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Abstract—A quaternion widely linear (QWL) model for quaternion
valued mean-squared-error (MSE) estimation is proposed. The aug-
mented statistics are first introduced into the field of quaternions, and
it is demonstrated that this allows for capturing the complete second
order statistics available. The QWL model is next incorporated into the
Quaternion Least Mean Square (QLMS) algorithm to yield the widely
linear QLMS (WL-QLMS). This allows for a unified approach to adapt ive
filtering of both Q-proper and Q-improper signals, leading to improved
accuracies compared to the QLMS class of algorithms. Simulations on
both benchmark and real world data support the analysis.

Index Terms—Quaternion adaptive filtering, Q-properness, quaternion
second order noncircularity, Wiener model, quadrivariate processes,
quaternion LMS (QLMS), widely linear model, widely linear QLMS.

I. I NTRODUCTION

Standard techniques employed in multichannel statistical signal
processing typically do not fully cater for the ‘coupled’ nature of
the available information within the channels. Thus, most practical
approaches operate based on channelwise processing, which is not
optimal for general multivariate signals (where data channels are
typically correlated). On the other hand, the quaternion domainH

allows for the direct modelling of three- and four-dimensional signals,
and its algebra naturally accounts for the coupling between the signal
components.

The use of quaternions is rapidly gaining in popularity, as for
instance, many multivariate problems based on vector sensors (mo-
tion body sensors, seismics, wind modelling) can be cast into the
quaternion domain. The recent resurgence of quaternion valued
signal processing stems from the potential advantages that special
properties of quaternion algebra offer over real valued vector algebra
in multivariate modelling. Applications of quaternions include those
in vector sensing [1], machine learning [2], and adaptive filters [3].

Recent advances in complex valued signal processing have been
based on the widely linear model proposed by Picinbono [4]. This
model, together with the corresponding augmented complex statistics,
has been successfully used to design enhanced algorithms in commu-
nications [5] [6] and adaptive filters [7]. These studies have shown
that widely linear modelling and the associated augmented statistics
offer theoretical and practical advantages over the standard complex
models, and are applicable to the generality of complex signals, both
circular and noncircular.

Models suitable for the processing of signals with rotation depen-
dent distribution (noncircular) are lacking in the quaternion domain,
and their development has recently attracted significant research effort
[3]. Current second order algorithms operate based on only the
quaternion valued covariance [1]–[3] and thus do not fully exploit the
available statistical information. Advances in this direction include
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the work by Vakhania, who defined the concept ofQ-properness as
the invariance of the distribution of a quaternion valued variable under
some specific rotations around the angle ofπ/2 [8]. Amblard and Le
Bihan relaxed the conditions ofQ-properness to an arbitrary axis and
angle of rotationϕ, that is,q , eνϕq [9] for any pure unit quaternion
ν (whose real part vanishes); where symbol, denotes equality in
terms of probability density function (pdf).

Although these results provide an initial insight into the processing
of general quaternionic signals, they are not straightforward to apply
in the context of adaptive filtering applications. To this end, we first
propose the quaternion widely linear model, specifically designed for
the unified modelling of the generality of quaternion signals, bothQ-
proper andQ-improper. The benefits of such an approach are shown
to be analogous to the benefits that the augmented statistics provides
for complex valued data [7]. Next, the QWL model is incorporated
into the quaternion LMS [3] to yield the widely linear QLMS (WL-
QLMS), and its theoretical and practical advantages are demonstrated
through analysis and simulations.

II. PROPERTIES OFQUATERNION RANDOM VECTORS

A. Quaternion Algebra

The quaternion domain, a non-commutative extension of the com-
plex domain, provides a natural framework for the processing of
three- and four-dimensional signals. A quaternion variableq ∈ H

comprises a real partℜ{·} and a vector-part, also known as a pure
quaternionℑ{·}, consisting of three imaginary components, and can
be expressed as:

q = ℜ{q} + ℑ{q}

= ℜ{q} + ıℑi{q} + ℑj{q} + κℑk{q}

= qa + ıqb + qc + κqd ∈ H (1)

The relationship between the orthogonal unit vectors,ı, , κ are
given by

ı = κ κ = ı κı = 

ıκ = ı2 = 2 = κ2 = − 1 (2)

Given q1, q2 ∈ H, the noncommutative quaternion product is com-
puted as

q1q2 = ℜ{q1q2} + ℑ{q1q2}

where ℜ{q1q2} = q1,aq2,a + q1,bq2,b + q1,cq2,c + q1,dq2,d

ℑ{q1q2} = q1,aℑ{q2} + q2,aℑ{q1} + ℑ{q1} × ℑ{q2} (3)

where the symbol “×” denotes the vector product.

B. Quaternion Involutions

Given a complex numberz = za + ızb, its real and imaginary part
can be extracted asza = 1

2
(z + z∗) andzb = 1

2ı
(z − z∗). However,

such convenient manipulation is not possible in the quaternion do-
main. To circumvent this problem, the three perpendicular quaternion
involutions (self-inverse mappings) given by

qı = −ıqı = qa + ıqb − qc − κqd

q = −q = qa − ıqb + qc − κqd

qκ = −κqκ = qa − ıqb − qc + κqd (4)
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can be employed, and the four components of the quaternion variable
q can now be computed as [10]

qa =
1

2
(q + q∗) qb =

1

2ı
(q − qı∗)

qc =
1

2
(q − q∗) qd =

1

2κ
(q − qκ∗) (5)

The quaternion conjugate operation(·)∗ is also an involution and
can be expressed as a linear function of the three perpendicular
involutions, that is

q∗ =
1

2
(qı + q + qκ − q) (6)

III. QUATERNION STATISTICS

Picinbono demonstrated that the complete description of the second
order statistics inC can be achieved, provided the real valued bivari-
ate covariance matrices can be calculated from their complex valued
counterparts (see pp. 118-119 [11]). Following on this result, we next
show that the complete second order statistical description inH is ob-
tained when the real valued quadrivariate covariances are expressed in
terms of their quaternion valued counterparts, as shown in Appendix
IX-A. However, unlike the complex domainC, where for this purpose
it is sufficient to combine the complex vectorz and its conjugatez∗

into the augmented complex vectorza = [zT zH ]T , in the quaternion
domain, we also need to consider the involutions (4). We can therefore
build an augmented quaternion vector, comprising of any four of the
five quantities{q, q∗, qı, q, qκ} or their conjugates. One convenient
augmented basis isqa = {q, q∗, qı∗, q∗}, and will be used in
this work. Then, the augmented vectorqa = [qT qH qıH qH ]T

contains all the necessary second order statistical information and its
augmented covariance matrix is given by

Ca
q = E{qa

q
aH} =







Cq Pq Pı
q P

q

PH
q C̃q C̃qqı C̃qq

PıH
q C̃H

qqı C̃qı C̃qıq

PH
q C̃H

qq C̃H
qıq C̃q







(7)

The submatrices in (7) are calculated according to

Cα = E{αα
H} C̃α = E{α∗

α
T }

C̃αβ = E{α∗

β
T } Pα = E{αα

T } α, β ∈ {q,qı,q}

We refer to C̃α as the quasicovariance and̃Cαβ as the cross-
quasicovariance matrices. Unlike in the complex case [4], the non-
commutativity of the quaternion product results inCα 6= C̃∗

α .

A. Circularity in H and Q-properness

For a quaternion valued variable to be second order circular (orQ-
proper), its probability distribution should be rotation-invariant with
respect to the six pairs of axes:{1, ı}, {1, }, {1, κ}, {ı, }, {κ, }
and {κ, ı}, where ‘1’ represents the real axis andı, , κ denote the
corresponding imaginary axes. In other words, aQ-proper quaternion
random variable should satisfy the following properties [8]

P1: E{q2

δ} = E{q2

ǫ} = σ2 ∀ δ, ǫ = a, b, c, d

P2: E{qδqǫ} = 0 ∀ δ, ǫ = a, b, c, d andδ 6= ǫ

P3: E{qq} = −2E{q2

δ} = −2σ2 ∀ δ = a, b, c, d

P4: E{|q|2} = 4E{q2

δ} = 4σ2 ∀ δ = a, b, c, d (8)

The first property, P1, states that all the four-signal components
of a quaternion valued variable have equal variances. The property
P2 implies that the components ofq are not correlated. Property
P3 suggests that the pseudocovariance matrix ofQ-proper signals
does not vanish, in contrast to the complex case. Finally, the fourth

property states that the power of a quaternion variable is a sum of
the powers of the signal components. Observe that properties P1 and
P2 imply properties P3 and P4.

B. Augmented Statistics of Q-proper variables

Notice thatQ-properness also implies that the quaternion vectorq

is uncorrelated with the vector involutionsqı, q, qκ, that is1,

E{qq
ıH} = 0 E{qq

H} = 0 E{qq
κH} = 0 (9)

This simplifies the structure of the augmented covariance matrixCa
q

of a Q-proper random vector, as

Ca
q =







Cq Pq Pı
q P

q

Pq Cq 0 0

Pı
q 0 Cq 0

P
q 0 0 Cq







= 2σ2







2I − I I I

− I 2I 0 0

I 0 2I 0

I 0 0 2I







(10)
that is, the cross-quasicovariance matricesC̃αβ all vanish.

IV. T HE QUATERNION WIDELY L INEAR MODEL

To account for the complete second order statistics of quaternion
valued signals in mean-squared error (MSE) estimation, we need to
introduce a filtering model corresponding to the widely linear model
in the complex case [4]. Consider the MSE estimator of a signaly in
terms of another observationx, that is, ŷ = E[y|x]. For zero mean,
jointly normal realy andx, the solution is

ŷ = h
T
x (11)

In the quaternion domain, however, the real estimator (11) applies to
each component (the real and the three imaginary parts) of quaternion
variables, that is

ŷγ = E[yγ |xa, xb, xc, xd], γ ∈ {a, b, c, d}

and thus

ŷ = E[ya|xa, xb, xc, xd] + ıE[yb|xa, xb, xc, xd]

+E[yc|xa, xb, xc, xd] + κE[yd|xa, xb, xc, xd] (12)

Upon employing the identities (5), it is clear that the quaternion
estimator can also be expressed2 as

ŷ = E[y|x, x∗, xı∗, x∗] + ıE[yı|x, x∗, xı∗, x∗]

+E[y|x, x∗, xı∗, x∗] + κE[yκ|x, x∗, xı∗, x∗] (13)

and thus arrive at the widely linear estimator for general quaternion
signals

y = h
H
x + g

H
x
∗ + u

H
x

ı∗ + v
H
x

∗ = w
aH

x
a (14)

where wa = [hT gT uT vT ]T and xa = [x xH xıH xH ]T .
Following on the proposed quaternion widely linear model, the
Wiener solution is now derived as the optimal Mean Square Estimator
(MSE). Consider the standard real valued quadratic cost function, that
is,

J = E{ee∗} = E{[d − y][d∗ − y∗]}

= E{dd∗} + E{yy∗} − E{yd∗} − E{dy∗} (15)

1Similarly, for a complex valued random vectorz, C-properness means
that z is uncorrelated withz∗ in the ‘complex sense’, sinceE{z(z∗)H} =
E{zzT } = 0, for more detail see [7].

2Any other augmented basis other than{x, x∗, xı∗, x∗} can be used, as
explained in the Section III.
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The derivative of the cost function (15) can be expressed as (for full
derivation, see Appendix IX-B)

∇waJ = E

{
(
∇way

)
y∗ + y

(
∇way∗

)
−

(
∇way

)
d∗ − d

(
∇way∗

)
}

= E

{

4[xay∗ − x
ad∗]

}

︸ ︷︷ ︸

I

+ E

{

2[d(n)xa − yxa]

}

︸ ︷︷ ︸

II

(16)

To obtain the Wiener solution, the expectations of I and II in (16) are
set to zero. In the complex domain, we can sum up the terms I and
II in (16); however, due to the noncommutativity of the quaternion
product, we need to consider the terms in (16) individually, giving
the solution3

I : wo = E{xa
x

aH}−1E{xad∗} (17)

II : wo = E{xa∗
x

aH}−1E{xa∗d∗} (18)

The first condition for the Wiener solution (17) requires the inversion
of the augmented covarianceCa

x = E{xaxaH}. On the other hand,
the second condition (18) also depends on the conjugate of pseudo-
covariance matrix of the augmented vectorxa, which conforms with
the observation in [3] that the quaternion domain accounts inherently
for the information contained in pseudocovariance.

V. THE WIDELY L INEAR QUATERNION LEAST MEAN SQUARE

ALGORITHM

We now extend some recent results in quaternion adaptive filtering
[3], and employ the quaternion widely linear model (14) within the
stochastic gradient adaptive filtering framework inH, to propose
the Widely Linear Quaternion Least Mean Square (WL-QLMS)
adaptive filtering algorithm. Within the stochastic gradient descent
optimisation, the gradient of the instantaneous cost function (15) is

∇waJ (n) = e(n)
(
∇wae∗(n)

)
+

(
∇wae(n)

)
e∗(n)

= 2e(n)xa(n) − 4xa(n)e∗(n) (19)

Notice that due to the non-commutativity of the quaternion product,
the two error gradient terms in (19) need to be treated sepa-
rately. Based on the generic stochastic gradient update∆wa =
−µ∇waJ (n), the update of the weight vector of the WL-QLMS
algorithm can be obtained as4

w
a(n + 1) = w

a(n) + µ
(
2xa(n)e∗(n) − e(n)xa(n)

)
(20)

where the scaling factor of two has been absorbed in the stepsizeµ.
Given y(n) = wH(n)x(n), observe the same form of the update in
(20) as that within the QLMS in [3]. Although AQLMS outperformed
QLMS, as shown in [3] in the context ofQ-improper signals, its
second order information is derived from only the covariance and the
pseudocovariance, and is therefore still suboptimal forQ-improper
data, as it cannot model the information contained in matrices
such asCqc (see Appendix IX-A). Also, observe that the real-
valued multichannel LMS does not exploit the interchannel cross-
correlation in the same elegant and intuitive way as the WL-QLMS.
For more details, see p. 132 of [12] and the performance comparisons
with AQLMS in [3]. Finally, a convergence analysis of WL-QLMS
algorithm is provided in Appendix IX-C, and the upper bound on the
stepsize is found to be0 < µ < 2/λmax, whereλmax denotes the
maximum right eigenvalue ofCα

x = 2Ca
x + Pa∗

x .

3Similarly to complex-valued case [7], there are several equivalent formu-
lations for the quaternion-valued Wiener solution. For instance, if the filter
output is considered asy(n) = w

aT (n)xa(n) instead ofy(n) = w
aH

x
a,

an alternative solution is obtained.
4For more detail of the derivation, see [3] and the Appendix IX-B.

VI. SIMULATIONS

Three sets of simulations were conducted in anM -step ahead
prediction setting in order to comprehensively assess the performance
of the proposed WL-QLMS algorithm against QLMS and AQLMS.
The datasets used were aQ-proper synthetic AR(4) process [7], the
Q-improper four dimensional (4D) Saito’s signal [2] and real-world
4D wind field signal [3]. The quantitative performance index was the
prediction gainRp = 10 log

σ2

x

σ2
e

, whereσ2

x andσ2

e denote respectively
the estimated variances of the input and error; the filter length is
denoted byL.

1) Q-proper Autoregressive(4) Model: The autoregressive AR(4)
processx(n) = 1.79x(n − 1) − 1.85x(n − 2) + 1.27x(n − 3) −
0.41x(n− 4) was driven by quadruply white Gaussian noise, whose
real and imaginary components were uncorrelated, but had equal
variances. From Fig. 1, initially, QLMS converged faster than WL-
QLMS and AQLMS. This is because 1) it operates based on the
covarianceCx only, which is adequate to describe the complete
statistics ofQ-proper signals, due to the deterministic relationship
Cx = −Px/2 = Pı

x/2 = P
x/2; 2) QLMS has fewer filter parameters

to adapt. However, at steady state the prediction gain for all the
algorithms considered was approximately 30 dB, as they are all suited
to processQ-proper data.

2) Q-improper Four-Dimensional Saito’s Circuit [2]: Fig. 2 com-
pares the performance of the quaternion algorithms [3] over a range
of filter parameters. Conforming with the analysis in Section IV,
the WL-QLMS algorithm outperformed the QLMS and AQLMS on
the Q-improper Saito process, also exhibiting better convergence
properties (see top plot of Fig. 4), as QLMS accounts for the second
order information only from the covariance matrixCx, and the
AQLMS operates based onCx and Px; both are not adequate to
account for the complete statistics ofQ-improper signals.

3) Q-improper Wind Forecasting: The 4D quaternion dataset
comprised the 3D wind speed (North-South, East-West, and vertical
directions5) as a vector part (pure quaternion) and air temperature
as the scalar part. Fig. 3 shows that the prediction results over a
range of filter parameters are in agreement with theoretical analysis,
illustrating that WL-QLMS outperformed QLMS and AQLMS on
Q-improper nonstationary data. Fig. 4 (bottom plot) illustrates the
improved convergence properties of WL-QLMS over QLMS, due to
WL-QLMS using the complete second order statistical information
available.

VII. C ONCLUSION

We have introduced a quaternion widely linear model (QWL) for
enhanced second order estimation of general quaternionic signals. We
have demonstrated the efficacy of the QWL model, by incorporating
it into the Quaternion Least Mean Square (QLMS) algorithm [3] to
yield the widely linear QLMS (WL-QLMS) algorithm. For rigour, the
convergence analysis includes the stepsize bound and learning curves
for both second order circular and noncircular signals. Experiments
have been conducted for a range of filter parameters and dataset,
illustrating the WL-QLMS outperforming other algorithms of the
kind.
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IX. A PPENDIX

A. Complete Second Order Statistics

The real valued correlation matrices of single componentsqa, qb,
qc and qd of the quaternion random vectorq can be expressed in
terms of the quaternion valued covariance matrices as

Cqa =
1

2
ℜ{Cq + Pq} Cqb

=
1

2
ℜ{Cq − Pı

q}

Cqc =
1

2
ℜ{Cq − P

q} Cqd
= ℜ{Cq} −

(

Cqa + Cqb
+ Cqc

)

Cqbqa =
1

2
ℑi{Cq + Pq} Cqcqa =

1

2
ℑj{Cq + Pq}

Cqdqa =
1

2
ℑk{Cq + Pq} Cqcqb

=
1

2
ℑk{Cq − Pı

q}

Cqdqc =
1

2
ℑi{Cq − P

q} Cqdqb
= −

1

2
ℑj{Cq − Pκ

q} (21)

B. Derivation of the Stochastic Gradients

To calculate the derivatives of the outputy(n) and its conjugate
with respect to the augmented weight vector, the termswaH(n)x(n)
andxaH(n)w need to be examined. Consider the first term in (14)
hHx and its conjugatexHh. The partial derivatives of the output
y(n) = waH(n)x(n) with respect toh are

∂y

∂ha

= xa + ıxb + xc + κxd
∂y∗

∂ha

= xa − ıxb − xc − κxd

ı
∂y

∂hb

= xa + ıxb + xc + κxd ı
∂y∗

∂hb

= −xa + ıxb − xc − κxd


∂y

∂hc

= xa + ıxb + xc + κxd 
∂y∗

∂hc

= −xa − ıxb + xc − κxd

κ
∂y

∂hd

= xa + ıxb + xc + κxd κ
∂y∗

∂hd

= −xa − ıxb − xc + κxd (22)

Therefore, ∂y

∂h
= ∂y

∂ha
+ ı ∂y

∂hb
+  ∂y

∂hc
+ κ ∂y

∂hd
= 4x and ∂y∗

∂h
=

−2x. Similarly, the derivatives of the termsgHx∗, uHxı∗, vHx∗

and their conjugates in (14) can also be computed respectively as
∂y

∂g
= 4x∗, ∂y

∂u
= 4xı∗, ∂y

∂v
= 4x∗; ∂y∗

∂g
= −2x∗, ∂y∗

∂u
=

−2xı∗, and ∂y∗

∂v
= −2x∗. As a result, the augmented quaternion

gradients can be expressed as∂y

∂wa = 4xa and ∂y∗

∂wa = −2xa.

C. Convergence Analysis

To factor out the conjugate errore∗(n) on the right hand side, we
start by replacinge(n)xa(n) = xa∗(n)e∗(n) − 2ℑ{xa∗(n)e∗(n)}
into (20) to yield

w(n+1) = w(n)+µ

(
[
2xa(n)+x

a∗(n)
]
e∗(n)−2ℑ{xa∗(n)e∗(n)}

)

(23)
Sincee(n) = −[w(n)−wo]

Hxa(n) = −vH(n)xa(n) [with wo as
the Wiener solution], (23) becomes

v(n + 1) = v(n) − µ

[
(
2E

{
x

a(n)xaH(n)
}

−E
{
x

a∗(n)xaH(n)
})

v(n)

+2ℑ

{

E
{
x

a∗(n)xaH(n)
}
v(n)

}]

v(n + 1) = v(n) − µ

[
(
2Ca

x − Pa∗
u

)
v(n) + 2ℑ

{
Pa∗

x v(n)
}
]

(24)

The upper bound on the stepsize can then be approximated, by
considering the imaginary partℑ{Pa∗

x v(n)} as a full quaternion,
to give v(n + 1) ≈ v(n) − µ[2Ca

x + Pa∗
x ]v(n). By letting Cα

x =
2Ca

x+Pa∗
x and taking the right eigenvalue decomposition ofCα

x , with
its maximum eigenvalueλmax, we can obtain the stepsize bound for
WL-QLMS as 0 < µ < 2

λmax
, a generic form which also applies

to QLMS and AQLMS. For instance, in the case of AQLMS, the
augmented covariance matrixCa

x degenerates into its2 × 2 top-left
submatrix in (7), whereasCa

x becomesCx for QLMS. This implies
a larger stepsize is required for these algorithms to converge at the
same rate as WL-QLMS in the case ofQ-improper signals (when
every element ofCa

x does not vanish).
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Fig. 1. Learning curves of WL-QLMS, QLMS and AQLMS on the prediction
of the Q-proper AR(4) processx(n) = 1.79x(n − 1) − 1.85x(n − 2) +
1.27x(n − 3) − 0.41x(n − 4).
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Fig. 2. The performance of WL-QLMS , QLMS and AQLMS on the
prediction of 4D Saito’s process.
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Fig. 3. The performance of WL-QLMS, QLMS and AQLMS on the
prediction of a 4D wind field.

20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5

4

A
b

s
o

lu
te

 E
rr

o
r

Number of iterations (n)

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

A
b

s
o

lu
te

 E
rr

o
r

Number of iterations (n)

4D SAITO PROCESS

4D WIND MODEL

QLMS

AQLMS

WL−QLMS

WL−QLMS

AQLMS

QLMS

Fig. 4. Learning curves of WL-QLMS, QLMS and AQLMS on the prediction
of Q-improper processes, i.e. 4D Saito’s process (top) and 4D wind field
model (bottom).


