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Abstract—A discrete Fourier transform (DFT) enhanced com-
plex least mean square (CLMS) algorithm, which utilizes the
underlying time series relationship among the consecutive fun-
damental DFT components, is proposed to adaptively mitigate
the spur pollution in multi-standard transceivers. The transient
and steady-state performances of the proposed algorithm are
investigated, demonstrating faster convergence speed and higher
signal-plus-noise-to-interference ratio (SNIR) performance at the
steady state, compared to the conventional LMS algorithm.
Computer simulations in the single-spur cancellation setting
support the analysis.

Index Terms—discrete Fourier transform (DFT), complex least
mean square (CLMS), spur cancellation

I. INTRODUCTION

A difficult challenge in modern design of consumer RF
integrated circuits is to support a growing number of wireless
standards (e.g. GSM, 3G, LTE, WiFi) in one single radio
device, in order to keep the RF/analog circuitry in a small size
for flexibility and energy-saving concerns. Due to a multiplic-
ity of the operating frequencies and the physical proximity
between the components, one major problem encountered by
the implementations of such mobile architectures are spurious
tones (spurs), which are clock harmonics which result from
the leakage of other operating frequencies in a multi-standard
transceiver. These spurs may subsequently leak into the phase-
locked-loop to create a false demodulation [1], degrading the
signal-plus-noise-to-interference ratio (SNIR) of the receiver
as much as 8-10 dB [2], or directly coupling back within the
noisy signals.

Methods to mitigate spurs have been recently studied in
the literature. Among them, a group of active cancellation
techniques which cancel the spurs digitally have become
particularly attractive, as it is more cost-effective to deal
with spurs in the digital domain at a reasonable complexity
instead of restricting specifications of the analog part of front-
ends. These methods can be classified into notch filter based
techniques [2] and adaptive filtering algorithms [3], [4], and
in [4] the two classes are unified as equivalent schemes.

Recently, a novel complex-valued least squares enhanced
DFT algorithm [5], [6] was proposed, which utilizes the
underlying time series relationship among the consecutive
fundamental DFT components, instead of time series itself,

and exhibits higher accuracy of frequency estimation of a
single-tone exponential. By considering a similar underlining
signal processing modelling setup, we employ its essential
features and propose a DFT enhanced CLMS (DFT-CLMS)
algorithm to deal with the adaptive spur cancellation, for which
the closed-form expression of the post-cancellation SNIR is
provided to illustrate its performance advantages over the
conventional CLMS algorithm [4]. The analysis is supported
by illustrative simulations in practical scenarios.

II. ONE-SPUR MODEL AND CLMS BASED ADAPTIVE
SPUR CANCELLATION

The observed signal d(n) in a multi-standard transceiver in
discrete-time sense is composed of three parts, given by [4]

d(n) = x(n) + b(n) + s(n) (1)

where x(n), b(n) and s(n) are respectively the data signal,

additive white noise, and additive spur, all assumed to be
independent with each other. The received data x(n) and the
noise b(n) are further assumed to be zero-mean complex-
valued Gaussian processes, with respective variances σ2

x and
σ2
b . The spur is defined as

s(n) = Aej(ω0−ω)n+jϕ(n)+jϕ0 (2)

where ω0 is the nominal frequency of the spur, which is
normalized and known a priori. The symbol A denotes the
amplitude, ϕ0 is the initial phase, ω is a small frequency shift
between the actual frequency and the nominal frequency, so
that ω � ω0, and these are all unknown parameters. The phase
noise (PN) ϕ(n) follows a Brownian process, the evolution of
which is given by [7]

ϕ(n+ 1) = ϕ(n) + ξ(n) (3)

with ϕ(0) = 0 and ξ(n) real-valued additive white noise with
variance σ2

ξ � 1. Based on (1), the SNIR of the observed
signal before spur cancellation can be expressed as

SNIR0 = −10log10

(
A2

σ2
x + σ2

b

)
(4)



Q1 =
A2(ω2 + σ2

ξ )

B2
+ 2ω2(1− µB2)

A2[µB2 − (ω2 + σ2
ξ )(1− µB2)]

B2[µ2B4 + ω2(1− µB2)
2
]

(11)

As the nominal frequency ω0 of the spur is known a priori, a
complex exponential signal u(n), given by

u(n) = Bejω0n+jϕR (5)

can be synthesized and used as a reference for spur cancella-
tion, where B is the amplitude of the reference and ϕR is the
initial phase. In [4], the conventional CLMS algorithm was
employed to cancel the spurs in the presence of the frequency
drift ω [8], for which the functional relation is

e(n) = d(n)− w(n)u(n) (6)
w(n+ 1) = w(n) + µu∗(n)e(n) (7)

where e(n) is the error or the compensated signal, w(n) the
weight coefficient updated by the step-size µ, and (·)∗ the
complex conjugation operator.

With the above described assumptions on ω and σ2
ξ , e(n)

can be considered as approximately wide-sense stationary, and
hence, we are able to derive the asymptotic performance of
CLMS by analyzing the misalignment or the weight error
coefficient v(n), defined as

v(n) = w(n)− wopt(n) (8)

in which wopt(n) = s(n)/u(n) is the ideal coefficient, for
which the output error of the CLMS algorithm becomes

e(n) = x(n) + b(n)− v(n)u(n) (9)

By investigating the standard mean square convergence of
the CLMS algorithm [9]–[13], and after a few algebraic
manipulations, the steady-state variance of the misalignment
v(n) can be derived as [4]

σ2
v = E[|v(∞)|2] =

µ(σ2
x + σ2

b )

2− µB2
+

Q1

µB2(2− µB2)
(10)

where Q1 is given in (11). Based on (9) and (10), the SNIR
performance of CLMS for the spur cancellation is given by
[4]

SNIRCLMS = −10log10

(
B2σ2

v

σ2
x + σ2

b

)
(12)

III. PROPOSED ADAPTIVE SPUR CANCELLATION BASED
ON DFT-LMS

Since the nominal frequency ω0 of the spur is known a
propri, we can effectively design the sampling frequency fs
to be Nf0, where f0 = ω0/2π, and then perform the N -point
DFT transformation on the observed signal d(n) to obtain its
DFT fundamental component, given by [5], [6]

ḋ(k) =
1√
N

N−1∑
n=0

d(n+ k)e−j
2πn
N (13)

where k denotes the time index of the fundamental DFT
component, and the scaling factor 1/

√
N is used for power

invariance. Based on (1), we can express ḋ(k) as

ḋ(k) = ẋ(k) + ḃ(k) + ṡ(k) (14)

where ẋ(k), ḃ(k) and ṡ(k) are respectively the fundamental
DFT component of x(n), b(n), and s(n). After some algebraic
manipulations, it is not difficult to find out that the mean and
variance of ẋ(k) and ḃ(k) are the same as those of x(n) and
b(n), but have the following iterative characteristics,

E[ẋ(k)ẋ∗(k+1)]=
N − 1

N
σ2
x (15)

where

ẋ(k+1)=ej
2π
N ẋ(k)+

1√
N
ej

2π
N [x(k+1)−x(k+1−N)] (16)

and ṡ(k) can be represented as

ṡ(k) =
A√
N
ejφ0ej2πk/Ne−jωk

N−1∑
n=0

e−jωnejϕ(n+k) (17)

By exploiting the ergodicity of ξ(n), the form ϕ(n + k) can
be derived from (3) as

ϕ(n+ k) =

n+k−1∑
i=0

ξ(i) =

n−1∑
i=0

ξ(i) +

k−1∑
j=0

ξ(j) (18)

Substituting (18) into (17) and after some rearranging of
forms, we arrive at

ṡ(k) = A
√
Nejφ0ej2πk/Ne−jωkejϕ(k) (19)

where for small phase variance σ2
ξ and frequency drift ω,

N−1∑
n=0

e−jωnejϕ(n) ≈ N (20)

and ϕ(k) is a zero-mean colored Gaussian noise with variance
kσ2

ξ . Based on (14) and (19), the SNIR of ḋ(k) now becomes
A2N/(σ2

x+σ2
b ), which is N times larger than its time domain

counterpart given in (4). Correspondingly, the fundamental
DFT component of the reference signal u̇(k), denoted by u̇(k),
is given by

u̇(k) = B
√
NejϕRej2πk/N (21)

Finally, the proposed DFT enhanced CLMS (DFT-CLMS)
algorithm for adaptive spur cancellation can be described as

ė(k) = ḋ(k)− ẇ(k)u̇(k) (22)

ẇ(k + 1) = ẇ(k) + µu̇∗(k)ė(k) (23)



Q2 =
A2(ω2 + σ2

ξ )

B2
+ 2ω2(1− µNB2)

A2[µNB2 − (ω2 + σ2
ξ )(1− µNB2)]

B2[µ2N2B4 + ω2(1− µNB2)
2
]

(32)

Q3 =E
[
<{v̇(k)u̇(k)[ẋ∗(k)+ḃ∗(k)]}

]
=
N − 1

µN2B2
+

1−µNB2

µN3/2B2
+E [<{v̇(k−1)u̇(k−1)[x(k)+b(k)−x(k−N)−b(k−N)]}]

(33)

Similar to (8), the corresponding misalignment v̇(k) of DFT-
CLMS can be defined as

v̇(k) = ẇ(k)− ẇopt(k) (24)

where ẇopt(k) is the ideal coefficient, used to provide an
output strictly equal to the polluting spur ṡ(k), which is
defined as

ẇopt(k) =
ṡ(k)

u̇(k)
=
A

B
ej(ϕ0−ϕR)e−jωkejϕ(k) (25)

and can be iteratively obtained by

ẇopt(k + 1) = ẇopt(k)e−jωejξ(k) (26)

Using (24) and (25), equation (22) becomes

ė(k) = ẋ(k) + ḃ(k)− v̇(k)u̇(k) (27)

Upon applying the first-order approximation of the McLaurin
series on the right hand side (RHS) of (26), the evolution of
v̇(k) in (24) becomes

v̇(k + 1) = (1− µNB2)v̇(k) + µu̇∗(k)[ẋ(k) + ḃ(k)]

+ ẇopt(k)[jω − jξ̇(k)] (28)

Taking the statistical expectation E[·] on both sides of (28),
the step-size µ which guarantees the mean convergence of the
proposed DFT-CLMS algorithm should satisfy

0 < µ <
2

NB2
(29)

and the time constant τ , used to measure the rate of its
convergence [14], is then given by

τ ≈ 1

2µNB2
(30)

Upon multiplying both sides of (28) by v̇∗(k + 1), taking
the statistical expectation E[·], and using the independence
assumptions made in Section II, we arrive at the mean square
evolution of the misalignment v̇(k), in the form

E[|v̇(k+1)|2] = (1−µNB2)2E[|v̇(k)|2]+µ2NB2[σ2
x+σ2

b ]

+ Q2 + 2µ(1− µNB2)Q3 (31)

The detailed expression of Q2 is given in (32), and by utilizing
(15) and (16), Q3 is iteratively described in (33), where <{·}
is the real part operator. The steady-state variance of the

misalignment v̇(k) from (31) is then obtained by considering
k →∞, to give

σ2
v̇ =E[|v̇(∞)|2]=

µ(σ2
x+σ2

b )

2−µNB2
+

Q2

µNB2(2−µNB2)

+
2(1− µNB2)Q3

NB2(2− µNB2)

(34)

In order to implement effective spur cancellation and investi-
gate the performance of the proposed DFT-CLMS algorithm,
we need to transform ė(k) back into the time domain to
obtain the equivalent spur-compensated signal e(n). This can
be achieved through the following inverse DFT operation

e(n) =
√
N

N−1∑
m=0

Em

(
inf

(
n− 1

N

)
N + 1

)
ej

2πnm
N (35)

where inf(·) is the operator which rounds down the argument
to the nearest integer and

Em(l) =

{
Dm(l) m 6= 1

ė(l) m = 1
(36)

in which Dm(l) is the mth DFT component of d(n). After
some calculus, the SNIR of the proposed DFT-CLMS algo-
rithm for spur cancellation can be evaluated as

SNIRProposed = −10log10

(
σ2
v̇NB

2

N(σ2
x + σ2

b )

)
(37)

where σ2
v̇ is given in (34). Note that the conventional CLMS

algorithm can be regarded as a special case of the proposed
one when N = 1.

IV. SIMULATIONS

We investigated the performances of the conventional CLM-
S and the proposed DFT-CLMS algorithms for single spur
cancellation in an OFDM transmission system. The number of
subcarriers of the OFDM waveform was 64, the cyclic prefix
in each OFDM symbol was 16, and the data on each subcarrier
was QPSK-modulated. The waveform was transmitted through
a Rayleigh fading channel. On the receiver side, the signal was
polluted by a single spur, whose nominal center frequency f0
was at f0 = 6 MHz in the baseband, and additive complex
white Gaussian noise, with the SNR = σ2

x/σ
2
b was set to 10

dB. The amplitudes of the spur s(n) and the reference signal
u(n), that is, A and B, were set to A = 1 and B = 1.3
respectively, and the initial SNIR was 0 dB. All the simulations
results were obtained by averaging 500 independent trials.



0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

−15

−10

−5

0

5

10

15

20

25

30

Time index

S
N

IR
 (

d
B

)

 

 

Simulated SNIR (CLMS)

Theoretical SNIR (CLMS)

Simulated SNIR (Proposed, N=2)

Theoretical SNIR (Proposed, N=2)

Simulated SNIR (Proposed, N=4)

Theoretical SNIR (Proposed, N=4)

Simulated SNIR (Proposed, N=8)

Theoretical SNIR (Proposed, N=8)

Simulated SNIR (Proposed, N=16)

Theoretical SNIR (Proposed, N=16)

Fig. 1. Comparison of the mean transient SNIR performances of both the
considered algorithms.

In the first set of simulations, the equivalent variance of the
Brownian modelled phase noise was σ2

ξ = 2.5×10−8, and the
small frequency shift was ω = 10−5ω0. Fig. 1 illustrates the
transient SNIR of both the conventional CLMS algorithm [4]
and the proposed one, for different DFT sizes N . Using a step-
size µ = 1× 10−5, the theoretical steady state SNIRs of both
algorithms, evaluated by using (12) and (37), are also provided
as a reference. The proposed DFT-CLMS algorithm enabled
both faster convergence speed and higher SNIR performance
in the steady state; these performance advantages were more
pronounced when the proposed spur cancellation algorithm
employed a larger DFT size N . The faster convergence was
also expected since the time constant τ of the proposed DFT-
CLMS algorithm in (30) is inversely proportional to the DFT
size N , and the excellent agreement between the simulated
steady state SNIR and the theoretical one of both algorithms
can be observed.

We next considered the steady-state SNIR improvement of
the proposed spur cancellation algorithm over the conventional
CLMS, defined as ∆SNIR = SNIRProposed − SNIRCLMS,
for different values of the frequency shift ω and phase noise
variance σ2

ξ , as shown in Fig. 2 (a) and (b), respectively. It
is obvious that the proposed algorithm provided higher spur
cancellation accuracy than the CLMS algorithm for a smaller
frequency drift ω, and again, the close match between the
theoretical SNIR at the steady state and the simulated one can
be observed.

V. CONCLUSIONS

We have introduced a discrete Fourier transform enhanced
least mean square (DFT-LMS) algorithm to mitigate the
spur pollution in multi-standard transceivers. This has been
achieved by utilizing the underlying time series relationship
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Fig. 2. Improvement in SNIR of the proposed algorithm over the conventional
CLMS for different values of (a) frequency shift ω, and (b) phase noise
variance σ2

ξ .

among the consecutive fundamental DFT components. Both
the transient and the steady-state performances of the proposed
algorithm have been studied, illustrating its faster convergence
speed and enhanced steady state SNIR performance over the
conventional CLMS algorithm. Simulations on spur polluted
OFDM signals support the analysis.
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