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A Quaternion Widely Linear Adaptive Filter
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Absiract—A quaternion widely linear (QWL) model for quaternion  the work by Vakhania, who defined the concept@fproperness as
valued mean-squared-error (MSE) estimation is proposed. Té aug- the invariance of the distribution of a quaternion valued variable under

mented statistics are first introduced into the field of quatenions, and PP :
it is demonstrated that this allows for capturing the complee second some specific rotations around the anglergf [8]. Amblard and Le

order statistics available. The QWL model is next incorporaed into the ~Bihan relaxed the Cond.itionf @-propemess to an arbitrary axis and
Quaternion Least Mean Square (QLMS) algorithm to yield the widely — angle of rotationp, that is,q = e”¥¢ [9] for any pure unit quaternion

linear QLMS (WL-QLMS). This allows for a unified approach to adaptive 1 (whose real part vanishes); where symBoldenotes equality in
filtering of both Q-proper and Q-improper signals, leading to improved  tarms of probability density function (pdf)
accuracies compared to the QLMS class of algorithms. Simulatns on . AN . .
both benchmark and real world data support the analysis. Although these r_esm_JIts _provnde an initial msnght_lnto the processing
) o ) of general quaternionic signals, they are not straightforward to apply
Index Terms—Quaternion adaptive filtering, Q-properness, quaternion  j, yhe context of adaptive filtering applications. To this end, we first
second order noncircularity, Wiener model, quadrivariate processes,

quaternion LMS (QLMS), widely linear model, widely linear QLMS.  Propose the quaternion widely linear model, specifically designed for
the unified modelling of the generality of quaternion signals, lidth

proper andQ-improper. The benefits of such an approach are shown

to be analogous to the benefits that the augmented statistics provides

for complex valued data [7]. Next, the QWL model is incorporated
Standard techniques employed in multichannel statistical sigriato the quaternion LMS [3] to yield the widely linear QLMS (WL-

processing typically do not fully cater for the ‘coupled’ nature oQLMS), and its theoretical and practical advantages are demonstrated

the available information within the channels. Thus, most practictirough analysis and simulations.

approaches operate based on channelwise processing, which is not

optimal for general multivariate signals (where data channels are |l. PROPERTIES OFQUATERNION RANDOM VECTORS

typically correlated). On the other hand, the quaternion donfin A. Quaternion Algebra

allows for the direct modelling of three- and four-dimensional signals, e quaternion domain, a non-commutative extension of the com-

and its algebra naturally accounts for the coupling between the singgX domain, provides a natural framework for the processing of
components. _ ) _ L _ three- and four-dimensional signals. A quaternion variable H
The use of quaternions s rapidly gaining in popularity, as 1Qlompyrises a real paf{-} and a vector-part, also known as a pure

instance, many multivariate problems based on vector sensors (Qaterniond{.}, consisting of three imaginary components, and can
tion body sensors, seismics, wind modelling) can be cast into tjg expressed as:

quaternion domain. The recent resurgence of quaternion valued
signal processing stems from the potential advantages that special qa = R{g}+3{q}
properties of quaternion algebra offer over real valued vector edgeb = R{q} +1S8:{q} + 15;{q} + xSk{q}
in multlvarlate_modelllng. Appllcatlons of quaternions |_nclu_de those = Gatigyt e +rga €H 1)
in vector sensing [1], machine learning [2], and adaptive filters [3].

Recent advances in complex valued signal processing have bé&g relationship between the orthogonal unit vectessy, » are
based on the widely linear model proposed by Picinbono [4]. Theiven by
model, together with the corresponding augmented complex statistics, ¥ = K =1 K=
has been successfully used to design enhanced algorithms in commu- 5 5 5
nications [5] [6] and adaptive filters [7]. These studies have shown wk = v =g =k = =1 @
that widely linear modelling and the associated augmented statisifigen ¢, ¢» € H, the noncommutative quaternion product is com-
offer theoretical and practical advantages over the standard compigited as
models, and are applicable to the generality of complex signals, both

I. INTRODUCTION

_ Y
circular and noncircular. a2 = R{qig2} + S{qug2}
Models suitable for the processing of signals with rotation depewhere R{qiq2} = ¢1.aq2,a + q1,692,6 + q1,cq2,c + q1,d92,d
dent distribution (noncircular) are lacking in the quaternion domain, Maet = (oo} + @oS{a} +S{a} x e} )

and their development has recently attracted significant research effo
[3]. Current second order algorithms operate based on only th&ere the symbol
guaternion valued covariance [1]—-[3] and thus do not fully exploit the ] ]
available statistical information. Advances in this direction includg- Quaternion Involutions

Given a complex number = z, 412, its real and imaginary part
ted. However, permission to use this material for any other ptposes can be extragted &, - %(ZJFZ ) andz, :.%(Z.i ). Howev_er,
must be obtained from the IEEE by sending a request to pubs- such convenient manipulation is not possible in the quaternion do-
permissions@ieee.orgManuscript received December 4, 2009; revised Aprimain. To circumvent this problem, the three perpendicular quaternion

%" denotes the vector product.
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can be employed, and the four components of the quaternion variapteperty states that the power of a quaternion variable is a sum of
g can now be computed as [10] the powers of the signal components. Observe that properties P1 and
P2 imply properties P3 and P4.

1 ) 1 -
%= 5(@+q) ®=5(2-4")
qe = 2i(q - ¢’ qq = Zi(q —q") (5) B. Augmented Statistics of Q-proper variables
¥ K

. ) o . . Notice thatQ-properness also implies that the quaternion vegtor
The quaternion conjugate_operatltmj. is also an involution ant_i is uncorrelated with the vector involutiorg, ¢, g, that ig,
can be expressed as a linear function of the three perpendicular

involutions, that is E{qq'"}=0 E{qd"}=0 E{qq""}=0 (9)
¢ = %(ql +¢ +q¢" —q) (6) This simplifies the structure of the augmented covariance mégix
of a Q-proper random vector, as
[1l. QUATERNION STATISTICS Cq Pq P, Pi 21 1 I I
Picinbono demonstrated that the complete description of the second_ | Pqa Cq 0 0 — 952 -I 2 0 O
order statistics irC can be achieved, provided the real valued bivari-* Py 0 Cq O 1 0o 2I O
ate covariance matrices can be calculated from their complex valued P, 0 0 Cq I 0 0 21
counterparts (see pp. 118-119 [11]). Following on this result, we next (10)

show that the complete second order statistical descriptidhigmob-  that is, the cross-quasicovariance matri€gg all vanish.
tained when the real valued quadrivariate covariances are exgliesse
terms of their quaternion valued counterparts, as shown in Appendix IV. THE QUATERNION WIDELY LINEAR MODEL

IX-A. However, unlike the complex domaifi, where for this purpose L )
To account for the complete second order statistics of quaternion

it is sufficient to combine the complex vectsrand its conjugate: . ; o
into the augmented complex vectgt = [z7z"]7, in the quaternion valued signals in mean-squared error (MSE) estimation, we need to
i i a filtering model corresponding to the widely linear model

domain, we also need to consider the involutions (4). We can theref&?gc’duce . ) .
build an augmented quaternion vector, comprising of any four of e the complex case [4]. Can|der t_heAMSE estimator of a sigral
five quantities{q, ¢*, ¢, ¢’, "} or their conjugates. One convenient®™MS of another observatiar that i, § = Ely|z]. For zero mean,
augmented basis i§° = {q,q*,¢",¢’*}, and will be used in jointly normal realy andz, the solution is

this work. Then, the augmented vecigf = [gT_ qH_ qf qJ_H}T _ §=h'x (11)
contains all the necessary second order statistical information and its
augmented covariance matrix is given by In the quaternion domain, however, the real estimator (11) applies to

each component (the real and the three imaginary parts) of quaternion

T J
C Pa ?q ?‘1 variables, that is

q
Pl Cq  Cqqr  Caqw

Ca — E a_aH _ . - q - 7
4 {q 4 } 7D'Cllr{ Cfllql ~qu Cg,ij ( ) Z//\'y = E[y’Y"xa? Tp, L, "Ed}, vy € {a7 ba ¢, d}
Png Cé{qJ Cé{ qa’ CqJ
and thus

The submatrices in (7) are calculated according to

Co = E{aa™} Ca = E{a*a™}

éaﬁ = E{a*IBT} Pa = E{aaT} ayﬁ € {q7 q17q]}
5 . . < Upon employing the identities (5), it is clear that the quaternion
We refer toC, as the quasicovariance ar@.s as the cross- estimator can also be expresdes

quasicovariance matrices. Unlike in the complex case [4], the non-
commutativity of the quaternion product resultsdn # C,,. 9 = Elylz, 2", 2", 27| +1E[y’ |z, 2", 2", 2]

+HE[Y |z, 2", 2", 27 + kE[y" |z, 2", 2", 277] (13)

Zj = E[ya\xa,xb7xc7:c,1]+ZE[yb|xa,xb,xc,md}

+]E[yc|$a,$b,$c,xd] +/€E[yd\ma,xb,mc,md] (12)

A. Circularity in H and Q-properness . . ) ) .
) ) . and thus arrive at the widely linear estimator for general quaternion
For a quaternion valued variable to be second order circula@{or

signals
proper), its probability distribution should be rotation-invariant with g
respect to the six pairs of axegl,:}, {1,3}, {1, &}, {23}, {x, 7} y = hPx+g"x" +ux" +vix = w*¥x* (14)
and {x,+}, where 1’ represents the real axis andj, x denote the " Y ,
corresponding imaginary axes. In other word€-proper quaternion Where w* = [b" g u” V7" andx* = [x XH_ x0T
random variable should satisfy the following properties [8] Following on the proposed quaternion widely linear model, the
) ) ) Wiener solution is now derived as the optimal Mean Square Estimator
P1: E{gs} = E{q:} =0° Vi,e=a,bcd (MSE). Consider the standard real valued quadratic cost functian, tha
P2: E{gsqc} =0 Vé,e=a,b,c,dandd # e is,
. — 2y — 2 = * * *
P3: E{qqu 2E{q;}7 30 Vdé=a,b,cd J = Blee’} = E{[d—y][d" —y]}
P4: E{|q‘ }:4E{q5}:40' Véza,b,c,d (8) — E{dd*}-‘rE{yy*}—E{yd*}—E{dy*} (15)

The first property, P1, states that all the four-signal components

: ) . 1Simi .
of a quaternion valued variable have equal variances. The propet[]tgf‘z'”i’gaﬂm;ﬁ;;ggmﬁﬁ’i ;’:"t‘;eed‘crﬁr?]c:ﬁg( }S’gﬁt:er, Eigg‘g’{e;?ff)s}[?ejns
P2 implies that the components gfare not correlated. Property E{z2T} = 0, for more detail see [7]. '

P3 suggests that the pseudocovariance matrix)qfroper signals  2any other augmented basis other thfn, 2*, 2*, 27*} can be used, as
does not vanish, in contrast to the complex case. Finally, the foutkplained in the Section IlI.
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The derivative of the cost function (15) can be expressed as\for f VI. SIMULATIONS

derivation, see Appendix IX-B . . .
PP ) Three sets of simulations were conducted in ffstep ahead

Veed = E{ (Vway)y* i y(Vway*) _ (Vway) a — d(Vway*)} prediction setting in order to comp_rehensw_ely assess the performance
of the proposed WL-QLMS algorithm against QLMS and AQLMS.
B o x @ o o The datasets used wereQaproper synthetic AR(4) process [7], the
- E{4[X y —xd }} +E{2[d(n)x Ty ]} (16) Q-improper four dimensional (4D) Saito’s signal [2] and real-world
4D wind field signal [3]. The guantitative performance index was the
[ I L . 02 5 N )
To obtain the Wi lution. th ati t1and Ilin (16 rediction gaink, = 10log ¥, whereoy ando. denote respectively
0 obtain the Wiener solution, e_expec ations ot an in ( )atﬁ estimated variances of the input and error; the filter length is
set to zero. In the complex domain, we can sum up the terms | a&f;noted byl

Il in (16); however, due to the noncommutativity of the quaternion 1) Q-proper Autoregressive(d) Model: The autoregressive AR(4)
product, we need to consider the terms in (16) individually, giving )
rocessz(n) = 1.79z(n — 1) — 1.85z(n — 2) + 1.27z(n — 3) —

the solutior 0.41z(n — 4) was driven by quadruply white Gaussian noise, whose
o w, = E{x*x""}7'B{x"d"} (17) real and imaginary components were uncorrelated, but had equal
n: w, = E{x“*x“H}‘lE{x“*d*} (18) variances. From Fig. 1, initially, QLMS converged faster than WL-

QLMS and AQLMS. This is because 1) it operates based on the
The first condition for the Wiener solution (17) requires the inversiotovarianceC, only, which is adequate to describe the complete
of the augmented covarianc€ = E{x“x“”'}. On the other hand, statistics ofQ-proper signals, due to the deterministic relationship
the second condition (18) also depends on the conjugate of pseudp— —P, /2 = PL/2 = P /2; 2) QLMS has fewer filter parameters
covariance matrix of the augmented vectdr, which conforms with to adapt. However, at steady state the prediction gain for all the
the observation in [3] that the quaternion domain accounts inherendligorithms considered was approximately 30 dB, as they are all suited
for the information contained in pseudocovariance. to processQ-proper data.
2) Q-improper Four-Dimensional Saito’'s Circuit [2]: Fig. 2 com-
V. THE WIDELY LINEAR QUATERNION LEAST MEAN SQUARE pares the performance of the quaternion algorithms [3] over a range
ALGORITHM of filter parameters. Conforming with the analysis in Section IV,

We now extend some recent results in quaternion adaptive filterifif WL-QLMS algorithm outperformed the QLMS and AQLMS on
[3], and employ the quaternion widely linear model (14) within th&1€ Q-improper Saito process, also exhibiting better convergence
stochastic gradient adaptive filtering framework iy to propose ProPerties (see top plot of Fig. 4), as QLMS accounts for the second
the Widely Linear Quaternion Least Mean Square (WL_QLMSXSH information only from the covariance matré., and the
adaptive filtering algorithm. Within the stochastic gradient descenQLMS operates based ofic and Px; both are not adequate to

optimisation, the gradient of the instantaneous cost function (15) REcount for the complete statistics @Fimproper signals.
3) Q-improper Wind Forecasting: The 4D quaternion dataset

VwaJ(n) = e(n)(Vwae'(n)) + (Vwee(n))e(n) comprised the 3D wind speed (North-South, East-West, and vertical

= 2e(n)x*(n) —4x*(n)e*(n) (19) directions) as a vector part (pure quaternion) and air temperature

] o ) as the scalar part. Fig. 3 shows that the prediction results over a

Notice that due to the non-commutativity of the quaternion produghnge of filter parameters are in agreement with theoretical analysis,

the two error gradient terms in (19)_need _to be treated SeRflustrating that WL-QLMS outperformed QLMS and AQLMS on

rately. Based on the generic stochastic gradient upde®’ = o improper nonstationary data. Fig. 4 (bottom plot) illustrates the
—pVwaJ(n), the update of the weight vector of the WL-QLMS;nroved convergence properties of WL-QLMS over QLMS, due to
algorithm can be obtained ‘as WL-QLMS using the complete second order statistical information

w'(n+1) = w*(n) + p(2x*(n)e* (n) — e(n)x“(n))  (20) available.

where the scaling factor of two has been absorbed in the stepsize
Giveny(n) = w (n)x(n), observe the same form of the update in
(20) as that within the QLMS in [3]. Although AQLMS outperformed  \we have introduced a quaternion widely linear model (QWL) for
QLMS, as shown in [3] in the context aR-improper signals, its epnanced second order estimation of general quaternionic signals. We
second order. informatioq is derived from only thg covar.iance and thgve demonstrated the efficacy of the QWL model, by incorporating
pseudocovariance, and is therefore still suboptimal@@improper it into the Quaternion Least Mean Square (QLMS) algorithm [3] to
data, as it cannot model_ the information contained in matnc%m the widely linear QLMS (WL-QLMS) algorithm. For rigour, the
such asCq. (see Appendix IX-A). Also, observe that the realconyergence analysis includes the stepsize bound and learning curves
valued _muIFlchanneI LMS does not _EXP_|9't the interchannel crosgs; poth second order circular and noncircular signals. Experiments
correlation in the same elegant and intuitive way as the WL-QLM§aye peen conducted for a range of filter parameters and dataset,

For more details, see p. 132 of [12] and the performance comparisqmstraﬂng the WL-QLMS outperforming other algorithms of the
with AQLMS in [3]. Finally, a convergence analysis of WL-QLMS 4.

algorithm is provided in Appendix IX-C, and the upper bound on the
stepsize is found to be < p < 2/Amax, Wherenax denotes the
maximum right eigenvalue a2 = 2C¢ + P2*. VIIl. A CKNOWLEDGEMENT

VII. CONCLUSION

3Similarly to complex-valued case [7], there are several edeit formu- _We would I|I_<e to thank Gill instruments for kindly providing us
lations for the quaternion-valued Wiener solution. Fortdnse, if the filter With the 3D WindMaster anemometer.
output is considered ag(n) = w*T (n)x%(n) instead ofy(n) = woH x2,
an alternative solution is obtained. 5The wind data were sampled at 32 Hz and recorded by the 3D Wistivia
4For more detail of the derivation, see [3] and the AppendixBIX- anemometer by Gill Instruments.
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IX. APPENDIX

A. Complete Second Order Statistics

The real valued correlation matrices of single componentsqs,
q. and qq of the quaternion random vectey can be expressed in
terms of the quaternion valued covariance matrices as

1
Cq, = 5%{&1 + Pat Cay

1 .
— S R{Ca—Pi}

oo = 5%(Ca P4} Cay =R(Ca} ~ (Cau + Cay + Ca.
Capaa = %%i{Cq +Pa} Cacan = %%j{cq + Pq}
Cagaa = %%k{cq +Pq}  Caeay = %s {Cq —PL}
Casae = 53:{Ca= P4} Cagmy = —3%{Ca— P} (21)

B. Derivation of the Sochastic Gradients

To calculate the derivatives of the outpytn) and its conjugate
with respect to the augmented weight vector, the tewfi§ (n)x(n)

and x*H

y(n) = w*(n)x(n) with respect tch are

8 *
= Xq + 1Xp + JXc + KXq algi = Xq — 1Xp — JXc — KXqd
oy~
= Xq + 1Xp + JXc + KXqg 7 = —Xq + 1Xp — JXc — KX4
Ohy
oy*
= Xq +1Xp + JXc + KXqg jah = —Xq — 1Xp + JXc — KXd
L9y
— = X4 + 1Xp + JXc + KXd ah = —Xq4 — 1Xp — JXc + KXq (22)
d

Therefore, 3¢ = ;’Tya + Zaafb +gay +hAL = 4x and 9% =
—2x. Similarly, the derivatives of the ter x*, ufx*, v x*

and their conjugates in (14) can also be computed respectively as

dy * oy __ 1% dy __ gx. Oy* __ _ * M
—g_4 au_4x7m_4x,@_ 2X78u_
—2x"", and —2x7*. As a result, the augmented guaternion

gradients can be expressed#@ =4x® and 2%, = —2x°,

6w“

C. Convergence Analysis

To factor out the conjugate erref (n) on the right hand side, we
start by replacingz(n)x*(n) = x**(n)e*(n) — 23{x**(n)e*(n)}
into (20) to yield

(1) = wio)a{ [26° () 7 )] (0) 23" () ()} )
(23)
Sincee(n) = —[w(n) — wo|?x%*(n) = —v (n)x%(n) [with w, as
the Wiener solution], (23) becomes
vin+1l) = v(n)— ,u|:(2E{x"'(n)xaH(n)}
—E{xa*(n)x“H(n)})v(n)
+2%{E{xa*( “n)}v(n H
vin+1) = v(n)-— ,u{(ZCf: —Pa)v(n) + QS{Pﬁ*v(n)}} (24)

The upper bound on the stepsize can then be approximated, by
considering the imaginary pa&{P;*v(n)} as a full quaternion,

to give v(n + 1) = v(n) — p[2Cs + Py"]v(n). By letting Cy =
2Cx+Py* and taking the right eigenvalue decompositior€gf with

its maximum eigenvalugma.x, We can obtain the stepsize bound for
WL-QLMS as0 < u < % a generic form which also applies

to QLMS and AQLMS. For instance, in the case of AQLMS, the
augmented covariance matr{ degenerates into it8 x 2 top-left
submatrix in (7), wherea€y become<, for QLMS. This implies

a larger stepsize is required for these algorithms to converge at the
same rate as WL-QLMS in the case @Fimproper signals (when
every element o€z does not vanish).

N WL-QLMS
1 Q-proper AR(4) process
AQLMS

QLMS

Absolute Error

“f “"WW ,

i imns

I T T it
500 2000

1000 1500 2500
Number of iterations (n)

Fig. 1. Learning curves of WL-QLMS, QLMS and AQLMS on the peitin
of the Q-proper AR(4) procesg(n) = 1.79z2(n — 1) — 1.85z(n — 2) +
1.27z(n — 3) — 0.41z(n — 4).

(n)w need to be examined. Consider the first term in (14)
h"x and its conjugatec”h. The partial derivatives of the output
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Fig. 3. The performance of WL-QLMS, QLMS and AQLMS on the
prediction of a 4D wind field.



