world measurements.

A. Empirical Estimation of the Covariance and Pseudocovari-
ance Matrix and Matrix Inversion

Theoretically, the proposed algorithm converges to the ac-
tual system frequency; however, in the real world, the exact
calculation of the gradient is not possible. It is calculated
from the estimated covariance and pseudocovariance matrices,
based upon the data matrix V(k), defined as [23]

V(k) = [v(k) v(k − 1) . . . v(k − M + 1)]

=

⎡
⎢⎣

v(k) . . . v(k − M + 1)
...

. . .
...

v(n − K + 1) . . . v(n − M − K + 2)]

⎤
⎥⎦ (35)

where M is the number of observations. The covariance
C(k) and pseudocovariance matrix P(k), can be recursively
estimated as

C(k) = V(k)VH (k)

= C(k − 1) − v(k − M)vH (k − M)

M
+

v(k)vH (k)

M
(36)

P(k) = V(k)VT (k)

= P(k − 1) − v(k − M)vT (k − M)

M
+

v(k)vT (k)

M
(37)

while the inverse covariance matrix C−1(k) can be estimated
using the matrix inversion lemma [26] as:

C̃
−1

(k) = C−1(k − 1)

+
C−1(k − 1)v(k − M)vH (k − M)C−1(k − 1)

M − vH (k − M)C−1(k − 1)v(k − M)
(38)

C−1(k) = C̃
−1

(k) − C̃
−1

(k)v(k)vH (k)C̃
−1

(k)

M + vH (k)C̃
−1

(k)v(k)
(39)

B. Stability Analysis of the AI-MVDR Algorithm

The recursion in (26) is based on the LMS stochastic
gradient scheme, where the step-size μ plays a crucial role
in the stability of such an estimator. To ensure satisfactory
performance of the proposed algorithm, its theoretical stability
with respect to μ is next analyzed.

Note that theoretically, c11 = |A|2 + |B|2 = σ2
v and p11 =

2AB = ρ2
v , hence (26) can be expressed as

ω(k + 1) = ω(k) + μ
2σ2

v

√
σ4

v − |ρ2
v|2

σ2
v +

√
σ4

v − |ρ2
v|2

(
sin(ωo)cos(ω(k))

− cos(ωo)sin(ω(k))
)

= ω(k) + μ
2σ2

v

√
σ4

v − |ρ2
v|2

σ2
v +

√
σ4

v − |ρ2
v|2

sin(ωo − ω(k)) (40)

Define the frequency estimation error as ω̃(k) = ωo − ω(k), to
have

ω̃(k + 1) = ω̃(k) − μ
2σ2

v

√
σ4

v − |ρ2
v|2

σ2
v +

√
σ4

v − |ρ2
v|2

sin(ω̃(k)) (41)

Using the first term of the Taylor series expansion of sin(ω̃(k)),
that is, ω̃(k), the condition for convergence in the mean, so
that |ω̃(k + 1)| < |ω̃(k)| as k → ∞, becomes

−1 < 1 − μ
2σ2

v

√
σ4

v − |ρ2
v|2

σ2
v +

√
σ4

v − |ρ2
v|2

< 1 (42)
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TABLE I

The Implementation of the Proposed AI-MVDR Algorithm

initialise

C(0), P(0), C−1(0), C̃
−1

(0), fo, fs, etc.
iterate
1) Update the covariance matrix C(k) using (36)
2) Update the pseudocovariance matrix P(k) using (37)

3) Update C−1(k) using (38) and (39)
4) Calculate the imbalance coefficient r(k) in (34)
5) Predict ω(k + 1), using the proposed scheme in (26)

6) Predict system frequency using f (k + 1) = ω(k+1)fs

2π

TABLE II

The Computational Complexity of Each Step Required by the

AI-MVDR Algorithm Per Iteration

Steps No. of real multiplications No. of real additions

1 10K2 6K2

2 12K2 8K2

3 2K3 + 14K2 2K3 + 12K2 − 8K + 2
4/5/6 4/5/1 4/4/0

Total 2K3 + 36K2 + 10 2K3 + 26K2 − 8K + 10

thus imposing a bound on the step-size in the form

0 < μ <
σ2

v +
√

σ4
v − |ρ2

v|2
σ2

v

√
σ4

v − |ρ2
v|2

(43)

It is also possible to relate the bound on the step-size μ in
(43) to the amplitudes of the phase voltages, Va, Vb, and Vc.
Since σ2

v = |A|2 + |B|2 and ρ2
v = 2AB, we obtain

0 < μ <
2|A|2

|A|4 − |B|4 (44)

since from (5), A and B can be related to Va, Vb, and Vc.

C. The Implementation and Computational Complexity of AI-
MVDR

The steps, required for the implementation of the proposed
AI-MVDR algorithm, are summarized in Table I. At each
time instant k, the implementation of the original I-MVDR
algorithm proposed in [1] requires Steps 3, 5, and 6, as it
implicitly assumes that the imbalance coefficient r(k) = 0. To
compare the computational complexities of both algorithms,
we here analyze the numbers of multiplications and additions
required in each implementation step. Since in some steps real-
valued operations are involved, the computation complexities
are measured in terms of the real-valued multiplications and
additions,3 and are summarized in Table II. Although the
proposed algorithm requires additional Steps 1, 2, and 4
to calculate the update of the imbalance coefficient r(k) as
compared with the original algorithm, their computational
complexities are comparable, O(K3), as the calculation is
dominated by the matrix inversion operation.

3Note that one complex multiplication requires four real multiplications and
two real additions, while one complex addition requires two real additions.
We here consider only the compulsory operations, as the constants, such as
1
M

in Step 1 and fs

2π
in Step 6, can be predefined in the initialization stage.

Fig. 1. Geometric view of the noncircularity of the complex-valued system
voltage v(k) via the ‘real-imaginary’ scatter plots. The horizontal axis rep-
resents the voltage magnitude of the real part of v(k), whereas the vertical
axis represents that of the imaginary part of v(k). (a) Type B sag. (b) Type C
sag, together with amplitude modulation and noise. (c) Type C sag, together
with higher-order harmonics. (d) A real-world unbalanced power system. The
complex-valued voltage v(k) rotates anticlockwise as the time evolves.

V. Simulations

We considered frequency estimation under synthetic unbal-
anced voltage sag conditions and for a real world unbalanced
power system. A voltage sag is referred to as a short-duration
(up to a few seconds) reduction in voltage magnitude, whereby
the three phase angles can also deviate from their nominal
values. Voltage sags are mainly triggered by a short-term
increase in load current, that may occur due to motor starting,
transformer inrush, short circuits, or fast reclosing of circuit
breakers [27]. Despite their short duration, such events can
cause serious problems for a wide range of equipment and
also cause difficulties in standard phase angle calculation, to-
gether with oscillatory estimation artifacts at twice the system
frequency; this affects conventional PLL and strictly linear
adaptive filters [16], [28]. It is worth mentioning that a system
unbalance usually refers to steady state phenomena, including
unequal voltage magnitudes at the fundamental system fre-
quency (under-voltages and over-voltages), fundamental phase
angle deviations, and unequal levels of harmonic distortion
between the phases over a whole electrical grid for deliver-
ing electricity from suppliers to consumers, including power
stations, transmission lines, transformers, power loads in the
lower voltage consumption ends [29]. Voltage sags usually
refer to unbalanced events happening at the lower voltage
levels [27]. However, due to the well-defined mathematical
modeling of voltage sags, for the illustration purpose, voltage
sags were used in the synthetic simulation part related to the
unbalanced power systems.

To quantify the characteristics of voltage sags, we here
follow the phasor representation used in [27], and select two
typical sags, known as Type B and Type C sags, for the
illustration purpose. Type B sags result from a single-phase
fault, causing one-phase voltage to drop while the two others
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Fig. 2. Frequency estimation under an unbalanced Type B voltage sag
condition. The initialized frequency of both algorithms was set to 50.1 Hz,
with the true system frequency at 50 Hz.

remain unchanged. For a single fault happening on phase va

Va = γ, Vb = −1

2
− j

√
3

2
, and Vc = −1

2
+

j
√

3

2
(45)

whereas in a Type C voltage sag, two-phase voltages (assum-
ing the phases vb and vc) move toward each other, whereas
the third phase remains unchanged, that is

Va = 1, Vb = −1

2
− j

√
3γ

2
, and Vc = −1

2
+

j
√

3γ

2
(46)

To illustrate the suitability of proposed AI-MVDR algo-
rithm based on (26), a comparative performance analysis
was performed against the original I-MVDR and the recently
developed adaptive unbiased ACLMS algorithm [16], which
requires 22 real multiplications and 18 real additions per
iteration. Simulations were conducted in the MATLAB pro-
gramming environment at a sampling frequency of 2000 Hz.
The observation length was set to M = 20, and was used to
estimate both the covariance and pseudocovariance matrix. In
a power system with system frequency fixed at 50 Hz, 20
observations sampled at 2000 Hz correspond to 10 ms, which
is a half-cycle of the 50 Hz voltage signal.

For the voltage sag modeling, we set the characteristic
voltage to γ = 0.7. The degree of noncircularity in unbalanced
conditions was quantified using the noncircularity index η [20]

η =
|ρ2

v|
σ2

v

(47)

The values of the noncircularity index η ∈ [0, 1), with η =
0 indicating that the complex-valued system voltage v(k) is
perfectly circular (balanced conditions), otherwise indicating
a second-order noncircular v(k) (unbalanced conditions).

A. Synthetic Benchmark Cases

In the first set of simulations, the simulated power system
experienced a single-phase fault caused by a Type B voltage
sag. The noncircularity index of the complex-valued system
voltage v(k) obtained by the αβ transform of the three-phase
voltage was η = 0.2194. A geometric view of the distribution

Fig. 3. Frequency estimation performance of the proposed AI-MVDR algo-
rithm for a range of step sizes μ, under a noisy unbalanced Type B voltage
sag condition with SNR = 40 dB. The initialized frequency was set to be 50.1
Hz, with the true system frequency at 50 Hz.

via ‘real-imaginary’ plot is shown in Fig. 1(a), which
illustrates the noncircular nature of the distribution of v(k).
This, in turn, indicates that the pseudocovariance matrix
of v(k) is not zero, and therefore the system imbalance
coefficient r(k) should be considered within the proposed AI-
MVDR iterative frequency estimation scheme, to compensate
for the effect of system imbalance on frequency estimation
(under-estimation). The frequency estimation using both
I-MVDR and AI-MVDR algorithms with μ = 0.2 on the
unbalanced power system is illustrated in Fig. 2. The proposed
AI-MVDR algorithm was able to accurately estimate the true
system frequency, whereas in the steady state the I-MVDR
algorithm gave biased estimation, which conforms with
theoretical performance analysis in (25).

In the next stage, the statistical performances of all the
considered algorithms were tested in a noisy environment,
based on the estimation bias and variance analysis. To that end,
we first investigated the role of the step size μ in the MVDR
spectrum-based algorithms. Note that in (9), the MVDR al-
gorithms employ a LMS-type stochastic gradient approach to
recursively minimize the convex cost function in (8). The role
of the step size μ in stochastic gradient approaches is well
studied in adaptive filters literature, as μ controls the tradeoff
between the convergence speed and steady state estimation
accuracy [20], [23]. A smaller step size leads to better steady-
state performance and slower convergence, whereas a higher
step-size results in faster convergence but larger steady-state
estimation error. The adaptation and tracking performance
of the MVDR spectrum-based algorithm is affected by the
choice of μ in the same way. Fig. 3 illustrates the frequency
estimation performance (in terms of the mean square error
(MSE) in dB) of the proposed AI-MVDR algorithm for a range
of step sizes μ, under a noisy unbalanced Type B voltage sag
condition with SNR = 40 dB. As expected, a smaller step size
enables the proposed algorithm to track the system frequency
more accurately (lower MSE) but at a cost of slower initial
convergence. Ideally, we desire an algorithm for which the
speed of convergence is fast and the steady-state estimation
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Fig. 4. Bias and variance analysis against the theoretical Cramer-Rao lower bound (CRLB) at different SNRs from 20 to 50 dB, obtained by averaging 1000
independent trials. (a) Estimation bias. (b) Estimation variance.

Fig. 5. Frequency estimation by ACLMS and AI-MVDR algorithms under
Type C unbalanced voltage sag, together with voltage amplitude modulation.

error is small; this can be achieved by on-line adjusting the
step size according to the input dynamics. We refer to [30],
[31] for more detail.

We next performed the variance analysis by assessing
the proposed algorithm against the theoretical CRLB, which
characterizes the variance of an unbiased optimal frequency
estimator based on the model in (4), contaminated by zero
mean complex-valued doubly white circular Gaussian noise
with variance σ2

n (Appendix A for the derivation). Fig. 4 illus-
trates the statistical bias and variance performance of all the
considered algorithms, when applied to frequency estimation
in an unbalanced system and against different levels of noise,
where an optimal step size μ = 0.0005 was used in the
MVDR spectrum-based algorithms. The results were obtained
by averaging 1000 independent trials. The bias analysis, shown
in Fig. 4(a), illustrates the unbiased property of the augmented
ACLMS and the proposed AI-MVDR estimators that can
be observed in the high SNR region, whereas due to the
submodeling, I-MVDR always produced a biased estimate,
which supports the theoretical analysis in (25). Also, observe
that the bias error of I-MVDR algorithm was almost unaffected

Fig. 6. Frequency estimation by ACLMS and AI-MVDR algorithms under
Type C unbalanced voltage sag, together with frequency modulation.

by the level of noise. This can be explained by the fact that,
compared with noise, the unavoidable theoretical bias resulting
from the system imbalance within the gradient update, as
shown in (25), was a major part of the estimation bias. In
the variance analysis, as shown in Fig. 4(b), the AI-MVDR
algorithm achieved the best performance among the algorithms
considered, approaching the theoretical CRLB at high SNR.

In the next set of simulations, the performance under a
more complex Type C voltage sag condition was assessed.
This unbalanced power system first experienced a slow voltage
amplitude modulation (AM) at 1 Hz, where Va(k) = 1 +
0.05sin(2πk�T), Vb(k) = 1 + 0.1sin(2πk�T), and Vc(k) = 1 +
0.15sin(2πk�T). Circular noise was added next, at SNR = 50
dB, so that the resulting v(k) was noncircular with a degree of
noncircularity η = 0.34, as shown in Fig. 1(b). Fig. 5 shows the
tracking performance of the proposed AI-MVDR algorithm,
with μ = 0.2, illustrating a very small estimation error with
a maximum of 0.01 Hz frequency deviation, whereas the
ACLMS suffered from large oscillations.

Next, frequency tracking ability of the proposed algorithm
was considered. The unbalanced power system experienced a
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Fig. 7. Frequency estimation by all the algorithms under Type C unbalanced
voltage sag, together with higher-order harmonics. (a) The waveforms of the
three-phase voltage, which were distorted by 20% 3rd, 10% 5th, and 10% 7th
harmonics. (b) Estimation performance.

combined sinusoid variations, described by

f (t) =

⎧⎨
⎩

50 + sin(8π(t − 0.5))+
0.8sin(64π(t − 0.5)), 0.5s ≤ t < 0.75s
50, elsewhere

(48)

Fig. 6 illustrates the frequency tracking performances of the
AI-MVDR and ACLMS algorithms. Although both algorithms
had similar response times, the proposed AI-MVDR algorithm
(with μ=0.2) tracked the frequency dynamics more accurately.

Next, to access the impact of higher-order harmonics on the
performance of all the frequency estimators, the unbalanced
system under Type C voltage sag was distorted by 20%
3rd, 10% 5th, and 10% 7th harmonics of the fundamental
frequency. The waveforms of this highly distorted three-
phase voltage are shown in Fig. 7(a), and their noncircular
distributions in Fig. 1(c). From Fig. 7(b), observe that the
frequency estimated by the ACLMS algorithm was subject to
an oscillatory steady-state, whereas the proposed AI-MVDR
algorithm was immune to higher-order harmonics distortions.
This robustness is inherited from MVDR spectrum estimation,
which together with the use of the augmented second-order
statistics ensures excellent performance with a negligible bias
at 0.0056 Hz.

B. Real World Case Study

In the last set of simulations, a real-world power system
was considered. The three-phase voltage was recorded at a
110/20/10 kV transformer station. The REL 531 numerical
line distant protection terminal, produced by ABB Ltd., was
installed in the station and was used to monitor changes in the
three “phase-ground” voltages. The measured three “phase-
ground” voltages with a system frequency around 50 Hz were
sampled at 1 kHz and were normalized with respect to their
normal peak voltage values. As shown in Fig. 8(a), phase vb

Fig. 8. Frequency estimation by all the algorithms for the real-world un-
balanced three-phase voltage. (a) The waveforms of the three-phase voltage.
(b) Frequency estimation for all algorithms.

first experienced an earth fault, causing a 56.5% voltage drop,
and 55.3% and 29.5% voltage swells in phases va and vc

respectively, giving a degree of noncircularity of η = 0.0636,
with the noncircularity diagram of the system voltage v(k)
shown in Fig. 1(d). At around 0.24 s, the unbalanced voltage
recovered to its nominal value. The frequency tracking ca-
pabilities for all the algorithms are shown in Fig. 8(b), and a
system frequency at 50.008 Hz was suggested by the proposed
AI-MVDR algorithm after its convergence. Conforming with
the analysis in (25), the I-MVDR algorithm failed to deal
with the unbalanced condition, giving biased estimation. When
the system became balanced, both the proposed AI-MVDR
and original I-MVDR algorithms converged. Compared with
the unbiased adaptive ACLMS algorithm, the AI-MVDR
achieved enhanced frequency estimation with no obvious
oscillations in the steady state, and a smoother transient
performance.

VI. Conclusion

We introduced a robust AI-MVDR technique for online
estimation of the fundamental frequency of unbalanced three-
phase power systems. This was achieved by combining a
recently proposed iterative frequency estimation method based
on the MVDR spectrum, and the full (augmented) second-
order statistics within the complex-valued system voltage. In
this way, the proposed method inherits the advantages of the
original approach, such as high estimation accuracy and fast
convergence, and owing to the use of augmented complex
statistics, it was a perfect match for frequency estimation in
unbalanced system conditions, where the original approach
suffered from unavoidable estimation bias. The AI-MVDR was
more robust to noise, higher-order harmonics, and exhibited
enhanced frequency tracking, compared to the recently intro-
duced unbiased widely linear ACLMS estimation algorithm,
as illustrated over a range of simulations.
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Appendix A. The vector Cramer-Rao Lower Bound

for frequency estimation in unbalanced systems

For a set of unknown parameters, θ = [θ1, . . . , θi, ..., θL]T ,
a joint probability density function (PDF) is p(v; θ), where v
is a vector of observations. Then, according to the CRLB, the
variance of any unbiased estimator θ̂i must satisfy [32], [33]

var(θ̂i) ≥ I−1
ii (θ), i = 1, . . . , L (49)

where I(θ) is the L × L Fisher information matrix, defined as

Iij(θ) = −E

[
∂2ln(p(v; θ))

∂θi∂θj

]
i, j = 1, . . . , L (50)

while I−1
ii (θ) is the [i, i] element of the inverse of the Fisher

information matrix. To evaluate (50), the true value of the
unknown vector parameter θ is used.

The complex-valued voltage v(k) obtained from noisy un-
balanced three-phase power systems obeys a widely linear
model v(k) =Aej(2πfk�T+φ) + Be−j(2πfk�T+φ) + n(k), where n(k)
is a complex-valued doubly white Gaussian noise ∼ N (0, σ2

n),
where n = nr + jni, σ2

nr
= σ2

ni
= σ2

n

2 , and4 nr ⊥ ni. The real and
imaginary components, vr(k) and vi(k), are then

v(k) = Acos(2πfk�T + φ) + Brcos(2πfk�T + φ) + Bisin(2πfk�T + φ) + nr(k)︸ ︷︷ ︸
vr (k)

+ j (Asin(2πfk�T + φ) + Bicos(2πfk�T + φ) − Brsin(2πfk�T + φ) + ni(k))︸ ︷︷ ︸
vi (k)

(51)

while Br and Bi are the real and imaginary parts of B.
When parameters in (51) are unknown, the vector parameter

θ = [f, A, Br, Bi, φ]T , and the likelihood function [33]

ln (p(v; θ)) = −Kln(πσ2
n ) − 1

σ2
n

K∑
k=1

((
vr(k) − mr(k)

)2
+
(

vi(k) − mi(k)
)2
)

(52)

Thus, the Fisher information matrix is calculated from

Iθiθj
=

2

σ2
n

K∑
k=1

(
∂mr

∂θi

∂mr

∂θj

+
∂mi

∂θi

∂mi

∂θj

)
(53)

while for ∂mr(k)
∂θ

=
[

∂mr(k)
∂f

, ∂mr(k)
∂A

, ∂mr(k)
∂Br

, ∂mr(k)
∂Bi

, ∂mr(k)
∂φ

]T

∂mr(k)

∂θ
=

⎡
⎢⎢⎢⎢⎣

2πk�T
(

Bicos(2πfk�T + φ) − (A + Br)sin(2πfk�T + φ)
)

cos(2πfk�T + φ)
cos(2πfk�T + φ)
sin(2πfk�T + φ)

Bicos(2πfk�T + φ) − (A + Br)sin(2πfk�T + φ)

⎤
⎥⎥⎥⎥⎦ (54)

and for ∂mi(k)
∂θ

=
[

∂mi(k)
∂f

, ∂mi(k)
∂A

, ∂mi(k)
∂Br

, ∂mi(k)
∂Bi

, ∂mi(k)
∂φ

]T

∂mi(k)

∂θ
=

⎡
⎢⎢⎢⎢⎣

2πk�T
(

(A − Br)cos(2πfk�T + φ) − Bisin(2πfk�T + φ)
)

sin(2πfk�T + φ)
−sin(2πfk�T + φ)
cos(2πfk�T + φ)

(A − Br)cos(2πfk�T + φ) − Bisin(2πfk�T + φ)

⎤
⎥⎥⎥⎥⎦ (55)

4The independence between nr and ni and their equal powers can be
achieved by assuming the three-phase channels contaminated by independent

and identically distributed zero-mean Gaussian noises with variance σ2
n
2 .

Therefore,

I11=
2

σ2
n

K∑
k=1

(2πk�T)2
(

A2+B2
r +B2

i − 2A(Brcos(4πfk�T + 2φ) + Bisin(4πfk�T + 2φ))
)

I12 = I21 =
2

σ2
n

K∑
k=1

2πk�T
(

Bicos(4πfk�T + 2φ) − Brsin(4πfk�T + 2φ)
)

I13 = I31 =
2

σ2
n

K∑
k=1

2πk�T
(

Bi − Asin(4πfk�T + 2φ)
)

I14 = I41 =
2

σ2
n

K∑
k=1

2πk�T
(

Acos(4πfk�T + 2φ) − Br

)

I15 = I51 =
2

σ2
n

K∑
k=1

2πk�T
(

A2+B2
r +B2

i −2A(Brcos(4πfk�T+2φ)+Bisin(4πfk�T+2φ))
)

I22 = I33 = I44 =
2K

σ2
n

, I34 = I43 = 0

I23 = I32 =
2

σ2
n

K∑
k=1

cos(4πfk�T + 2φ), I24 = I42 =
2

σ2
n

K∑
k=1

sin(4πfk�T + 2φ)

I25 = I52 =
2

σ2
n

K∑
k=1

(
Bicos(4πfk�T + 2φ) − Brsin(4πfk�T + 2φ)

)

I35 = I53 =
2

σ2
n

K∑
k=1

(
− Asin(4πfk�T + 2φ) + Bicos(4πfk�T + 2φ)

)

I45 = I54 =
2

σ2
n

K∑
k=1

(
Acos(4πfk�T + 2φ) − Br

)

I55 =
2

σ2
n

K∑
k=1

(
A2+B2

r +B2
i −2A(Brcos(4πfk�T+2φ)+Bisin(4πfk�T+2φ))

)
(56)

This Fisher information matrix also accounts for the complex
exponential with the negative frequency to model the noncircu-
larity of the unbalanced system voltage. From (50), a general
CRLB for unbiased frequency estimator on unbalanced three-
phase power system can be obtained as

var(f̂ ) ≥ I−1
11 (57)

where I−1
11 is the first element in the inverse of Fisher infor-

mation matrix, which was evaluated empirically in Fig. 4(b).
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